1
|
Pillay K, Chiliza TE, Senzani S, Pillay B, Pillay M. In silico design of Mycobacterium tuberculosis multi-epitope adhesin protein vaccines. Heliyon 2024; 10:e37536. [PMID: 39323805 PMCID: PMC11422057 DOI: 10.1016/j.heliyon.2024.e37536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) adhesin proteins are promising candidates for subunit vaccine design. Multi-epitope Mtb vaccine and diagnostic candidates were designed using immunoinformatic tools. The antigenic potential of 26 adhesin proteins were determined using VaxiJen 2.0. The truncated heat shock protein 70 (tnHSP70), 19 kDa antigen lipoprotein (lpqH), Mtb curli pili (MTP), and Phosphate transport protein S1 (PstS1) were selected based on the number of known epitopes on the Immune Epitope Database (IEDB). B- and T-cell epitopes were identified using BepiPred2.0, ABCpred, SVMTriP, and IEDB, respectively. Population coverage was analysed using prominent South African specific alleles on the IEDB. The allergenicity, physicochemical characteristics and tertiary structure of the tri-fusion proteins were determined. The in silico immune simulation was performed using C-ImmSim. Three truncated sequences, with predicted B and T cell epitopes, and without allergenicity or signal peptides were linked by three glycine-serine residues, resulting in the stable, hydrophilic molecules, tnlpqH-tnPstS1-tnHSP70 (64,86 kDa) and tnMTP-tnPstS1-tnHSP70 (63,96 kDa). Restriction endonuclease recognition sequences incorporated at the N- and C-terminal ends of each construct, facilitated virtual cloning using Snapgene, into pGEX6P-1, resulting in novel, highly immunogenic vaccine candidates (0,912-0,985). Future studies will involve the cloning, recombinant protein expression and purification of these constructs for downstream applications.
Collapse
Affiliation(s)
- Koobashnee Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Thamsanqa E. Chiliza
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa
| | - Sibusiso Senzani
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Balakrishna Pillay
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa
| | - Manormoney Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| |
Collapse
|
2
|
Zeng L, Ma X, Qu M, Tang M, Li H, Lei C, Ji J, Li H. Immunogenicity and protective efficacy of Ag85A and truncation of PstS1 fusion protein vaccines against tuberculosis. Heliyon 2024; 10:e27034. [PMID: 38463854 PMCID: PMC10920368 DOI: 10.1016/j.heliyon.2024.e27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Tuberculosis (TB) is an important public health problem, and the One Health approach is essential for controlling zoonotic tuberculosis. Therefore, a rationally designed and more effective TB vaccine is urgently needed. To enhance vaccine efficacy, it is important to design vaccine candidates that stimulate both cellular and humoral immunity against TB. In this study, we fused the secreted protein Ag85A as the T cell antigen with truncated forms of the mycobacterial cell wall protein PstS1 with B cell epitopes to generate vaccine candidates, Ag85A-tnPstS1 (AP1, AP2, and AP3), and tested their immunogenicity and protective efficacy in mice. The three vaccine candidates induced a significant increase in the levels of T cell-related cytokines such as IFN-γ and IL-17, and AP1 and AP2 can induce more balanced Th1/Th2 responses than AP3. Strong humoral immune responses were also observed in which the production of IgG antibodies including its subclasses IgG1, IgG2c, and IgG3 was tremendously stimulated. AP1 and AP2 induced early antibody responses and more IgG3 isotype antibodies than AP3. Importantly, the mice immunised with the subunit vaccine candidates, particularly AP1 and AP2, had lower bacterial burdens than the control mice. Moreover, the serum from immunised mice can enhance phagocytosis and phagosome-lysosome fusion in macrophages, which can help to eradicate intracellular bacteria. These results indicate that the subunit vaccines Ag85A-tnPstS1 can be promising vaccine candidates for tuberculosis prevention.
