1
|
Abil OZ, Liu S, Yeh YW, Wu Y, Sen Chaudhuri A, Li NS, Deng C, Xiang Z. A mucosal vaccine formulation against tuberculosis by exploiting the adjuvant activity of S100A4-A damage-associated molecular pattern molecule. Vaccine 2024; 42:126151. [PMID: 39089961 DOI: 10.1016/j.vaccine.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains one of the top three causes of death. Currently, the only licensed vaccine against TB is the bacillus Calmette-Guerin (BCG), which lacks efficacy in preventing and controlling pulmonary TB in adults. We aimed to evaluate a nasal TB vaccine formulation composed of the Mtb-specific vaccine antigen ESAT-6, an Mtb-associated protein that can trigger protective immune responses, and S100A4, a recently characterized novel mucosal adjuvant. Mice were intranasally given recombinant ESAT-6 in the presence or absence of S100A4 as an adjuvant. We have provided experimental evidence demonstrating that S100A4 admixed to ESAT-6 could induce Mtb-specific adaptive immune responses after intranasal immunization. S100A4 remarkably augmented the levels of anti-ESAT-6 IgG in serum and IgA in mucosal sites, including lung exudates, bronchoalveolar lavage fluid (BALF) and nasal lavage. Furthermore, in both lung and spleen tissues, S100A4 strongly promoted ESAT-6-specific expansion of CD4 T cells. Both CD4 and CD8 T cells from these tissues expressed increased levels of IFN-γ, TNF-α, and IL-17, cytokines critical for antimicrobial activity. Antigen-reencounter-induced T cell proliferative responses, a key vaccine performance indicator, were augmented in the spleen of S100A4-adjuvanted mice. Furthermore, CD8 T cells from the spleen and lung tissues of these mice expressed higher levels of granzyme B upon antigen re-stimulation. S100A4-adjuvanted immunization may predict good mucosal protection against TB.
Collapse
Affiliation(s)
- Olifan Zewdie Abil
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shuwei Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu-Wen Yeh
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuxuan Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Arka Sen Chaudhuri
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Nga Shan Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chujun Deng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zou Xiang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
2
|
Laing KJ, Ouwendijk WJD, Campbell VL, McClurkan CL, Mortazavi S, Elder Waters M, Krist MP, Tu R, Nguyen N, Basu K, Miao C, Schmid DS, Johnston C, Verjans GMGM, Koelle DM. Selective retention of virus-specific tissue-resident T cells in healed skin after recovery from herpes zoster. Nat Commun 2022; 13:6957. [PMID: 36376285 PMCID: PMC9663441 DOI: 10.1038/s41467-022-34698-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes zoster is a localized skin infection caused by reactivation of latent varicella-zoster virus. Tissue-resident T cells likely control skin infections. Zoster provides a unique opportunity to determine if focal reinfection of human skin boosts local or disseminated antigen-specific tissue-resident T cells. Here, we show virus-specific T cells are retained over one year in serial samples of rash site and contralateral unaffected skin of individuals recovered from zoster. Consistent with zoster resolution, viral DNA is largely undetectable on skin from day 90 and virus-specific B and T cells decline in blood. In skin, there is selective infiltration and long-term persistence of varicella-zoster virus-specific T cells in the rash site relative to the contralateral site. The skin T cell infiltrates express the canonical tissue-resident T cell markers CD69 and CD103. These findings show that zoster promotes spatially-restricted long-term retention of antigen-specific tissue-resident T cells in previously infected skin.
