1
|
Li S, Wu R, Feng M, Zhang H, Liu D, Wang F, Chen W. IL-10 and TGF-β1 may weaken the efficacy of preoperative anti-tuberculosis therapy in older patients with spinal tuberculosis. Front Cell Infect Microbiol 2024; 14:1361326. [PMID: 38572322 PMCID: PMC10987808 DOI: 10.3389/fcimb.2024.1361326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Spinal tuberculosis is a common extrapulmonary type that is often secondary to pulmonary or systemic infections. Mycobacterium tuberculosis infection often leads to the balance of immune control and bacterial persistence. In this study, 64 patients were enrolled and the clinicopathological and immunological characteristics of different age groups were analyzed. Anatomically, spinal tuberculosis in each group mostly occurred in the thoracic and lumbar vertebrae. Imaging before preoperative anti-tuberculosis therapy showed that the proportion of abscesses in the older group was significantly lower than that in the younger and middle-aged groups. However, pathological examination of surgical specimens showed that the proportion of abscesses in the older group was significantly higher than that in the other groups, and there was no difference in the granulomatous inflammation, caseous necrosis, inflammatory necrosis, acute inflammation, exudation, granulation tissue formation, and fibrous tissue hyperplasia. B cell number was significantly lower in the middle-aged and older groups compared to the younger group, while the number of T cells, CD4+ T cells, CD8+ T cells, macrophages, lymphocytes, plasma cells, and NK cells did not differ. Meaningfully, we found that the proportion of IL-10 high expression and TGF-β1 positive in the older group was significantly higher than that in the younger group. TNF-α, CD66b, IFN-γ, and IL-6 expressions were not different among the three groups. In conclusion, there are some differences in imaging, pathological, and immune features of spinal tuberculosis in different age groups. The high expression of IL-10 and TGF-β1 in older patients may weaken their anti-tuberculosis immunity and treatment effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Fenghua Wang
- Department of Pathology, The Eighth Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
2
|
Clinical Significance of M1/M2 Macrophages and Related Cytokines in Patients with Spinal Tuberculosis. DISEASE MARKERS 2020; 2020:2509454. [PMID: 32566036 PMCID: PMC7267866 DOI: 10.1155/2020/2509454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Background Macrophages are important immune cells involved in Mycobacterium tuberculosis (M.tb) infection. To further investigate the degree of disease development in patients with spinal tuberculosis (TB), we conducted research on macrophage polarization. Methods Thirty-six patients with spinal TB and twenty-five healthy controls were enrolled in this study. The specific morphology of tuberculous granuloma in spinal tissue was observed by hematoxylin-eosin (H&E) staining. The presence and distribution of bacilli were observed by Ziehl-Neelsen (ZN) staining. Macrophage-specific molecule CD68 was detected by immunohistochemistry (IHC). M1 macrophages play a proinflammatory role, including the specific molecule nitric oxide synthase (iNOS) and the related cytokine tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). M2 macrophages exert anti-inflammatory effects, including the specific molecule CD163 and related cytokine interleukin-10 (IL-10). The above markers were all detected by quantitative real-time PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and IHC. Results Typical tuberculous granuloma was observed in the HE staining of patients with spinal TB. ZN staining showed positive expression of Ag85B around the caseous necrosis tissue and Langerhans multinucleated giant cells. At the same time, IHC results indicated that CD68, iNOS, CD163, IL-10, TNF-α, and IFN-γ were expressed around the tuberculous granuloma, and their levels were obviously higher in close tissue than in the distant tissue. RT-PCR and ELISA results indicated that IL-10, TNF-α, and IFN-γ levels of TB patients were also higher than those of the healthy controls. Conclusion The report here highlights that two types of macrophage polarization (M1 and M2) are present in the tissues and peripheral blood of patients with spinal TB. Macrophages also play proinflammatory and anti-inflammatory roles. Macrophage polarization is involved in spinal TB infection.
Collapse
|
3
|
Abstract
In addition to antibiotics, vaccination is considered among the most efficacious methods in the control and the potential eradication of infectious diseases. New safe and effective vaccines against tuberculosis (TB) could be a very important tool and are called to play a significant role in the fight against TB resistant to antimicrobials. Despite the extended use of the current TB vaccine Bacillus Calmette-Guérin (BCG), TB continues to be transmitted actively and continues to be one of the 10 most important causes of death in the world. In the last 20 years, different TB vaccines have entered clinical trials. In this paper, we review the current use of BCG and the diversity of vaccines in clinical trials and their possible indications. New TB vaccines capable of protecting against respiratory forms of the disease caused by sensitive or resistant Mycobacterium tuberculosis strains would be extremely useful tools helping to prevent the emergence of multi-drug resistance.