Collapse
Affiliation(s)
- Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengjin Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengrui Lei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Malatji K, Singh A, Thobakgale C, Alexandre K. Development of a Multiplex HIV/TB Diagnostic Assay Based on the Microarray Technology. BIOSENSORS 2023; 13:894. [PMID: 37754128 PMCID: PMC10526232 DOI: 10.3390/bios13090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Currently there are diagnostic tests available for human immunodeficiency virus (HIV) and tuberculosis (TB); however, they are still diagnosed separately, which can delay treatment in cases of co-infection. Here we report on a multiplex microarray technology for the detection of HIV and TB antibodies using p24 as well as TB CFP10, ESAT6 and pstS1 antigens on epoxy-silane slides. To test this technology for antigen-antibody interactions, immobilized antigens were exposed to human sera spiked with physiological concentrations of primary antibodies, followed by secondary antibodies conjugated to a fluorescent reporter. HIV and TB antibodies were captured with no cross-reactivity observed. The sensitivity of the slides was compared to that of high-binding plates. We found that the slides were more sensitive, with the detection limit being 0.000954 µg/mL compared to 4.637 µg/mL for the plates. Furthermore, stability studies revealed that the immobilized antigens could be stored dry for at least 90 days and remained stable across all pH and temperatures assessed, with pH 7.4 and 25 °C being optimal. The data collectively suggested that the HIV/TB multiplex detection technology we developed has the potential for use to diagnose HIV and TB co-infection, and thus can be developed further for the purpose.
Collapse
Affiliation(s)
- Kanyane Malatji
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
| | - Advaita Singh
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa
| | - Christina Thobakgale
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
- Centre for HIV and STIs, National Institute for Communicable Diseases, Sandringham, Johannesburg 2192, South Africa
| | - Kabamba Alexandre
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
| |
Collapse
|
4
|
Arif S, Akhter M, Khaliq A, Akhtar MW. Fusion peptide constructs from antigens of M. tuberculosis producing high T-cell mediated immune response. PLoS One 2022; 17:e0271126. [PMID: 36174012 PMCID: PMC9521936 DOI: 10.1371/journal.pone.0271126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Non availability of effective anti-TB vaccine impedes TB control which remains a crucial global health issue. A fusion molecule based on immunogenic antigens specific to different growth phases of Mycobacterium tuberculosis can enhance T-cell responses required for developing a potent vaccine. In this study, six antigens including EspC, TB10.4, HspX, PPE57, CFP21 and Rv1352 were selected for constructing EspC-TB10.4 (bifu25), TnCFP21-Rv1352 (bifu29), HspX-EspC-TB10.4 (trifu37), HspX-TnCFP21-Rv1352 (trifu44) and HspX-EspC-TB10.4-PPE57 (tetrafu56) fusion proteins. Th1-cell epitopes of EspC, PPE57 and Rv1352 antigens were predicted for the first time using different in silico tools. The fusion molecule tetrafu56, which consisted of antigens from both the replicating and the dormant stages of Mtb, induced a release of 397 pg/mL of IFN-γ from PBMCs of the active TB patients. This response was comparable to the response obtained with cocktail of the component antigens (396 pg/mL) as well as to the total of the responses obtained separately for each of its component antigens (388 pg/mL). However, PBMCs from healthy samples in response to tetrafu56 showed IFN-γ release of only 26.0 pg/mL Thus a previous exposure of PBMCs to Mtb antigens in TB plasma samples resulted in 15-fold increase in IFN-γ response to tetrafu56 as compared to the PBMCs from the healthy controls. Hence, most of the T-cell epitopes of the individual antigens seem to be available for T-cell interactions in the form of the fusion. Further investigation in animal models should substantiate the immune efficacy of the fusion molecule. Thus, the fusion tetrafu56 seems to be a potential candidate for developing an effective multistage vaccine against TB.
Collapse
Affiliation(s)
- Shaista Arif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | | |
Collapse
|
5
|
The Rv3874-Rv3875 chimeric protein shows a promiscuous serodiagnostic potential for tuberculosis. Tuberculosis (Edinb) 2022; 136:102253. [PMID: 36067572 PMCID: PMC9424118 DOI: 10.1016/j.tube.2022.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) stays a major cause of death globally after COVID-19 and HIV. An early diagnosis to control TB effectively, needs a fast reliable diagnostic method with high sensitivity. Serodiagnosis involving polyclonal antibodies detection against an antigen of Mycobacterium tuberculosis (Mtb) in serum samples can be instrumental. In our study, Rv3874 and Rv3875 antigens were cloned, expressed, and purified individually and as a chimeric construct in Escherichia coli BL21. Enzyme-Linked Immunosorbent Assay (ELISA) based findings revealed that the Rv3874-Rv3875 chimeric construct was two-fold more sensitive (59.7%) than the individual sensitivities of Rv3874 (28.4%) and Rv3875 (24.9%) for 201 serum TB positive samples. Furthermore, the fusion construct was a little more sensitive (60.4%) for male subjects than that for females (58.8%). Lastly, our preliminary findings, molecular insights of secondary structure, and statistical and in silico analysis of each construct also advocate that CEP can be considered a better immunodiagnostic tool in addition to previously reported EC skin test.