Collapse
Affiliation(s)
- Kerry J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Werner J D Ouwendijk
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Shahin Mortazavi
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Maxwell P Krist
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard Tu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nhi Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Krithi Basu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Congrong Miao
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - D Scott Schmid
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Georges M G M Verjans
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
3
|
Charles T, Moss DL, Bhat P, Moore PW, Kummer NA, Bhattacharya A, Landry SJ, Mettu RR. CD4+ T-Cell Epitope Prediction by Combined Analysis of Antigen Conformational Flexibility and Peptide-MHCII Binding Affinity. Biochemistry 2022; 61:1585-1599. [PMID: 35834502 PMCID: PMC9352311 DOI: 10.1021/acs.biochem.2c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Antigen processing in the class II MHC pathway depends
on conventional
proteolytic enzymes, potentially acting on antigens in native-like
conformational states. CD4+ epitope dominance arises from a competition
among antigen folding, proteolysis, and MHCII binding. Protease-sensitive
sites, linear antibody epitopes, and CD4+ T-cell epitopes were mapped
in plague vaccine candidate F1-V to evaluate the various contributions
to CD4+ epitope dominance. Using X-ray crystal structures, antigen
processing likelihood (APL) predicts CD4+ epitopes with significant
accuracy for F1-V without considering peptide-MHCII binding affinity.
We also show that APL achieves excellent performance over two benchmark
antigen sets. The profiles of conformational flexibility derived from
the X-ray crystal structures of the F1-V proteins, Caf1 and LcrV,
were similar to the biochemical profiles of linear antibody epitope
reactivity and protease sensitivity, suggesting that the role of structure
in proteolysis was captured by the analysis of the crystal structures.
The patterns of CD4+ T-cell epitope dominance in C57BL/6, CBA, and
BALB/c mice were compared to epitope predictions based on APL, MHCII
binding, or both. For a sample of 13 diverse antigens, the accuracy
of epitope prediction by the combination of APL and I-Ab-MHCII-peptide affinity reached 36%. When MHCII allele specificity
was also diverse, such as in human immunity, prediction of dominant
epitopes by APL alone reached 42% when using a stringent scoring threshold.
Because dominant CD4+ epitopes tend to occur in conformationally stable
antigen domains, crystal structures typically are available for analysis
by APL, and thus, the requirement for a crystal structure is not a
severe limitation.
Collapse
Affiliation(s)
- Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Daniel L Moss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Pawan Bhat
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Peyton W Moore
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Nicholas A Kummer
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Avik Bhattacharya
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
4
|
Koelle DM, Dong L, Jing L, Laing KJ, Zhu J, Jin L, Selke S, Wald A, Varon D, Huang ML, Johnston C, Corey L, Posavad CM. HSV-2-Specific Human Female Reproductive Tract Tissue Resident Memory T Cells Recognize Diverse HSV Antigens. Front Immunol 2022; 13:867962. [PMID: 35432373 PMCID: PMC9009524 DOI: 10.3389/fimmu.2022.867962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Antigen-specific TRM persist and protect against skin or female reproductive tract (FRT) HSV infection. As the pathogenesis of HSV differs between humans and model organisms, we focus on humans with well-characterized recurrent genital HSV-2 infection. Human CD8+ TRM persisting at sites of healed human HSV-2 lesions have an activated phenotype but it is unclear if TRM can be cultivated in vitro. We recovered HSV-specific TRM from genital skin and ectocervix biopsies, obtained after recovery from recurrent genital HSV-2, using ex vivo activation by viral antigen. Up to several percent of local T cells were HSV-reactive ex vivo. CD4 and CD8 T cell lines were up to 50% HSV-2-specific after sorting-based enrichment. CD8 TRM displayed HLA-restricted reactivity to specific HSV-2 peptides with high functional avidities. Reactivity to defined peptides persisted locally over several month and was quite subject-specific. CD4 TRM derived from biopsies, and from an extended set of cervical cytobrush specimens, also recognized diverse HSV-2 antigens and peptides. Overall we found that HSV-2-specific TRM are abundant in the FRT between episodes of recurrent genital herpes and maintain competency for expansion. Mucosal sites are accessible for clinical monitoring during immune interventions such as therapeutic vaccination.
