1
|
Jiang Z, Zhen J, Abulikena Y, Gao C, Huang L, Huang T, Xie J. Mycobacterium tuberculosis VII secretion system effector molecule Rv2347c blocks the maturation of phagosomes and activates the STING/TBK1 signaling pathway to inhibit cell autophagy. Microbiol Spectr 2024; 12:e0118824. [PMID: 39313213 PMCID: PMC11537087 DOI: 10.1128/spectrum.01188-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
The VII secretion system is the main channel for Mycobacterium tuberculosis (MTB) to secrete virulence proteins. The ESAT-like proteins EsxA/B and EsxW/V in the RD region of its genome have been used as targets for vaccine antigens. However, the function of EsxO/P has not been explored, although it was predicted to potentially induce Th1 cell responses as a vaccine development target. In this study, the VII secretion system effector molecule Rv2347c was heterologously expressed in Mycobacterium smegmatis and found to inhibit the expression of the early marker RAB5 of phagosomes, thus preventing the maturation process of phagosomes toward lysosomes, and activated the host cytoplasmic sensing pathway. It inhibited autophagy and activated IFNβ transcription through the STING/TBK1 pathway promoting the host's survival. Therefore, Rv2347c plays an important role in the pathogenesis of MTB with the potential to be utilized as a new target for tuberculosis vaccine development. IMPORTANCE We found that the ESAT-like protein Rv2347c (EsxP) can inhibit the maturation of phagosomes, leading to mycobacterium escape from phagosomes into the cytoplasm, which triggers the host's cytoplasmic sensing pathway STING/TBK1, inhibiting autophagy and upregulating IFNβ transcription, which contributes to the survival of mycobacterium in the host cell. We also found that Rv2347c was able to activate host immunity by activating NF-κB via STING and promoting the transcription of downstream pro-inflammatory factors. Meanwhile, the host also produces IL-1β to repair phagosome maturation arrest via the STING-mediated non-NF-κB pathway.
Collapse
Affiliation(s)
- Zhiyong Jiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuerigu Abulikena
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chaoyun Gao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingxi Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Tingting Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Dong HM, Chen JX, Cai YX, Tian LX, Yang ZC. Compounds Derived from 5-Fluoropyridine and Benzo[b]thiophene: Killing Mycobacterium tuberculosis and Reducing its Virulence. Chem Biodivers 2024; 21:e202401191. [PMID: 39058423 DOI: 10.1002/cbdv.202401191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The rise of drug-resistant Mycobacterium tuberculosis (Mtb) has extended the duration of tuberculosis (TB) treatment and reduced the likelihood of cure. One strategy to combat this issue is the development of inhibitors targeting the virulence factors of bacterial pathogens. Mtb' catalase (KatG) is crucial for its detoxification mechanisms and also serves as a significant virulence factor for the bacterium. In this study, twelve derivatives synthesized from 5-fluoropyridine and benzo[b]thiophene demonstrated antimycobacterial efficacy with minimum inhibitory concentrations (MICs) varying between 0.5 and 32 μg/mL. Compound 2, 1-(benzo[b]thiophen-2-ylmethylene) thiosemicarbazide, emerged as the most potent candidate. It effectively inhibited Mtb KatG, enhanced the production of reactive oxygen species (ROS) in Mtb, and achieved Mtb killing within 96 hours at a concentration of 2 μg/mL (4×MIC). Molecular docking simulations revealed that compound 2 binds tightly to the active site of Mtb-KatG with a docking score of 114, indicating that it may serve as a potent inhibitor of Mtb-KatG. The rabbit skin tuberculosis model was employed to assess the virulence of Mtb. Animal study results indicated that the granulomas induced by Mtb after treatment with compound 2 were reduced in size, exhibited a lower bacterial load, and the bacteria were no longer aggregated, in contrast to those caused by untreated Mtb. Hence, compound 2 can be regarded as a molecule capable of neutralizing the virulence factors of Mtb. This research offers insights into the design of anti-Mtb molecules with novel mechanisms of action.
Collapse
Affiliation(s)
- Hong-Mei Dong
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Jun-Xian Chen
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Yu-Xiang Cai
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Li-Xia Tian
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Zai-Chang Yang
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Science Road, Guiyang, 550014, China
| |
Collapse
|
3
|
Madduri BTSA, Bell SL. Bug in the code: TB blocks DNA repair. Cell Host Microbe 2023; 31:1769-1771. [PMID: 37944488 DOI: 10.1016/j.chom.2023.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Protecting the cell's genome is crucial for survival, but infection causes damage that compromises genetic integrity. In this issue of Cell Host & Microbe, Lui et al. dissect how Mycobacterium tuberculosis exploits DNA damage using a secreted protein that inhibits DNA repair to create an environment conducive to bacterial replication.