Collapse
|
4
|
Moreno-Mendieta S, Barrera-Rosales A, Mata-Espinosa D, Barrios-Payán J, Sánchez S, Hernández-Pando R, Rodríguez-Sanoja R. Raw starch microparticles as BCG adjuvant: Their efficacy depends on the virulence of the infection strains. Vaccine 2019; 37:5731-5737. [PMID: 31000412 DOI: 10.1016/j.vaccine.2019.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
The persistence of tuberculosis (TB) as one of the top 10 causes of death worldwide, the growing incidence of multidrug-resistant tuberculosis and the controversial efficacy of the Bacille Calmette-Guérin (BCG) vaccine drives the development of new generation multistage vaccines against this disease that can boost BCG-primed immunity. The use of polymeric microparticles for this purpose increases due to their advantages, especially their good safety levels and intrinsic immunostimulant properties. We recently explored and demonstrated the reinforcing and adjuvant potential of starch microparticles (SMPs) that administered intranasally to BCG-primed BALB/c mice, alone or in combination with a recombinant antigen, increased survival rates and induced a reduction of bacterial load in the lungs of mice infected with tuberculosis. Here, we tested the effect of SMPs added to the BCG vaccine as adjuvant to the whole-cell vaccine and investigated their contribution to the improvement of the protective efficacy of subcutaneous vaccination in mice challenged with virulent strains of Mycobacterium tuberculosis. As expected, our results were dependent on the infection strains, showing that virulence is a crucial factor that affects the adjuvant activity of SMPs. Our results also confirm the adjuvant activity of this carbohydrate and its usefulness in diverse vaccination strategies not only for mucosal but also for parenteral administration.
Collapse
Affiliation(s)
- Silvia Moreno-Mendieta
- CONACYT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alejandra Barrera-Rosales
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico.
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Tuberculosis (TB) is the leading infectious killer globally and new TB vaccines will be crucial to ending the epidemic. Since the introduction in 1921 of the only currently licensed TB vaccine, BCG, very few novel vaccine candidates or strategies have advanced into clinical efficacy trials. Areas covered: Recently, however, two TB vaccine efficacy trials with novel designs have reported positive results and are now driving new momentum in the field. They are the first Prevention of Infection trial, evaluating the H4:IC31 candidate or BCG revaccination in high-risk adolescents and a Prevention of Disease trial evaluating the M72/AS01E candidate in M.tuberculosis-infected, healthy adults. These trials are briefly reviewed, and lessons learned are proposed to help inform the design of future efficacy trials. The references cited were chosen by the author based on PubMed searches to provide context for the opinions expressed in this Perspective article. Expert opinion: The opportunities created by these two trials for gaining critically important knowledge are game-changing for TB vaccine development. Their results clearly establish feasibility in the relatively near term of developing novel, effective vaccines that could be crucial to ending the TB epidemic.
Collapse
Affiliation(s)
- Ann M Ginsberg
- a Clinical Development , International AIDS Vaccine Initiative , New York , NY , USA
| |
Collapse
|
6
|
Khoshnood S, Heidary M, Haeili M, Drancourt M, Darban-Sarokhalil D, Nasiri MJ, Lohrasbi V. Novel vaccine candidates against Mycobacterium tuberculosis. Int J Biol Macromol 2018; 120:180-188. [PMID: 30098365 DOI: 10.1016/j.ijbiomac.2018.08.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is now among the top ten causes of mortality worldwide being resulted in 1.7 million deaths including 0.4 million among people with HIV in 2016. The Bacille Calmette-Guerin (BCG) is the only available TB vaccine which fails to provide consistent protection against pulmonary TB in adults and adolescents despite being efficacious at protecting infants and young children from the most severe, often deadly forms of TB disease. To achieve the goal of global TB elimination by 2050 we will need new interventions including more improved vaccines that are effective in adult individuals who have not been infected with Mycobacterium tuberculosis as well as latently infected or immunocompromised subjects. In recent decades, multiple new vaccine candidates including whole cell vaccines, adjuvanted proteins, and vectored subunit vaccines have entered into the clinical trials. These new TB vaccines are hoped to provide encouraging safety and immunogenicity under various conditions including prevention of TB disease in adolescents and adults, as BCG replacement/boosters, or as therapeutic vaccines to reduce the duration of TB therapy. In this review, we will discuss the status of novel TB vaccine candidates currently under development in preclinical or clinical phases.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Heidary
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, Institut Hospital-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Lohrasbi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Martin C, Aguilo N, Gonzalo-Asensio J. Vaccination against tuberculosis. Enferm Infecc Microbiol Clin 2018; 36:648-656. [PMID: 29627126 DOI: 10.1016/j.eimc.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/24/2023]
Abstract
BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG.