Collapse
Affiliation(s)
- David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Jin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Dana Varon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christine M. Posavad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
5
|
Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL, McClurkan CL, Favors SM, Hemingway LA, Godornes C, Tong DQ, Selke S, LeClair AC, Pyo CW, Geraghty DE, Laing KJ, Wald A, Gale M, Koelle DM. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. JCI Insight 2022; 7:e158126. [PMID: 35133988 PMCID: PMC8986086 DOI: 10.1172/jci.insight.158126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/03/2022] Open
Abstract
SARS-CoV-2 provokes a robust T cell response. Peptide-based studies exclude antigen processing and presentation biology, which may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DCs to activate CD8 and CD4 T cells from convalescent people. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory tract cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the Alpha, Beta, Gamma, and Delta variant lineages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Chu-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Anna Wald
- Department of Medicine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, and
- Center for Innate Immunity of Immune Disease, Department of Immunology, and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - David M. Koelle
- Department of Medicine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
6
|
Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL, McClurkan CL, Favors SM, Hemingway LA, Godornes C, Tong DQ, Selke S, LeClair AC, Pyo CW, Geraghty DE, Laing KJ, Wald A, Gale M, Koelle DM. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.23.22269497. [PMID: 35118477 PMCID: PMC8811910 DOI: 10.1101/2022.01.23.22269497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 provokes a brisk T cell response. Peptide-based studies exclude antigen processing and presentation biology and may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DC to activate CD8 and CD4 T cells from convalescent persons. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the alpha, beta, gamma, and delta variant lineages.
Collapse
|
7
|
Campbell VL, Nguyen L, Snoey E, McClurkan CL, Laing KJ, Dong L, Sette A, Lindestam Arlehamn CS, Altmann DM, Boyton RJ, Roby JA, Gale M, Stone M, Busch MP, Norris PJ, Koelle DM. Proteome-Wide Zika Virus CD4 T Cell Epitope and HLA Restriction Determination. Immunohorizons 2020; 4:444-453. [PMID: 32753403 PMCID: PMC7839664 DOI: 10.4049/immunohorizons.2000068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that caused an epidemic in 2015-2016. ZIKV-specific T cell responses are functional in animal infection models, and helper CD4 T cells promote avid Abs in the vaccine context. The small volumes of blood available from field research limit the determination of T cell epitopes for complex microbes such as ZIKV. The goal of this project was efficient determination of human ZIKV CD4 T cell epitopes at the whole proteome scale, including validation of reactivity to whole pathogen, using small blood samples from convalescent time points when T cell response magnitude may have waned. Polyclonal enrichment of candidate ZIKV-specific CD4 T cells used cell-associated virus, documenting that T cells in downstream peptide analyses also recognize whole virus after Ag processing. Sequential query of bulk ZIKV-reactive CD4 T cells with pooled/single ZIKV peptides and molecularly defined APC allowed precision epitope and HLA restriction assignments across the ZIKV proteome and enabled discovery of numerous novel ZIKV CD4 T cell epitopes. The research workflow is useful for the study of emerging infectious diseases with a very limited human blood sample availability.
Collapse
Affiliation(s)
| | - LeAnn Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elise Snoey
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA,Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | - Danny M. Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rosemary J. Boyton
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Justin A. Roby
- Center for Innate Immunity of Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity of Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA,Department of Global Health, University of Washington, Seattle, WA, USA,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Phillip J. Norris