Collapse
Affiliation(s)
- Bala T S A Madduri
- Center for Emerging & Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samantha L Bell
- Center for Emerging & Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
4
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
5
|
Green AG, Vargas R, Marin MG, Freschi L, Xie J, Farhat MR. Analysis of Genome-Wide Mutational Dependence in Naturally Evolving Mycobacterium tuberculosis Populations. Mol Biol Evol 2023; 40:msad131. [PMID: 37352142 PMCID: PMC10292908 DOI: 10.1093/molbev/msad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogenic microorganisms are in a perpetual struggle for survival in changing host environments, where host pressures necessitate changes in pathogen virulence, antibiotic resistance, or transmissibility. The genetic basis of phenotypic adaptation by pathogens is difficult to study in vivo. In this work, we develop a phylogenetic method to detect genetic dependencies that promote pathogen adaptation using 31,428 in vivo sampled Mycobacterium tuberculosis genomes, a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. We find that dependencies between mutations are enriched in antigenic and antibiotic resistance functions and discover 23 mutations that potentiate the development of antibiotic resistance. Between 11% and 92% of resistant strains harbor a dependent mutation acquired after a resistance-conferring variant. We demonstrate the pervasiveness of genetic dependency in adaptation of naturally evolving populations and the utility of the proposed computational approach.
Collapse
Affiliation(s)
- Anna G Green
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Maximillian G Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jiaqi Xie
- Department of Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Pattanaik KP, Sengupta S, Jit BP, Kotak R, Sonawane A. Host-Mycobacteria conflict: Immune responses of the host vs. the mycobacteria TLR2 and TLR4 ligands and concomitant host-directed therapy. Microbiol Res 2022; 264:127153. [DOI: 10.1016/j.micres.2022.127153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
|
7
|
An Immunoinformatic Strategy to Develop New Mycobacterium tuberculosis Multi-epitope Vaccine. Int J Pept Res Ther 2022; 28:99. [PMID: 35573911 PMCID: PMC9086656 DOI: 10.1007/s10989-022-10406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 11/12/2022]
Abstract
Mycobacterium tuberculosis causes a life-threatening disease known as tuberculosis (TB). In 2021, tuberculosis was the second cause of death after COVID-19 among infectious diseases. Latent life cycle and development of multidrug resistance in one hand and lack of an effective vaccine in another hand have made TB a global health issue. Here, a multi-epitope vaccine have been designed against TB using five new antigenic protein and immunoinformatic tools. To do so, immunodominant MHC-I/MHC-II binding epitopes of Rv2346, Rv2347, Rv3614, Rv3615 and Rv2031 antigenic proteins have been selected using advanced computational procedures. The vaccine was designed by linking ten epitopes from the antigenic proteins and flagellin and TpD as adjuvant. Three-dimensional (3D) structure of the vaccine was modeled, was refined and was evaluated using bioinformatics tools. The 3D structure of the vaccine was docked into the toll-like-receptors (TLR3, 4, 8) to evaluate potential interaction between the vaccine and TLRs. Evaluation of immunological and physicochemical properties of the constructed vaccine have demonstrated the vaccine construct can induce significant humoral and cellular immune responses, the vaccine is non-allergenic and can be recognized by TLR proteins. The immunoinformatic results reported in the present study demonstrates that it is worth following the designed vaccine by experimental investigations.
Collapse
|
8
|
Mycobacterium tuberculosis Acetyltransferase Suppresses Oxidative Stress by Inducing Peroxisome Formation in Macrophages. Int J Mol Sci 2022; 23:ijms23052584. [PMID: 35269727 PMCID: PMC8909987 DOI: 10.3390/ijms23052584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal β-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11β, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.
Collapse
|
9
|
Torres Ortiz A, Coronel J, Vidal JR, Bonilla C, Moore DAJ, Gilman RH, Balloux F, Kon OM, Didelot X, Grandjean L. Genomic signatures of pre-resistance in Mycobacterium tuberculosis. Nat Commun 2021; 12:7312. [PMID: 34911948 PMCID: PMC8674244 DOI: 10.1038/s41467-021-27616-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Recent advances in bacterial whole-genome sequencing have resulted in a comprehensive catalog of antibiotic resistance genomic signatures in Mycobacterium tuberculosis. With a view to pre-empt the emergence of resistance, we hypothesized that pre-existing polymorphisms in susceptible genotypes (pre-resistance mutations) could increase the risk of becoming resistant in the future. We sequenced whole genomes from 3135 isolates sampled over a 17-year period. After reconstructing ancestral genomes on time-calibrated phylogenetic trees, we developed and applied a genome-wide survival analysis to determine the hazard of resistance acquisition. We demonstrate that M. tuberculosis lineage 2 has a higher risk of acquiring resistance than lineage 4, and estimate a higher hazard of rifampicin resistance evolution following isoniazid mono-resistance. Furthermore, we describe loci and genomic polymorphisms associated with a higher risk of resistance acquisition. Identifying markers of future antibiotic resistance could enable targeted therapy to prevent resistance emergence in M. tuberculosis and other pathogens.