Collapse
|
6
|
Sulman S, Savidge BO, Alqaseer K, Das MK, Nezam Abadi N, Pearl JE, Turapov O, Mukamolova GV, Akhtar MW, Cooper AM. Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines (Basel) 2021; 9:vaccines9050519. [PMID: 34070048 PMCID: PMC8158147 DOI: 10.3390/vaccines9050519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis vaccines capable of reducing disease worldwide have proven difficult to develop. BCG is effective in limiting childhood disease, but adult TB is still a major public health issue. Development of new vaccines requires identification of antigens that are both spatially and temporally available throughout infection, and immune responses to which reduce bacterial burden without increasing pathologic outcomes. Subunit vaccines containing antigen require adjuvants to drive appropriate long-lived responses. We generated a triple-antigen fusion containing the virulence-associated EsxN (Rv1793), the PPE42 (Rv2608), and the latency associated Rv2628 to investigate the balance between bacterial reduction and weight loss in an animal model of aerosol infection. We found that in both a low pattern recognition receptor (PRR) engaging adjuvant and a high PRR-engaging adjuvant (MPL/TDM/DDA) the triple-antigen fusion could reduce the bacterial burden, but also induced weight loss in the mice upon aerosol infection. The weight loss was associated with an imbalance between TNFα and IL-17 transcription in the lung upon challenge. These data indicate the need to assess both protective and pathogenic responses when investigating subunit vaccine activity.
Collapse
Affiliation(s)
- Sadaf Sulman
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Benjamin O. Savidge
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Kawther Alqaseer
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
- Department of Basic Science, Faculty of Nursing, University of Kufa, P.O. Box 21, Kufa, Najaf Governorate, Najaf 540011, Iraq
| | - Mrinal K. Das
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Neda Nezam Abadi
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - John E. Pearl
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Obolbek Turapov
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Galina V. Mukamolova
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - M. Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Andrea May Cooper
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
- Correspondence: ; Tel.: +44-(0)116-252-2957; Fax: +44-(0)116-252-5030
| |
Collapse
|
7
|
Arif S, Akhter M, Khaliq A, Nisa ZU, Khan IH, Akhtar MW. Serodiagnostic evaluation of fusion proteins from multiple antigens of Mycobacterium tuberculosis for active TB. Tuberculosis (Edinb) 2021; 127:102053. [PMID: 33561630 DOI: 10.1016/j.tube.2021.102053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Tuberculosis (TB) is a global health problem, being prevalent in the developing countries. A rapid, reliable and cost effective diagnostic method would help in controlling TB in the endemic populations. Development of suitable fusion molecules detecting multiple antibodies produced against Mycobacterium tuberculosis antigens would enhance sensitivity of serodiagnostic assays. In this study, EspC, CFP7 and PPE57 antigens of M. tuberculosis were selected for constructing fusion molecules after prediction of B-cell epitopes using in silico tools. Fusion proteins EspC-CFP7, HspX-EspC-CFP7 and HspX-EspC-CFP7-PPE57 were expressed in E.coli (BL21). The serodiagnostic potential of the individual antigens and their fusions was analyzed by screening 230 plasma samples of pulmonary TB patients. The single antigens HspX, EspC, CFP7, PPE57 showed sensitivities of 30%, 31%, 22% and 35%, respectively. The fusion protein EspC-CFP7 showed sensitivity of 43%. Linking of HspX antigen to the N-terminus of EspC-CFP7 fusion molecule increased sensitivity to 58%, while joining PPE57 antigen to the C-terminus of HspX-EspC-CFP7 increased sensitivity to 69%. The fusion protein HspX-EspC-CFP7-PPE57 seems to be a promising molecule for use in the development of fusions with higher sensitivity.