- Vitalant Research Institute, San Francisco, California, USA,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA,Department of Global Health, University of Washington, Seattle, WA, USA,Benaroya Research Institute, Seattle, WA, USA,Department of Laboratory Medicine, Seattle, WA, USA,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Corresponding author: David Koelle MD, 750 Republican Street, Room E651, Seattle, WA, 981109, phone 206 616 1940, fax 206 616 4898,
| |
Collapse
|
8
|
Development of a diagnostic compatible BCG vaccine against Bovine tuberculosis. Sci Rep 2019; 9:17791. [PMID: 31780694 PMCID: PMC6882907 DOI: 10.1038/s41598-019-54108-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
Bovine tuberculosis (BTB) caused by Mycobacterium bovis remains a major problem in both the developed and developing countries. Control of BTB in the UK is carried out by test and slaughter of infected animals, based primarily on the tuberculin skin test (PPD). Vaccination with the attenuated strain of the M. bovis pathogen, BCG, is not used to control bovine tuberculosis in cattle at present, due to its variable efficacy and because it interferes with the PPD test. Diagnostic tests capable of Differentiating Infected from Vaccinated Animals (DIVA) have been developed that detect immune responses to M. bovis antigens absent in BCG; but these are too expensive and insufficiently sensitive to be used for BTB control worldwide. To address these problems we aimed to generate a synergistic vaccine and diagnostic approach that would permit the vaccination of cattle without interfering with the conventional PPD-based surveillance. The approach was to widen the pool of M. bovis antigens that could be used as DIVA targets, by identifying antigenic proteins that could be deleted from BCG without affecting the persistence and protective efficacy of the vaccine in cattle. Using transposon mutagenesis we identified genes that were essential and those that were non-essential for persistence in bovine lymph nodes. We then inactivated selected immunogenic, but non-essential genes in BCG Danish to create a diagnostic-compatible triple knock-out ΔBCG TK strain. The protective efficacy of the ΔBCG TK was tested in guinea pigs experimentally infected with M. bovis by aerosol and found to be equivalent to wild-type BCG. A complementary diagnostic skin test was developed with the antigenic proteins encoded by the deleted genes which did not cross-react in vaccinated or in uninfected guinea pigs. This study demonstrates the functionality of a new and improved BCG strain which retains its protective efficacy but is diagnostically compatible with a novel DIVA skin test that could be implemented in control programmes.
Collapse
|
9
|
Genome-Wide Approach to the CD4 T-Cell Response to Human Herpesvirus 6B. J Virol 2019; 93:JVI.00321-19. [PMID: 31043533 DOI: 10.1128/jvi.00321-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) and cytomegalovirus (CMV) are population-prevalent betaherpesviruses with intermittent lytic replication that can be pathogenic in immunocompromised hosts. Elucidation of the adaptive immune response is valuable for understanding pathogenesis and designing novel treatments. Knowledge of T-cell antigens has reached the genome-wide level for CMV and other human herpesviruses, but study of HHV-6 is at an earlier stage. Using rare-cell enrichment combined with an HLA-agnostic, proteome-wide approach, we queried HHV-6B-specific CD4 T cells from 18 healthy donors with each known HHV-6B protein. We detected a low abundance of HHV-6-specific CD4 T cells in blood; however, the within-person CD4 T-cell response is quite broad: the median number of open reading frame (ORF) products recognized was nine per person. Overall, the data expand the number of documented HHV-6B CD4 T-cell antigens from approximately 11 to 60. Epitopes in the proteins encoded by U14, U90, and U95 were mapped with synthetic peptides, and HLA restriction was defined for some responses. Intriguingly, CD4 T-cell antigens newly described in this report are among the most population prevalent, including U73, U72, U95, and U30. Our results indicate that selection of HHV-6B ORFs for immunotherapy should consider this expanded panel of HHV-6B antigens.IMPORTANCE Human herpesvirus 6 is highly prevalent and maintains chronic infection in immunocompetent individuals, with the potential to replicate widely in settings of immunosuppression, leading to clinical disease. Antiviral compounds may be ineffective and/or pose dose-limiting toxicity, and therefore, immune-based therapies have garnered increased interest in recent years. Attempts at addressing this unmet medical need begin with understanding the cellular response to HHV-6 at the individual and population levels. The present study provides a comprehensive assessment of HHV-6-specific T-cell responses that may inform the development of cell-based therapies directed at this virus.