Collapse
Affiliation(s)
- Arturo Torres Ortiz
- grid.7445.20000 0001 2113 8111Imperial College London, Department of Infectious Diseases, London, UK
| | - Jorge Coronel
- grid.11100.310000 0001 0673 9488Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Julia Rios Vidal
- grid.419858.90000 0004 0371 3700Unidad Técnica de Tuberculosis MDR, Ministerio de Salud, Lima, Perú
| | - Cesar Bonilla
- grid.419858.90000 0004 0371 3700Unidad Técnica de Tuberculosis MDR, Ministerio de Salud, Lima, Perú ,grid.441740.20000 0004 0542 2122Universidad Privada San Juan Bautista, Lima, Perú
| | - David A. J. Moore
- grid.8991.90000 0004 0425 469XLondon School of Hygiene and Tropical Medicine, London, UK
| | - Robert H. Gilman
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | | | - Onn Min Kon
- grid.7445.20000 0001 2113 8111Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Xavier Didelot
- grid.7372.10000 0000 8809 1613University of Warwick, School of Life Sciences and Department of Statistics, Warwick, UK
| | - Louis Grandjean
- Imperial College London, Department of Infectious Diseases, London, UK. .,UCL Department of Infection, Institute of Child Health, London, UK.
| |
Collapse
|
10
|
HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediators Inflamm 2021; 2021:1267041. [PMID: 34483726 PMCID: PMC8410439 DOI: 10.1155/2021/1267041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.
Collapse
|
11
|
Sengupta S, Nayak B, Meuli M, Sander P, Mishra S, Sonawane A. Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Front Cell Infect Microbiol 2021; 11:676456. [PMID: 34381738 PMCID: PMC8350138 DOI: 10.3389/fcimb.2021.676456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits autophagy to promote its survival in host cells. However, the molecular mechanisms by which Mtb inhibits autophagy are poorly understood. Here, we report a previously unknown mechanism in which Mtb phosphoribosyltransferase (MtbPRT) inhibits autophagy in an mTOR, negative regulator of autophagy, independent manner by inducing histone hypermethylation (H3K9me2/3) at the Atg5 and Atg7 promoters by activating p38-MAPK- and EHMT2 methyltransferase-dependent signaling pathways. Additionally, we find that MtbPRT induces EZH2 methyltransferase-dependent H3K27me3 hypermethylation and reduces histone acetylation modifications (H3K9ac and H3K27ac) by upregulating histone deacetylase 3 to inhibit autophagy. In summary, this is the first demonstration that Mtb inhibits autophagy by inducing histone hypermethylation in autophagy-related genes to promote intracellular bacterial survival.
Collapse
Affiliation(s)
- Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Barsa Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Michael Meuli
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
- Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
12
|
Feng S, Hong Z, Zhang G, Li J, Tian GB, Zhou H, Huang X. Mycobacterium PPE31 Contributes to Host Cell Death. Front Cell Infect Microbiol 2021; 11:629836. [PMID: 33928042 PMCID: PMC8078103 DOI: 10.3389/fcimb.2021.629836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/03/2022] Open
Abstract
Genome scale mutagenesis identifies many genes required for mycobacterial infectivity and survival, but their contributions and mechanisms of action within the host are poorly understood. Using CRISPR interference, we created a knockdown of ppe31Mm gene in Mycobacterium marinum (M. marinum), which reduced the resistance to acid medium. To further explore the function of PPE31, the ppe31 mutant strain was generated in M. marinum and Mycobacterium tuberculosis (M. tuberculosis), respectively. Macrophages infected with the ppe31Mm mutant strain caused a reduced inflammatory mediator expressions. In addition, macrophages infected with M. marinum Δppe31Mm had decreased host cell death dependent on JNK signaling. Consistent with these results, deletion of ppe31Mtb from M. tuberculosis increased the sensitivity to acid medium and reduced cell death in macrophages. Furthermore, we demonstrate that both ppe31 mutants from M. marinum and M. tuberculosis resulted in reduced survival in macrophages, and the survivability of M. marinum was deceased in zebrafish due to loss of ppe31Mm. Our findings confirm that PPE31 as a virulence associated factor that modulates innate immune responses to mycobacterial infection.