Collapse
Affiliation(s)
- Shaista Arif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | | | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, USA
| | | |
Collapse
|
8
|
Sulman S, Shahid S, Khaliq A, Ambreen A, Khan IH, Cooper AM, Akhtar MW. Enhanced serodiagnostic potential of a fusion molecule consisting of Rv1793, Rv2628 and a truncated Rv2608 of Mycobacterium tuberculosis. PLoS One 2021; 16:e0258389. [PMID: 34767571 PMCID: PMC8589213 DOI: 10.1371/journal.pone.0258389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/25/2021] [Indexed: 11/19/2022] Open
Abstract
Serodiagnosis of tuberculosis (TB) can be rapid, reliable and cost-effective if the issue of variable antibody responses of TB patients against different Mycobacterium tuberculosis (Mtb) antigens can be overcome by developing fusion proteins containing epitopes from multiple antigens of Mtb. In this study, Mtb antigens Rv1793, Rv2628, Rv2608 and a truncated variant produced by removing non-epitopic region from N-terminal of Rv2608 (tnRv2608), and the fusion protein Rv1793-Rv2628-tnRv2608 (TriFu64), were expressed in E. coli and purified. Plasma samples from TB patients characterized by sex, age and sputum/culture positivity, were used to compare the sensitivity of the single antigens with the fusion protein. Sensitivity of Rv1793, Rv2628 and Rv2608, was 27.8%, 39% and 36.3%, respectively. Truncation of Rv2608 increased sensitivity by approximately 35% in confirmed TB cases. Sensitivity of the fusion construct, TriFu64 increased to 66% with a specificity of 100%. Importantly, tnRv2608 was better able to detect sputum and culture negative patients, and this carried through to the fusion protein. We demonstrate that fusion of Mtb proteins ensures broad sensitivity across disease types, sex and age groups in a Pakistani population.
Collapse
Affiliation(s)
- Sadaf Sulman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saher Shahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Atiqa Ambreen
- Department of Microbiology, Gulab Devi Hospital, Lahore, Pakistan
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | - Andrea M. Cooper
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
9
|
Miller HK, Kersh GJ. Analysis of recombinant proteins for Q fever diagnostics. Sci Rep 2020; 10:20934. [PMID: 33262373 PMCID: PMC7708433 DOI: 10.1038/s41598-020-77343-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
Serology is essential for Q fever diagnostics, a disease caused by the bacterial pathogen Coxiella burnetii. The gold standard test is an immunofluorescence assay utilizing whole cell antigens, which are both dangerous and laborious to produce. Complexities of the antigen coupled with the subjective nature of the assay lead to decreased uniformity of test results and underscore the need for improved methodologies. Thirty-three C. burnetii proteins, previously identified as immunoreactive, were screened for reactivity to naturally infected goat serum. Based on reactivity, 10 proteins were analyzed in a secondary screen against human serum from healthy donors. Assay sensitivity and specificity ranged from 21 to 71% and 90 to 100%, respectively. Three promising antigens were identified based on receiver operating characteristic curve analysis (CBU_1718, CBU_0307, and CBU_1398). Five multiplex assays failed to outperform the individual proteins, with sensitivities and specificities ranging from 29 to 57% and 90 to 100%, respectively. Truncating the top antigen, CBU_1718, had no effect on specificity (90%); yet sensitivity decreased dramatically (71% to 21%). Through this study, we have expanded the subset of C. burnetii immunoreactive proteins validated by enzyme-linked immunosorbent assay and demonstrate the effect of novel antigen combinations and protein truncations on assay performance.
Collapse
Affiliation(s)
- Halie K Miller
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Gilbert J Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
10
|
Akhter M, Arif S, Khaliq A, Nisa ZU, Khan IH, Akhtar MW. Designing fusion molecules from antigens of Mycobacterium tuberculosis for detection of multiple antibodies in plasma of TB patients. Tuberculosis (Edinb) 2020; 124:101981. [PMID: 32810724 DOI: 10.1016/j.tube.2020.101981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is amongst the deadliest diseases worldwide. For effective control of TB a rapid, reliable and sensitive method for its diagnosis is essential. Serodiagnosis detecting multiple antibodies against antigens of Mycobacterium tuberculosis (Mtb) in blood samples could prove beneficial. Based on the epitope position in the molecule, two truncated variants of Rv1984c, i.e., Tn1Rv1984c and Tn2Rv1984c were expressed in Escherichia coli. Screening of the Rv1984c, Tn1Rv1984c and Tn2Rv1984c against 231 sera samples from the culture positive TB patients showed sensitivities of 34.2%, 49.4% and 26.8%, respectively. Another antigen Rv1352 was analyzed for the location of epitopes, which had not been reported before. A fusion molecule consisting of Tn1Rv1984c and Rv1352, expressed in E. coli, showed enhanced sensitivity of 62.8%. Joining another antigen Rv2031c to the N-terminus of Tn1Rv1984c-Rv1352, improved sensitivity to 71.4%. The fusion construct Rv2031c-Tn1Rv1984c-Rv1352 showed comparatively higher sensitivity of 73.4% in the male group as compared to 67% in the female group. Data derived for the secondary structure analysis through Circular Dichroism (CD) spectroscopy and prediction on the basis of molecular modelling was also in agreement. This construct can be a potential base for producing constructs with greater sensitivity through fusion of epitopes from additional Mtb antigens.