Collapse
|
10
|
Ramchandani MS, Jing L, Russell RM, Tran T, Laing KJ, Magaret AS, Selke S, Cheng A, Huang ML, Xie H, Strachan E, Greninger AL, Roychoudhury P, Jerome KR, Wald A, Koelle DM. Viral Genetics Modulate Orolabial Herpes Simplex Virus Type 1 Shedding in Humans. J Infect Dis 2019; 219:1058-1066. [PMID: 30383234 PMCID: PMC6420167 DOI: 10.1093/infdis/jiy631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Orolabial herpes simplex virus type 1 (HSV-1) infection has a wide spectrum of severity in immunocompetent persons. To study the role of viral genotype and host immunity, we characterized oral HSV-1 shedding rates and host cellular response, and genotyped viral strains, in monozygotic (MZ) and dizygotic (DZ) twins. METHODS A total of 29 MZ and 22 DZ HSV-1-seropositive twin pairs were evaluated for oral HSV-1 shedding for 60 days. HSV-1 strains from twins were genotyped as identical or different. CD4+ T-cell responses to HSV-1 proteins were studied. RESULTS The median per person oral HSV shedding rate was 9% of days that a swab was obtained (mean, 10.2% of days). A positive correlation between shedding rates was observed within all twin pairs, and in the MZ and DZ twins. In twin subsets with sufficient HSV-1 DNA to genotype, 15 had the same strain and 14 had different strains. Viral shedding rates were correlated for those with the same but not different strains. The median number of HSV-1 open reading frames recognized per person was 16. The agreement in the CD4+ T-cell response to specific HSV-1 open reading frames was greater between MZ twins than between unrelated persons (P = .002). CONCLUSION Viral strain characteristics likely contribute to oral HSV-1 shedding rates.
Collapse
Affiliation(s)
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ronnie M Russell
- Department of Medicine, University of Washington, Seattle, Washington
| | - Tran Tran
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Amalia S Magaret
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Anqi Cheng
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Eric Strachan
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Alex L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
11
|
Dewi DNSS, Soedarsono, Mertaniasih NM. T CELL EPITOPES OF THE ESXA FULL GENE OF MYCOBACTERIUM TUBERCULOSIS FROM SPUTUM OF MDR-TB PATIENTS. Afr J Infect Dis 2018; 12:66-70. [PMID: 30109288 PMCID: PMC6085733 DOI: 10.21010/ajid.v12i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023] Open
Abstract
Background: In 2015, World Health Organization (WHO) discovered 10.4 million tuberculosis (TB) cases around the world. Multidrug-resistant tuberculosis (MDR-TB) became a threat because it has high mortality number. There were 480,000 new MDR-TB cases in 2015. Based on those problems, diagnostic development to detect M. tuberculosis rapidly and accurately is needed. The importance of detecting epitope expression of esxA full gene because there was a potential of complexity over the protein structure and might affect the protein concentration. By knowing epitope prediction, there’s an expectation that it can help the development of TB diagnostic. This research was aimed to determine the T cell epitope prediction of esxA full gene from MDR-TB patients Material and Methods: Total of 24 MDR-TB sputum isolate from TB patients at Dr. Soetomo Hospital were collected from September to December 2016. Samples were confirmed as MDR-TB using GeneXpert and Bactec MGIT 960. Those samples tested using PCR targeted 580 bp of esxA gene and sequencing. Gene sequence was aligned against wild type using Bioedit program version 7.2.5 and NCBI BLAST. T cell epitope prediction was analyzed by GENETYX version 10. Results: Epitope predictions that could be obtained were IEAAAS, ASAIQG, VTSIHS, TKLAAA, VTGMFA based IAd Pattern Position and EAAAS based Rothbard/Taylor Pattern Position. Those prediction epitopes can determine the severity of disease, therefore full gene of esxA could be used as diagnostic target. Conclusion: This research discovered five specific T cell epitope prediction based on IAd Pattern Position and one epitope prediction according to Rothbard/Taylor Pattern Position.