Collapse
Affiliation(s)
- Siyuan Feng
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhongsi Hong
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Guoliang Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jiachen Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo-Bao Tian
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.,Sino-French Hoffmann Institute of Immunology, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
HIV Infection and Related Mental Disorders. Brain Sci 2021; 11:brainsci11020248. [PMID: 33671125 PMCID: PMC7922767 DOI: 10.3390/brainsci11020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
Over the more than thirty-year period of the human immunodeficiency virus type 1 (HIV-1) epidemic, many data have been accumulated indicating that HIV infection predisposes one to the development of mental pathologies. It has been proven that cognitive disorders in HIV-positive individuals are the result of the direct exposure of the virus to central nervous system (CNS) cells. The use of antiretroviral therapy has significantly reduced the number of cases of mental disorders among people infected with HIV. However, the incidence of moderate to mild cognitive impairment at all stages of HIV infection is still quite high. This review describes the most common forms of mental pathology that occur in people living with HIV and presents the current concepts on the possible pathogenetic mechanisms of the influence of human immunodeficiency virus (HIV-1) and its viral proteins on the cells of the CNS and the CNS’s functions. This review also provides the current state of knowledge on the impact of the antiretroviral therapy on the development of mental pathologies in people living with HIV, as well as current knowledge on the interactions between antiretroviral and psychotropic drugs that occur under their simultaneous administration.
Collapse
|
14
|
Variations of Serum Oxidative Stress Biomarkers under First-Line Antituberculosis Treatment: A Pilot Study. J Pers Med 2021; 11:jpm11020112. [PMID: 33572362 PMCID: PMC7916141 DOI: 10.3390/jpm11020112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is one of the highest infectious burdens worldwide, and pathogenesis is yet incompletely elucidated. Bacilli dissemination is due to poor antioxidant defense mechanisms and intensified oxidative stress. There are few recent studies that analyzed and compared free radicals or antioxidant status before and after anti-TB treatment. Hence, the present study underlines the need to identify oxidative stress as it could be a useful tool in TB monitorisation. Thirty newly diagnosed patients with pulmonary TB were included after signing an informed consent. Blood was collected before receiving first-line anti-tubercular therapy (T0) and after 60 days (T2). Spectrophotometric methods were used to quantify oxidative parameters (TBARS—thiobarbituric acid reactive species); enzymatic antioxidants such as SOD (superoxide dismutase), CAT (catalase), GPx (glutathione peroxidase), and TAC (total antioxidant capacity); and non-enzymatic antioxidants such as GSH (reduced glutathione). A moderate positive correlation was found between GSH and TAC (r = 0.63, p-value = 0.046) and GSH and SOD (r = 0.64, p-value = 0.041) at T2. Increased values of GSH, CAT, and SOD were noted at T2 in comparison with T0, while GPx, TAC, and TBARS decreased at T2. A better monitorisation in TB could be based on oxidative stress and antioxidant status. Nevertheless, restoring redox host balance could reduce TB progression.
Collapse
|
15
|
Naik SK, Pattanaik K, Eich J, Sparr V, Hauptmann M, Kalsdorf B, Reiling N, Liedtke W, Kuebler WM, Schaible UE, Sonawane A. Differential Roles of the Calcium Ion Channel TRPV4 in Host Responses to Mycobacterium tuberculosis Early and Late in Infection. iScience 2020; 23:101206. [PMID: 32535021 PMCID: PMC7300151 DOI: 10.1016/j.isci.2020.101206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/19/2020] [Accepted: 05/25/2020] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium tuberculosis subverts host immunity to proliferate within host tissues. Non-selective transient receptor potential (TRP) ion channels are involved in host responses and altered upon bacterial infections. Altered expression and localization of TRPV4 in macrophages upon virulent M. tuberculosis infection together with differential distribution of TRPV4 in human tuberculosis (TB) granulomas indicate a role of TRPV4 in TB. Compared with wild-type mice, Trpv4-deficient littermates showed transiently higher mycobacterial burden and reduced proinflammatory responses. In the absence of TRPV4, activation failed to render macrophages capable of controlling mycobacteria. Surprisingly, Trpv4-deficient mice were superior to wild-type ones in controlling M. tuberculosis infection in the chronic phase. Thus, Trpv4 is important in host responses to mycobacteria, although with opposite functions early versus late in infection. Ameliorated chronic infection in the absence of Trpv4 and its expression in human TB lesions indicate TRPV4 as putative target for host-directed therapy. Mtb down-modulates TRPV4 expression in macrophages Trpv4−/− macrophages cannot be activated to drive phagosome maturation and NO production Trpv4-deficient mice are more resistant to Mtb TRPV4-positive macrophages in the periphery of human granuloma but not at the center
Collapse
Affiliation(s)
- Sumanta Kumar Naik
- School of Biotechnology, KIIT University, Odisha 751024, India; Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | | | - Jacqueline Eich
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Vivien Sparr
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Matthias Hauptmann
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Barbara Kalsdorf
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Norbert Reiling
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Wolfgang Liedtke
- Duke University Center for Translational Neuroscience, Durham, NC 27710, USA
| | | | - Ulrich E Schaible
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany.