Collapse
Affiliation(s)
- Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Shaista Arif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | | | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, USA
| | | |
Collapse
|
11
|
Verma V, Joshi G, Gupta A, Chaudhary VK. An efficient ORF selection system for DNA fragment libraries based on split beta-lactamase complementation. PLoS One 2020; 15:e0235853. [PMID: 32701967 PMCID: PMC7377443 DOI: 10.1371/journal.pone.0235853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
PCR-based amplification of annotated genes has allowed construction of expression clones at genome-scale using classical and recombination-based cloning technologies. However, genome-scale expression and purification of proteins for down-stream applications is often limited by challenges such as poor expression, low solubility, large size of multi-domain proteins, etc. Alternatively, DNA fragment libraries in expression vectors can serve as the source of protein fragments with each fragment encompassing a function of its whole protein counterpart. However, the random DNA fragmentation and cloning result in only 1 out of 18 clones being in the correct open-reading frame (ORF), thus, reducing the overall efficiency of the system. This necessitates the selection of correct ORF before expressing the protein fragments. This paper describes a highly efficient ORF selection system for DNA fragment libraries, which is based on split beta-lactamase protein fragment complementation. The system has been designed to allow seamless transfer of selected DNA fragment libraries into any downstream vector systems using a restriction enzyme-free cloning strategy. The strategy has been applied for the selection of ORF using model constructs to show near 100% selection of the clone encoding correct ORF. The system has been further validated by construction of an ORF-selected DNA fragment library of 30 genes of M. tuberculosis. Further, we have successfully demonstrated the cytosolic expression of ORF-selected protein fragments in E. coli.
Collapse
Affiliation(s)
- Vaishali Verma
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Gopal Joshi
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vijay K. Chaudhary
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
12
|
MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Denkinger CM. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol 2019; 4:748-758. [PMID: 30804546 DOI: 10.1038/s41564-019-0380-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Millions of cases of tuberculosis (TB) go undiagnosed each year. Better diagnostic tools are urgently needed. Biomarker-based or multiple marker biosignature-based tests, ideally performed on blood or urine, for the detection of active TB might help to meet target product profiles proposed by the World Health Organization for point-of-care testing. We conducted a systematic review to summarize evidence on proposed biomarkers and biosignatures and evaluate their quality and level of evidence. We screened the titles and abstracts of 7,631 citations and included 443 publications that fulfilled the inclusion criteria and were published in 2010-2017. The types of biomarkers identified included antibodies, cytokines, metabolic activity markers, mycobacterial antigens and volatile organic compounds. Only 47% of studies reported a culture-based reference standard and diagnostic sensitivity and specificity. Forty-four biomarkers (4%) were identified in high-quality studies and met the target product profile minimum criteria, of which two have been incorporated into commercial assays. Of the 44 highest-quality biomarkers, 24 (55%) were multiple marker biosignatures. No meta-analyses were performed owing to between-study heterogeneity. In conclusion, TB biomarker discovery studies are often poorly designed and findings are rarely confirmed in independent studies. Few markers progress to a further developmental stage. More validation studies that consider the intended diagnostic use cases and apply rigorous design are needed. The extracted data from this review are currently being used by FIND as the foundation of a dynamic database in which biomarker data and developmental status will be presented.