Collapse
Affiliation(s)
- Carlos Martin
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, España.
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, España
| |
Collapse
|
8
|
Yang JD, Mott D, Sutiwisesak R, Lu YJ, Raso F, Stowell B, Babunovic GH, Lee J, Carpenter SM, Way SS, Fortune SM, Behar SM. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathog 2018; 14:e1007060. [PMID: 29782535 PMCID: PMC6013218 DOI: 10.1371/journal.ppat.1007060] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/01/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Containment of Mycobacterium tuberculosis (Mtb) infection requires T cell recognition of infected macrophages. Mtb has evolved to tolerate, evade, and subvert host immunity. Despite a vigorous and sustained CD8+ T cell response during Mtb infection, CD8+ T cells make limited contribution to protection. Here, we ask whether the ability of Mtb-specific T cells to restrict Mtb growth is related to their capacity to recognize Mtb-infected macrophages. We derived CD8+ T cell lines that recognized the Mtb immunodominant epitope TB10.44-11 and compared them to CD4+ T cell lines that recognized Ag85b240-254 or ESAT63-17. While the CD4+ T cells recognized Mtb-infected macrophages and inhibited Mtb growth in vitro, the TB10.4-specific CD8+ T cells neither recognized Mtb-infected macrophages nor restricted Mtb growth. TB10.4-specific CD8+ T cells recognized macrophages infected with Listeria monocytogenes expressing TB10.4. However, over-expression of TB10.4 in Mtb did not confer recognition by TB10.4-specific CD8+ T cells. CD8+ T cells recognized macrophages pulsed with irradiated Mtb, indicating that macrophages can efficiently cross-present the TB10.4 protein and raising the possibility that viable bacilli might suppress cross-presentation. Importantly, polyclonal CD8+ T cells specific for Mtb antigens other than TB10.4 recognized Mtb-infected macrophages in a MHC-restricted manner. As TB10.4 elicits a dominant CD8+ T cell response that poorly recognizes Mtb-infected macrophages, we propose that TB10.4 acts as a decoy antigen. Moreover, it appears that this response overshadows subdominant CD8+ T cell response that can recognize Mtb-infected macrophages. The ability of Mtb to subvert the CD8+ T cell response may explain why CD8+ T cells make a disproportionately small contribution to host defense compared to CD4+ T cells. The selection of Mtb antigens for vaccines has focused on antigens that generate immunodominant responses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize Mtb-infected macrophages could be a useful criterion for preclinical vaccine development.
Collapse
Affiliation(s)
- Jason D. Yang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniel Mott
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rujapak Sutiwisesak
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yu-Jung Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fiona Raso
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Britni Stowell
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Greg Hunter Babunovic
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jinhee Lee
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Steve M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sing Sing Way
- Division of Infectious Disease, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
9
|
Xu K, Liang ZC, Ding X, Hu H, Liu S, Nurmik M, Bi S, Hu F, Ji Z, Ren J, Yang S, Yang YY, Li L. Nanomaterials in the Prevention, Diagnosis, and Treatment of Mycobacterium Tuberculosis Infections. Adv Healthc Mater 2018; 7. [PMID: 28941042 DOI: 10.1002/adhm.201700509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/23/2017] [Indexed: 11/10/2022]
Abstract
Despite the tremendous advancements that have been made in biomedical research, Mycobacterium tuberculosis (TB) still remains one of the top 10 causes of death worldwide, outpacing the Human Immunodeficiency Virus as a leading cause of death from an infectious disease. In the light of such significant disease burden, tremendous efforts have been made worldwide to stem this burgeoning spread of disease. The use of nanomaterials in TB management has increased in the past decade, particularly in the areas of early TB detection, prevention, and treatment. Nanomaterials have been proven to be efficacious in the rapid and accurate detection of TB pathogens. Novel nanocarriers have also shown tremendous promise in improving drug delivery, potentially enhancing drug concentrations in target organs while at the same time, reducing treatment frequency. In addition, the engineering of antigen nanocarriers represents an exciting front in TB research, potentially paving the way for the successful development of a new class of effective TB vaccines. This article discusses epidemiology and pathogenesis of TB infections, current TB therapeutics, advanced nanomaterials for anti-TB drug delivery, and TB vaccines. In addition, challenges and future perspectives in developing safe and effective nanomaterials in TB diagnosis and therapy are also presented.