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Odisha 751024, India; Discipline of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India.
| |
Collapse
|
16
|
Ganguli G, Pattanaik KP, Jagadeb M, Sonawane A. Mycobacterium tuberculosis Rv3034c regulates mTORC1 and PPAR-γ dependant pexophagy mechanism to control redox levels in macrophages. Cell Microbiol 2020; 22:e13214. [PMID: 32388919 DOI: 10.1111/cmi.13214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis-1 and DLP-1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down-regulating the expression of pexophagy associated proteins (p-AMPKα, p-ULK-1, Atg5, Atg7, Beclin-1, LC3-II, TFEB and Keap-1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor-γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | | | - Manaswini Jagadeb
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India.,Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| |
Collapse
|
17
|
Lin X, Wei M, Song F, Xue DI, Wang Y. N-acetylcysteine (NAC) Attenuating Apoptosis and Autophagy in RAW264.7 Cells in Response to Incubation with Mycolic Acid from Bovine Mycobacterium tuberculosis Complex. Pol J Microbiol 2020; 69:223-229. [PMID: 32548987 PMCID: PMC7324858 DOI: 10.33073/pjm-2020-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023] Open
Abstract
Bovine tuberculosis is an airborne infectious disease caused by organisms of the Mycobacterium tuberculosis (MTB) complex. Mycolic acid (MA) is the main lipid component of the cell membrane of MTB. It is non-enzymatically reduced by NAD(P)H and further produces reactive oxygen species (ROS), which can cause oxidative stress in human cells. N-acetylcysteine (NAC) is a synthetic precursor of glutathione (GSH) and exhibits anti-ROS activity. However, the underlying mechanisms of its protective properties remain uncertain. Herein, after pre-incubation of RAW264.7 cells with NAC, the factors associated with apoptosis and autophagy were measured. Mechanistically, NAC could reduce MA-induced expression of pro-apoptotic and pro-autophagy proteins. At the mRNA level, NAC can inhibit AMPK and activate mTOR expression. The results indicate that NAC might regulate autophagy in RAW264.7 cells through the AMPK/mTOR pathway. To further prove the effect of NAC on MA, ICR mice were used to evaluate the lung injury. Hematoxylin-eosin (HE) staining was performed on the lung. The results show that NAC could reduce cell injury induced by MA. In conclusion, our research showed that NAC attenuates apoptosis and autophagy in response to incubation with mycolic acid. Bovine tuberculosis is an airborne infectious disease caused by organisms of the Mycobacterium tuberculosis (MTB) complex. Mycolic acid (MA) is the main lipid component of the cell membrane of MTB. It is non-enzymatically reduced by NAD(P)H and further produces reactive oxygen species (ROS), which can cause oxidative stress in human cells. N-acetylcysteine (NAC) is a synthetic precursor of glutathione (GSH) and exhibits anti-ROS activity. However, the underlying mechanisms of its protective properties remain uncertain. Herein, after pre-incubation of RAW264.7 cells with NAC, the factors associated with apoptosis and autophagy were measured. Mechanistically, NAC could reduce MA-induced expression of pro-apoptotic and pro-autophagy proteins. At the mRNA level, NAC can inhibit AMPK and activate mTOR expression. The results indicate that NAC might regulate autophagy in RAW264.7 cells through the AMPK/mTOR pathway. To further prove the effect of NAC on MA, ICR mice were used to evaluate the lung injury. Hematoxylin-eosin (HE) staining was performed on the lung. The results show that NAC could reduce cell injury induced by MA. In conclusion, our research showed that NAC attenuates apoptosis and autophagy in response to incubation with mycolic acid.
Collapse
Affiliation(s)
- Xue Lin
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - Mengmeng Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - Fuyang Song
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - D I Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| |
Collapse
|
18
|
Lochab S, Singh Y, Sengupta S, Nandicoori VK. Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome. eLife 2020; 9:51466. [PMID: 32223892 PMCID: PMC7162654 DOI: 10.7554/elife.51466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
(Mtb) produces inflections in the host signaling networks to create a favorable milieu for survival. The virulent Mtb strain, Rv caused double strand breaks (DSBs), whereas the non-virulent Ra strain triggered single-stranded DNA generation. The effectors secreted by SecA2 pathway were essential and adequate for the genesis of DSBs. Accumulation of DSBs mediated through Rv activates ATM-Chk2 pathway of DNA damage response (DDR) signaling, resulting in altered cell cycle. Instead of the classical ATM-Chk2 DDR, Mtb gains survival advantage through ATM-Akt signaling cascade. Notably, in vivo infection with Mtb led to sustained DSBs and ATM activation during chronic phase of tuberculosis. Addition of ATM inhibitor enhances isoniazid mediated Mtb clearance in macrophages as well as in murine infection model, suggesting its utility for host directed adjunct therapy. Collectively, data suggests that DSBs inflicted by SecA2 secretome of Mtb provides survival niche through activation of ATM kinase.