Collapse
Affiliation(s)
- Emily MacLean
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | | | | | | | - Madhukar Pai
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | | |
Collapse
|
13
|
Bando-Campos G, Juárez-López D, Román-González SA, Castillo-Rodal AI, Olvera C, López-Vidal Y, Arreguín-Espinosa R, Espitia C, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant O-mannosylated protein production (PstS-1) from Mycobacterium tuberculosis in Pichia pastoris (Komagataella phaffii) as a tool to study tuberculosis infection. Microb Cell Fact 2019; 18:11. [PMID: 30660186 PMCID: PMC6339365 DOI: 10.1186/s12934-019-1059-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pichia pastoris (syn. Komagataella phaffii) is one of the most highly utilized eukaryotic expression systems for the production of heterologous glycoproteins, being able to perform both N- and O-mannosylation. In this study, we present the expression in P. pastoris of an O-mannosylated recombinant version of the 38 kDa glycolipoprotein PstS-1 from Mycobacterium tuberculosis (Mtb), that is similar in primary structure to the native secreted protein. Results The recombinant PstS-1 (rPstS-1) was produced without the native lipidation signal. Glycoprotein expression was under the control of the methanol-inducible promoter pAOX1, with secretion being directed by the α-mating factor secretion signal. Production of rPstS-1 was carried out in baffled shake flasks (BSFs) and controlled bioreactors. A production up to ~ 46 mg/L of the recombinant protein was achieved in both the BSFs and the bioreactors. The recombinant protein was recovered from the supernatant and purified in three steps, achieving a preparation with 98% electrophoretic purity. The primary and secondary structures of the recombinant protein were characterized, as well as its O-mannosylation pattern. Furthermore, a cross-reactivity analysis using serum antibodies from patients with active tuberculosis demonstrated recognition of the recombinant glycoprotein, indirectly indicating the similarity between the recombinant PstS-1 and the native protein from Mtb. Conclusions rPstS-1 (98.9% sequence identity, O-mannosylated, and without tags) was produced and secreted by P. pastoris, demonstrating that this yeast is a useful cell factory that could also be used to produce other glycosylated Mtb antigens. The rPstS-1 could be used as a tool for studying the role of this molecule during Mtb infection, and to develop and improve vaccines or kits based on the recombinant protein for serodiagnosis. Electronic supplementary material The online version of this article (10.1186/s12934-019-1059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giroshi Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Sergio A Román-González
- Unidad de Proteómica, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Col. Arenal Tepepan, Tlalpan, C.P. 14610, Ciudad de México, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Clarita Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Av. Universidad 2001 Chamilpa, Cuernavaca, Morelos, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Apdo, Postal 70250, C.P. 04510, México City, Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Khurshid S, Afzal M, Khalid R, Akhtar MW, Qazi MH. Potential of multi-component antigens for tuberculosis diagnosis. Biologicals 2017; 48:109-113. [DOI: 10.1016/j.biologicals.2017.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
|
15
|
de Araujo LS, de Bárbara Moreira da Silva Lins N, Leung JAM, Mello FCQ, Saad MHF. Close contact interferon-gamma response to the new PstS1 (285-374):CPF10: a preliminary 1-year follow-up study. BMC Res Notes 2017; 10:59. [PMID: 28114976 PMCID: PMC5259914 DOI: 10.1186/s13104-016-2360-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
Background The available diagnostic tools for latent tuberculosis (TB) infection (LTBI) via interferon-gamma (IFN-g) release assays (IGRA) are based on ESAT6:CFP10 stimulation. However, the mycobacterial antigen PstS1 is also highly immunogenic and some of its fragments, such as PstS1(285–374), have shown higher immunoreactivity in LTBI than in active TB. PstS1(285–374), therefore, could increase the accuracy of the existing IGRA to detect LTBI. Thus, a new chimeric protein has recently been developed (PstS1(285–374):CFP10) showing potential for LTBI screening of recent close contacts (rCt) exposed to Mycobacterium tuberculosis. The aim of this study was to analyze the PstS1(285–374):CFP10 longitudinal IFN-g profile in comparison to ESAT6:CFP10 and full PstS1/CFP10 stimulation in a rCt cohort and correlate the responses to these in-house IGRA with any clinical changes/interventions that might occur. Methods A free-of-cost, one-year follow up was offered to 120 rCt recruited in Rio de Janeiro, RJ, Brazil. Whole blood short-term (WBA), long-term stimulation (LSA) assays, and the tuberculin skin test (TST) were performed during follow up. Results Among the enrolled rCt, 44.2% (53/120) returned for re-evaluation and the control group (TST negative, n = 17) showed low IFN-g reactivity to all antigen stimulations during the entire follow up, except for one participant who had shown radiological evidence of past TB/LTBI. Both incident cases were detected by IGRA-PstS1(285–374):CFP10 during LTBI and after disease progression. Moreover, subsequent to the prophylactic treatment for LTBI (tLTBI), a significant regression in the LSA response was predominantly observed through stimulation of the new chimeric protein (8/10, 80%) followed by ESAT6:CFP10 (5/10, 50%) and PstS1/CFP10 (4/10, 40%). No clinical or epidemiological characteristics were exclusively shared among IGRA convertors. Conclusion It was demonstrated that the TST negative rCt without radiological evidence of LTBI/TB did not develop an IGRA-PstS1(285–374):CFP10 response during the one-year follow up. Moreover, all incident cases were detected by our new IGRA; and a significant decrement of LSA-PstS1(285–374):CFP10 reactivity post-prophylactic tLTBI was found. To our knowledge, this is the first study to monitor changes in the immune response profile of IGRA-PstS1(285–374):CFP10 among rCt during a consecutive one-year period, thus providing additional evidence of its potential in the detection of LTBI. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2360-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo Silva de Araujo
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, 20045-360, Brazil
| | | | - Janaina Aparecida Medeiros Leung
- Federal University of Rio de Janeiro, Helio Fraga Filho Hospital, Professor Rodolpho Paulo Rocco Street, 255, 1st Floor, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Fernanda Carvalho Queiroz Mello
- Federal University of Rio de Janeiro, Helio Fraga Filho Hospital, Professor Rodolpho Paulo Rocco Street, 255, 1st Floor, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Maria Helena Féres Saad
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, 20045-360, Brazil.
| |
Collapse
|
16
|
Khalid R, Afzal M, Khurshid S, Paracha RZ, Khan IH, Akhtar MW. Fusion Molecules of Heat Shock Protein HSPX with Other Antigens of Mycobacterium tuberculosis Show High Potential in Serodiagnosis of Tuberculosis. PLoS One 2016; 11:e0163349. [PMID: 27654048 PMCID: PMC5031420 DOI: 10.1371/journal.pone.0163349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 09/07/2016] [Indexed: 12/02/2022] Open
Abstract
Variable individual response against the antigens of Mycobacterium tuberculosis necessitates detection of multiple antibodies for enhancing reliability of serodiagnosis of tuberculosis. Fusion molecules consisting of two or more antigens showing high sensitivity would be helpful in achieving this objective. Antigens of M. tuberculosis HSPX and PE35 were expressed in a soluble form whereas tnPstS1 and FbpC1 were expressed as inclusion bodies at 37°C. Heat shock protein HSPX when attached to the N-termini of the antigens PE35, tnPstS1 and FbpC1, all the fusion molecules were expressed at high levels in E. coli in a soluble form. ELISA analysis of the plasma samples of TB patients against HSPX-tnPstS1 showed 57.7% sensitivity which is nearly the same as the expected combined value obtained after deducting the number of plasma samples (32) containing the antibodies against both the individual antigens. Likewise, the 54.4% sensitivity of HSPX-PE35 was nearly the same as that expected from the combined values of the contributing antigens. Structural analysis of all the fusion molecules by CD spectroscopy showed that α-helical and β-sheet contents were found close to those obtained through molecular modeling. Molecular modeling studies of HSPX-tnPstS1 and HSPX-PE35 support the analytical results as most of the epitopes of the contributing antigens were found to be available for binding to the corresponding antibodies. Using these fusion molecules in combination with other antigenic molecules should reduce the number of antigenic proteins required for a more reliable and economical serodiagnosis of tuberculosis. Also, HSPX seems to have potential application in soluble expression of heterologous proteins in E. coli.
Collapse
Affiliation(s)
- Ruqyya Khalid
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Madeeha Afzal
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Sana Khurshid
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Rehan Zafar Paracha
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Ferreira EL, Batista MT, Cavalcante RCM, Pegos VR, Passos HM, Silva DA, Balan A, Ferreira LCS, Ferreira RCC. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans. Mol Oral Microbiol 2015; 31:410-22. [PMID: 26462737 DOI: 10.1111/omi.12142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 11/29/2022]
Abstract
Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries.