Collapse
Affiliation(s)
- Desak Nyoman Surya Suameitria Dewi
- Student of Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia.,Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo Universitas Airlangga, Surabaya 60115, Indonesia
| | - Soedarsono
- Department of Pulmonology, Faculty of Medicine, Universitas Airlangga -Dr. Soetomo Hospital, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| | - Ni Made Mertaniasih
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga -Dr. Soetomo Hospital, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| |
Collapse
|
12
|
Coppola M, Ottenhoff TH. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol 2018; 39:88-101. [PMID: 30327124 DOI: 10.1016/j.smim.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/15/2023]
Abstract
Every day approximately six thousand people die of Tuberculosis (TB). Its causative agent, Mycobacterium tuberculosis (Mtb), is an ancient pathogen that through its evolution developed complex mechanisms to evade immune surveillance and acquire the ability to establish persistent infection in its hosts. Currently, it is estimated that one-fourth of the human population is latently infected with Mtb and among those infected 3-10% are at risk of developing active TB disease during their lifetime. The currently available diagnostics are not able to detect this risk group for prophylactic treatment to prevent transmission. Anti-TB drugs are available but only as long regimens with considerable side effects, which could both be reduced if adequate tests were available to monitor the response of TB to treatment. New vaccines are also urgently needed to substitute or boost Bacille Calmette-Guérin (BCG), the only approved TB vaccine: although BCG prevents disseminated TB in infants, it fails to impact the incidence of pulmonary TB in adults, and therefore has little effect on TB transmission. To achieve TB eradication, the discovery of Mtb antigens that effectively correlate with the human response to infection, with the curative host response following TB treatment, and with natural as well as vaccine induced protection will be critical. Over the last decade, many new Mtb antigens have been found and proposed as TB biomarkers and vaccine candidates, but only a very small number of these is being used in commercial diagnostic tests or is being assessed as candidate TB vaccine antigens in human clinical trials, aiming to prevent infection, disease or disease recurrence following treatment. Most of these antigens were discovered decades ago, before the complete Mtb genome sequence became available, and thus did not harness the latest insights from post-genomic antigen discovery strategies and genome wide approaches. These have, for example, revealed critical phase variation in Mtb replication and accompanying gene -and therefore antigen- expression patterns. In this review, we present a brief overview of past methodologies, and subsequently focus on the most important recent Mtb antigen discovery studies which have mined the Mtb antigenome through "unbiased" genome wide approaches. We compare the results for these approaches -as far as we know for the first time-, highlight Mtb antigens that have been identified independently by different strategies and present a comprehensive overview of the Mtb antigens thus discovered.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands.
| | - Tom Hm Ottenhoff
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
13
|
Hanson DJ, Hill JA, Koelle DM. Advances in the Characterization of the T-Cell Response to Human Herpesvirus-6. Front Immunol 2018; 9:1454. [PMID: 29988505 PMCID: PMC6026635 DOI: 10.3389/fimmu.2018.01454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022] Open
Abstract
Human herpesvirus (HHV) 6 is thought to remain clinically latent in most individuals after primary infection and to reactivate to cause disease in persons with severe immunosuppression. In allogeneic hematopoietic stem cell transplant recipients, reactivation of HHV-6 species B is a considerable cause of morbidity and mortality. HHV-6B reactivation is the most frequent cause of infectious meningoencephalitis in this setting and has been associated with a variety of other complications such as graft rejection and acute graft versus host disease. This has inspired efforts to develop HHV-6-targeted immunotherapies. Basic knowledge of HHV-6-specific adaptive immunity is crucial for these endeavors, but remains incomplete. Many studies have focused on specific HHV-6 antigens extrapolated from research on human cytomegalovirus, a genetically related betaherpesvirus. Challenges to the study of HHV-6-specific T-cell immunity include the very low frequency of HHV-6-specific memory T cells in chronically infected humans, the large genome size of HHV-6, and the lack of an animal model. This review will focus on emerging techniques and methodological improvements that are beginning to overcome these barriers. Population-prevalent antigens are now becoming clear for the CD4+ T-cell response, while definition and ranking of CD8+ T-cell antigens and epitopes is at an earlier stage. This review will discuss current knowledge of the T-cell response to HHV-6, new research approaches, and translation to clinical practice.
Collapse
Affiliation(s)
- Derek J Hanson
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Joshua A Hill
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Benaroya Research Institute, Seattle, WA, United States
| |
Collapse
|
14
|
Izzo AA. Tuberculosis vaccines - perspectives from the NIH/NIAID Mycobacteria vaccine testing program. Curr Opin Immunol 2017; 47:78-84. [PMID: 28750280 PMCID: PMC5626602 DOI: 10.1016/j.coi.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
The development of novel vaccine candidates against infections with Mycobacterium tuberculosis has highlighted our limited understanding of immune mechanisms required to kill M. tuberculosis. The induction of a Th1 immunity is vital, but new studies are required to identify other mechanisms that may be necessary. Novel vaccines formulations that invoke effector cells such as innate lymphoid cells may provide an environment that promote effector mechanisms including T cell and B cell mediated immunity. Identifying pathways associated with killing this highly successful infectious agent has become critical to achieving the goal of reducing the global tuberculosis burden.