Collapse
Affiliation(s)
- Savita Lochab
- National Institute of Immunology, New Delhi, India.,Department of Zoology, University of Delhi, New Delhi, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | | | | |
Collapse
|
19
|
Rojas-Celis V, Valiente-Echeverría F, Soto-Rifo R, Toro-Ascuy D. New Challenges of HIV-1 Infection: How HIV-1 Attacks and Resides in the Central Nervous System. Cells 2019; 8:cells8101245. [PMID: 31614895 PMCID: PMC6829584 DOI: 10.3390/cells8101245] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) has become one of the most devastating pandemics in recorded history. The main causal agent of AIDS is the human immunodeficiency virus (HIV), which infects various cell types of the immune system that express the CD4 receptor on their surfaces. Today, combined antiretroviral therapy (cART) is the standard treatment for all people with HIV; although it has improved the quality of life of people living with HIV (PLWH), it cannot eliminate the latent reservoir of the virus. Therefore HIV/AIDS has turned from a fatal disease to a chronic disease requiring lifelong treatment. Despite significant viral load suppression, it has been observed that at least half of patients under cART present HIV-associated neurocognitive disorders (HAND), which have been related to HIV-1 infection and replication in the central nervous system (CNS). Several studies have focused on elucidating the mechanism by which HIV-1 can invade the CNS and how it can generate the effects seen in HAND. This review summarizes the research on HIV-1 and its interaction with the CNS with an emphasis on the generation of HAND, how the virus enters the CNS, the relationship between HIV-1 and cells of the CNS, and the effect of cART on these cells.
Collapse
Affiliation(s)
- Victoria Rojas-Celis
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8389100, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8389100, Chile.
| | - Daniela Toro-Ascuy
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|
20
|
Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection. Front Microbiol 2019; 10:1121. [PMID: 31258517 PMCID: PMC6587667 DOI: 10.3389/fmicb.2019.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Host redox dependent physiological responses play crucial roles in the determination of mycobacterial infection process. Mtb explores oxygen rich lung microenvironments to initiate infection process, however, later on the bacilli adapt to oxygen depleted conditions and become non-replicative and unresponsive toward anti-TB drugs to enter in the latency stage. Mtb is equipped with various sensory mechanisms and a battery of pro- and anti-oxidant enzymes to protect themselves from the host oxidative stress mechanisms. After host cell invasion, mycobacteria induces the expression of NADPH oxidase 2 (NOX2) to generate superoxide radicals (O 2 - ), which are then converted to more toxic hydrogen peroxide (H2O2) by superoxide dismutase (SOD) and subsequently reduced to water by catalase. However, the metabolic cascades and their key regulators associated with cellular redox homeostasis are poorly understood. Phagocytosed mycobacteria en route through different subcellular organelles, where the local environment generated during infection determines the outcome of disease. For a long time, mitochondria were considered as the key player in the redox regulation, however, accumulating evidences report vital role for peroxisomes in the maintenance of cellular redox equilibrium in eukaryotic cells. Deletion of peroxisome-associated peroxin genes impaired detoxification of reactive oxygen species and peroxisome turnover post-infection, thereby leading to altered synthesis of transcription factors, various cell-signaling cascades in favor of the bacilli. This review focuses on how mycobacteria would utilize host peroxisomes to alter redox balance and metabolic regulatory mechanisms to support infection process. Here, we discuss implications of peroxisome biogenesis in the modulation of host responses against mycobacterial infection.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Utsav Mukherjee
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
21
|
Ghosh C, Sarkar A, Anuja K, Das MC, Chakraborty A, Jawed JJ, Gupta P, Majumdar S, Banerjee B, Bhattacharjee S. Free radical stress induces DNA damage response in RAW264.7 macrophages during Mycobacterium smegmatis infection. Arch Microbiol 2018; 201:487-498. [PMID: 30386884 DOI: 10.1007/s00203-018-1587-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022]
Abstract
Genomic instability resulting from oxidative stress responses may be traced to chromosomal aberration. Oxidative stress suggests an imbalance between the systemic manifestation of reactive free radicals and biological system's ability to repair resulting DNA damage and chromosomal aberration. Bacterial infection associated insult is considered as one of the major factors leading to such stress conditions. To study free radical responses by host cells, RAW 264.7 macrophages were infected with non-pathogenic M. smegmatis mc2155 at different time points. The infection process was followed up with an assessment of free radical stress, cytokine, toll-like receptors (TLRs) and the resulting DNA damage profiles. Results of CFU count showed that maximum infection in macrophages was achieved after 9 h of infection. Host responses to the infection across different time periods were validated from nitric oxide quantification and expression of iNOS and were plotted at regular intervals. IL-10 and TNF-α expression profile at protein and mRNA level showed a heightened pro-inflammatory response by host macrophages to combat M. smegmatis infection. The expression of TLR4, a receptor for recognition of mycobacteria, in infected macrophages reached the highest level at 9 h of infection. Furthermore, comet tail length, micronuclei and γ-H2AX foci recorded the highest level at 9 h of infection, pointing to the fact that breakage in DNA double strands in macrophage reaches its peak at 9 h of infection. In contrast, treatment with ROS inhibitor N-acetyl-L-cysteine (NAC) prevented host cell death through reduction in oxidative stress and DNA damage response during M. smegmatis infection. Therefore, it can be concluded that enhanced oxidative stress response in M. smegmatis infected macrophages might be correlated with DNA damage response.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.,Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Avik Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Kumari Anuja