Collapse
Affiliation(s)
- Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Xin Ding
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Haiyang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Martin Nurmik
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Sheng Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Feishu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Jingjing Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| |
Collapse
|
10
|
Kar R, Nangpal P, Mathur S, Singh S, Tyagi AK. bioA mutant of Mycobacterium tuberculosis shows severe growth defect and imparts protection against tuberculosis in guinea pigs. PLoS One 2017; 12:e0179513. [PMID: 28658275 PMCID: PMC5489182 DOI: 10.1371/journal.pone.0179513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023] Open
Abstract
Owing to the devastation caused by tuberculosis along with the unsatisfactory performance of the Bacillus Calmette–Guérin (BCG) vaccine, a more efficient vaccine than BCG is required for the global control of tuberculosis. A number of studies have demonstrated an essential role of biotin biosynthesis in the growth and survival of several microorganisms, including mycobacteria, through deletion of the genes involved in de novo biotin biosynthesis. In this study, we demonstrate that a bioA mutant of Mycobacterium tuberculosis (MtbΔbioA) is highly attenuated in the guinea pig model of tuberculosis when administered aerogenically as well as intradermally. Immunization with MtbΔbioA conferred significant protection in guinea pigs against an aerosol challenge with virulent M. tuberculosis, when compared with the unvaccinated animals. Booster immunization with MtbΔbioA offered no advantage over a single immunization. These experiments demonstrate the vaccinogenic potential of the attenuated M. tuberculosis bioA mutant against tuberculosis.
Collapse
Affiliation(s)
- Ritika Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Prachi Nangpal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Shubhita Mathur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Swati Singh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- Vice Chancellor, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
- * E-mail:
| |
Collapse
|
11
|
Kirschner D, Pienaar E, Marino S, Linderman JJ. A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 3:170-185. [PMID: 30714019 PMCID: PMC6354243 DOI: 10.1016/j.coisb.2017.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberculosis (TB) is an ancient and deadly disease characterized by complex host-pathogen dynamics playing out over multiple time and length scales and physiological compartments. Computational modeling can be used to integrate various types of experimental data and suggest new hypotheses, mechanisms, and therapeutic approaches to TB. Here, we offer a first-time comprehensive review of work on within-host TB models that describe the immune response of the host to infection, including the formation of lung granulomas. The models include systems of ordinary and partial differential equations and agent-based models as well as hybrid and multi-scale models that are combinations of these. Many aspects of M. tuberculosis infection, including host dynamics in the lung (typical site of infection for TB), granuloma formation, roles of cytokine and chemokine dynamics, and bacterial nutrient availability have been explored. Finally, we survey applications of these within-host models to TB therapy and prevention and suggest future directions to impact this global disease.
Collapse
Affiliation(s)
- Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Elsje Pienaar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
12
|
Reasons for optimism in the search for new vaccines for tuberculosis. Epidemiol Infect 2017; 145:1750-1756. [PMID: 28414012 DOI: 10.1017/s095026881700067x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the development of vaccines for tuberculosis (TB), the combination of the will, funding, scientific rigor, new tools, refined animal models and improved clinical trial designs are all converging at an opportune moment. The lack of optimism that has surrounded the likelihood for finding novel TB vaccines has resulted from a lack of correlates of vaccine-induced protection, a lack of tool candidate vaccines to probe the immunologic space, which may be needed, and the negative result of one recent trial. A vaccine for TB that can be delivered at a reasonable cost to the marketplace will have greater impact on the incidence of new cases of TB than any intervention in world history. Now is the time to increase resources, both financial and human intellectual capacity, for a global tuberculosis vaccine effort.
Collapse
|