Collapse
Affiliation(s)
- Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology & Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
15
|
Roperto S, Varano M, Russo V, Lucà R, Cagiola M, Gaspari M, Ceccarelli DM, Cuda G, Roperto F. Proteomic analysis of protein purified derivative of Mycobacterium bovis. J Transl Med 2017; 15:68. [PMID: 28372590 PMCID: PMC5376687 DOI: 10.1186/s12967-017-1172-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/23/2017] [Indexed: 11/29/2022] Open
Abstract
Background Tuberculin skin test based on in vivo intradermal inoculation of purified protein derivative from Mycobacterium bovis (bPPD) is the diagnostic test for the control and surveillance of bovine tuberculosis (bTB). Methods Proteomic analysis was performed on different bPPD preparations from M. bovis, strain AN5. Proteins were precipitated from bPPD solutions by TCA precipitation. The proteome of bPPD preparations was investigated by bottom-up proteomics, which consisted in protein digestion and nano-LC–MS/MS analysis. Mass spectrometry analysis was performed on a Q-exactive hybrid quadrupole-Orbitrap mass spectrometer coupled online to an Easy nano-LC1000 system. Results Three hundred and fifty-six proteins were identified and quantified by at least 2 peptides (99% confidence per peptide). One hundred and ninety-eight proteins, which had not been previously described, were detected; furthermore, the proteomic profile shared 80 proteins with previous proteomes from bPPDs from the United Kingdom and Brazil and 139 protein components from bPPD from Korea. Locus name of M. bovis (Mb) with orthologs from M. tuberculosis H37Rv, comparative gene and protein length, molecular mass, functional categories, gene name and function of each protein were reported. Ninety-two T cell mycobacterial antigens responsible for delayed-type hypersensitivity were detected, fifty-two of which were not previously reported in any bPPD proteome. Data are available via ProteomeXchange with identifier PXD005920. Conclusions This study represents the highest proteome coverage of bPPD preparations to date. Since proteins perform cellular functions essential to health and/or disease, obtaining knowledge of their presence and variance is of great importance in understanding disease states and for advancing translational studies. Therefore, to better understand Mycobacterium tuberculosis complex biology during infection, survival, and persistence, the reproducible evaluation of the proteins that catalyze and control these processes is critically important. More active and more specific tuberculins would be desirable. Indeed, many antigens contained within bPPD are currently responsible for the cross-reactivity resulting in false-positive results as they are shared between non-tuberculous and tuberculous mycobacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1172-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy.
| | - Mariaconcetta Varano
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Roberta Lucà
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Monica Cagiola
- Istituto Zooprofilattico dell'Umbria e delle Marche, Perugia, Italy
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Dora Maria Ceccarelli
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Giovanni Cuda
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
16
|
Immune recognition surface construction of Mycobacterium tuberculosis epitope-specific antibody responses in tuberculosis patients identified by peptide microarrays. Int J Infect Dis 2017; 56:155-166. [DOI: 10.1016/j.ijid.2017.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/14/2017] [Indexed: 11/17/2022] Open
|
17
|
Abstract
Recent technological advances in genomics, mass spectrometry, and epitope identification algorithms offer significant potential to identify novel antigenic targets for vaccine and immunotherapeutic development. On 30 April 2015, leading immunologists and bioinformatics scientists met to consider how best to utilize these advances towards deciphering the human antigenome and exploiting this information for prevention and control of infectious and neoplastic diseases.
Collapse
Affiliation(s)
- Alessandro Sette
- a La Jolla Institute for Allergy and Immunology , La Jolla , CA , USA
| | | | - Wayne C Koff
- c International AIDS Vaccine Initiative , New York , NY , USA
| |
Collapse
|