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Manash C Das
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Abhik Chakraborty
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Junaid Jibran Jawed
- Division of Molecular Medicine, Centenary Campus, Bose Institute, CIT Road, Kolkata, 700054, India
| | - Priya Gupta
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Centenary Campus, Bose Institute, CIT Road, Kolkata, 700054, India
| | - Birendranath Banerjee
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
22
|
Yao J, Du X, Chen S, Shao Y, Deng K, Jiang M, Liu J, Shen Z, Chen X, Feng G. Rv2346c enhances mycobacterial survival within macrophages by inhibiting TNF-α and IL-6 production via the p38/miRNA/NF-κB pathway. Emerg Microbes Infect 2018; 7:158. [PMID: 30232332 PMCID: PMC6145905 DOI: 10.1038/s41426-018-0162-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022]
Abstract
The intracellular survival of Mycobacterium tuberculosis (Mtb) has a central role in the pathogenesis of tuberculosis. Mtb Rv2346c is a member of 6-kDa early secreted antigenic target family of proteins, which are known to inhibit the host immune responses to promote bacillary persistence in macrophages. However, the mechanism through which Rv2346c participates in Mtb pathogenesis is unclear. In the present study, recombinant Rv2346c protein was synthesized and used to treat Bacillus Calmette–Guérin (BCG)-infected macrophages. The results showed that Rv2346c inhibited the proliferation of BCG-infected macrophages and enhanced the survival of BCG in macrophages. Tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were upregulated during BCG infection but downregulated by Rv2346c. Additional experiments showed that nuclear transcription factor-κB (NF-κB) in BCG-infected macrophages induced the production of TNF-α and IL-6. In addition, miR-155 and miR-99b had a suppressive effect on NF-κB, and the expression of these miRNAs was promoted by p38. Furthermore, Rv2346c was shown to decrease the activation of NF-κB, whereas it enhanced the phosphorylation of p38 and the expression of miR-155 and miR-99b. The function of Rv2346c was also verified in Mtb-infected mice. The results showed that Rv2346c increased the observed bacterial load and lung injury and downregulated TNF-α and IL-6 in vivo. Overall, our results reveal that Rv2346c enhances mycobacterial survival in macrophages via inhibiting the production of TNF-α and IL-6 in a p38/miRNA/NF-κB pathway-dependent manner, suggesting that Rv2346c acts as a crucial virulence factor in Mtb infection and has potential use as a target for anti-tuberculosis therapy.
Collapse
Affiliation(s)
- Jing Yao
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xingran Du
- Department of Infectious Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Sixia Chen
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yan Shao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Kaili Deng
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Mingzi Jiang
- Department of Respiratory Medicine, the First People's Hospital of Kunshan, Kunshan, Jiangsu, 215300, China
| | - Jingning Liu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Ziyan Shen
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiaolin Chen
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing, Jiangsu, 211100, China
| | - Ganzhu Feng
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
23
|
Pinto SM, Verma R, Advani J, Chatterjee O, Patil AH, Kapoor S, Subbannayya Y, Raja R, Gandotra S, Prasad TSK. Integrated Multi-Omic Analysis of Mycobacterium tuberculosis H37Ra Redefines Virulence Attributes. Front Microbiol 2018; 9:1314. [PMID: 29971057 PMCID: PMC6018540 DOI: 10.3389/fmicb.2018.01314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
H37Ra is a virulence attenuated strain of Mycobacterium tuberculosis widely employed as a model to investigate virulence mechanisms. Comparative high-throughput studies have earlier correlated its avirulence to the presence of specific mutations or absence of certain proteins. However, a recent sequencing study of H37Ra, has disproved several genomic differences earlier reported to be associated with virulence. This warrants further investigations on the H37Ra proteome as well. In this study, we carried out an integrated analysis of the genome, transcriptome, and proteome of H37Ra. In addition to confirming single nucleotide variations (SNVs) and insertion-deletions that were reported earlier, our study provides novel insights into the mutation spectrum in the promoter regions of 7 genes. We also provide transcriptional and proteomic evidence for 3,900 genes representing ~80% of the total predicted gene count including 408 proteins that have not been identified previously. We identified 9 genes whose coding potential was hitherto reported to be absent in H37Ra. These include 2 putative virulence factors belonging to ESAT-6 like family of proteins. Furthermore, proteogenomic analysis enabled us to identify 63 novel proteins coding genes and correct 25 existing gene models in H37Ra genome. A majority of these were found to be conserved in the virulent strain H37Rv as well as in other mycobacterial species suggesting that the differences in the virulent and avirulent strains of M. tuberculosis are not entirely dependent on the expression of certain proteins or their absence but may possibly be ascertained to functional changes.