Collapse
Affiliation(s)
- E L Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - M T Batista
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - R C M Cavalcante
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - V R Pegos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil.,Biosciences National Laboratory (LNBio), Materials and Energy Research Center, Campinas, SP, Brazil
| | - H M Passos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - D A Silva
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - A Balan
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil.,Biosciences National Laboratory (LNBio), Materials and Energy Research Center, Campinas, SP, Brazil
| | - L C S Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - R C C Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
The Mycobacterium tuberculosis PPE protein Rv1168c induces stronger B cell response than Rv0256c in active TB patients. INFECTION GENETICS AND EVOLUTION 2015; 40:339-345. [PMID: 26364913 DOI: 10.1016/j.meegid.2015.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/30/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is a serious global health problem and is responsible for millions of deaths every year. For effective control of this dreadful disease, it is necessary to diagnose TB cases at the initial stages of infection. The serodiagnosis of disease represents simple, rapid and inexpensive method that can be used at the primary health care levels. In this study we have compared sensitivity of two PPE proteins of M. tuberculosis, i.e., Rv0256c and Rv1168c for their use as serodiagnostic markers in active tuberculosis patients. Employing a standardized enzyme immunoassay with these PPE proteins as candidate antigens we were able to successfully discriminate the TB patients' sera from the BCG-vaccinated healthy controls. Further, we observed that Rv1168c displayed higher sensitivity in detecting extrapulmonary and smear negative pulmonary TB cases which are difficult to diagnose by available diagnostic methods. Overall the study highlights that Rv1168c can be used as a potential serodiagnostic marker for the diagnosis of active tuberculosis disease.
Collapse
|
19
|
Afzal M, Khurshid S, Khalid R, Paracha RZ, Khan IH, Akhtar MW. Fusion of selected regions of mycobacterial antigens for enhancing sensitivity in serodiagnosis of tuberculosis. J Microbiol Methods 2015; 115:104-11. [PMID: 26068786 DOI: 10.1016/j.mimet.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/27/2022]
Abstract
Serodiagnosis of tuberculosis requires detection of antibodies against multiple antigens of Mycobacterium tuberculosis, because antibody profiles differ among the patients. Using fusion proteins with epitopes from two or more antigens would facilitate in the detection of multiple antibodies. Fusion constructs tn1FbpC1-tnPstS1 and tn2FbpC1-tnPstS1 were produced by linking truncated regions of variable lengths from FbpC1 to the N-terminus of the truncated PstS1. Similarly a truncated fragment of HSP was linked to the N-terminus of a truncated fragment from FbpC1 to produce tnHSP-tn1FbpC1. ELISA analysis of the plasma samples of TB patients against tn2FbpC1-tnPstS1 showed 72.2% sensitivity which is nearly the same as the expected combined value for the two individual antigens. However, the sensitivity of tn1FbpC1-tnPstS1 was lowered to 60%. tnHSP-tn1FbpC1 showed 67.7% sensitivity which is slightly less than the expected combined value for the two individual antigens, but still significantly higher than that of each of the individual antigen. Data for secondary structure analysis by CD spectrometry was in reasonable agreement with the X-ray crystallographic data of the native proteins and the predicted structure of the fusion proteins. Comparative molecular modeling suggests that the epitopes of the constituent proteins are better exposed in tn2FbpC1-tnPstS1 as compared to those in tn1FbpC1-tnPstS1. Therefore, removal of the N-terminal non-epitopic region of FbpC1 from 34-96 amino acids seems to have unmasked at least some of the epitopes, resulting in greater sensitivity. The high level of sensitivity of tn2FbpC1-tnPstS1 and tnHSP-tn1FbpC1, not reported before, shows that these fusion proteins have great potential for use in serodiagnosis of tuberculosis.
Collapse
Affiliation(s)
- Madeeha Afzal
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Sana Khurshid
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Ruqyya Khalid
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Rehan Zafar Paracha
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis 95616, USA.
| | - M Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| |
Collapse
|
20
|
Khurshid S, Afzal M, Khalid R, Khan IH, Akhtar MW. Improving sensitivity for serodiagnosis of tuberculosis using TB16.3-echA1 fusion protein. Tuberculosis (Edinb) 2014; 94:519-24. [DOI: 10.1016/j.tube.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/05/2014] [Accepted: 06/15/2014] [Indexed: 11/26/2022]
|