Collapse
Affiliation(s)
- Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Renu Verma
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Oishi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Arun H Patil
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Saketh Kapoor
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sheetal Gandotra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, India
| |
Collapse
|
24
|
Castro-Garza J, Luévano-Martínez ML, Villarreal-Treviño L, Gosálvez J, Fernández JL, Dávila-Rodríguez MI, García-Vielma C, González-Hernández S, Cortés-Gutiérrez EI. Mycobacterium tuberculosis promotes genomic instability in macrophages. Mem Inst Oswaldo Cruz 2018; 113:161-166. [PMID: 29412354 PMCID: PMC5804307 DOI: 10.1590/0074-02760170281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. OBJECTIVES To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. METHODS We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. FINDINGS Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. MAIN CONCLUSIONS Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection.
Collapse
Affiliation(s)
- Jorge Castro-Garza
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL, México
| | - Miriam Lorena Luévano-Martínez
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL, México.,Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Monterrey, NL, México
| | | | - Jaime Gosálvez
- Universidad Autónoma de Madrid, Unit of Genetics, Department of Biology, Madrid, Spain
| | - José Luis Fernández
- Genetics Unit, Complejo Hospitalario Universitario A Coruña, La Coruña, Spain
| | | | - Catalina García-Vielma
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL, México
| | - Silvia González-Hernández
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL, México
| | | |
Collapse
|
25
|
Sengupta S, Naz S, Das I, Ahad A, Padhi A, Naik SK, Ganguli G, Pattanaik KP, Raghav SK, Nandicoori VK, Sonawane A. Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-II transactivator loci in macrophages. J Biol Chem 2017; 292:6855-6868. [PMID: 28209712 DOI: 10.1074/jbc.m117.775205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis is known to modulate the host immune responses to facilitate its persistence inside the host cells. One of the key mechanisms includes repression of class-II transactivator (CIITA) and MHC-II expression in infected macrophages. However, the precise mechanism of CIITA and MHC-II down-regulation is not well studied. M. tuberculosis 6-kDa early secretory antigenic target (ESAT-6) is a known potent virulence and antigenic determinant. The M. tuberculosis genome encodes 23 such ESAT-6 family proteins. We herein report that M. tuberculosis and M. bovis bacillus Calmette-Guérin infection down-regulated the expression of CIITA/MHC-II by inducing hypermethylation in histone H3 lysine 9 (H3K9me2/3). Further, we showed that M. tuberculosis ESAT-6 family protein EsxL, encoded by Rv1198, is responsible for the down-regulation of CIITA/MHC-II by inducing H3K9me2/3. We further report that M. tuberculosis esxL induced the expression of nitric-oxide synthase, NO production, and p38 MAPK pathway, which in turn was responsible for the increased H3K9me2/3 in CIITA via up-regulation of euchromatic histone-lysine N-methyltransferase 2 (G9a). In contrast, inhibition of nitric-oxide synthase, p38 MAPK, and G9a abrogated H3K9me2/3, resulting in increased CIITA expression. A chromatin immunoprecipitation assay confirmed that hypermethylation at the promoter IV region of CIITA is mainly responsible for CIITA down-regulation and subsequent antigen presentation. We found that co-culture of macrophages infected with esxL-expressing M. smegmatis and mouse splenocytes led to down-regulation of IL-2, a key cytokine involved in T-cell proliferation. In summary, we demonstrate that M. tuberculosis EsxL inhibits antigen presentation by enhancing H3K9me2/3 at the CIITA promoter, thereby repressing its expression through NO and p38 MAPK activation.
Collapse
Affiliation(s)
- Srabasti Sengupta
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Saba Naz
- the National Institute of Immunology, New Delhi, Delhi 110067, India, and
| | - Ishani Das
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Abdul Ahad
- the Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751023, India
| | - Avinash Padhi
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Sumanta Kumar Naik
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Kali Prasad Pattanaik
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Sunil Kumar Raghav
- the Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751023, India
| | | | - Avinash Sonawane
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India,
| |
Collapse
|