1
|
Zaragoza-Contreras R, Aguilar-Ayala DA, García-Morales L, Ares MA, Helguera-Repetto AC, Cerna-Cortés JF, León-Solis L, Suárez-Sánchez F, González-Y-Merchand JA, Rivera-Gutiérrez S. Novel Populations of Mycobacterium smegmatis Under Hypoxia and Starvation: Some Insights on Cell Viability and Morphological Changes. Microorganisms 2024; 12:2280. [PMID: 39597669 PMCID: PMC11596219 DOI: 10.3390/microorganisms12112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The general features of the shift to a dormant state in mycobacterial species include several phenotypic changes, reduced metabolic activities, and increased resistance to host and environmental stress conditions. In this study, we aimed to provide novel insights into the viability state and morphological changes in dormant M. smegmatis that contribute to its long-term survival under starvation or hypoxia. To this end, we conducted assays to evaluate cell viability, morphological changes and gene expression. During starvation, M. smegmatis exhibited a reduction in cell length, the presence of viable but non-culturable (VBNC) cells and the formation of anucleated small cells, potentially due to a phenomenon known as reductive cell division. Under hypoxia, a novel population of pleomorphic mycobacteria with a rough surface before the cells reached nonreplicating persistence 1 (NRP1) was identified. This population exhibited VBNC-like behaviour, with a loss of cell wall rigidity and the presence of lipid-body-like structures. Based on dosR and hspX expression, we suggest that M. smegmatis encounters reductive stress conditions during starvation, while lipid storage may induce oxidative stress during hypoxia. These insights into the heterogeneous populations presented here could offer valuable opportunities for developing new therapeutic strategies to control dormant mycobacterial populations.
Collapse
Affiliation(s)
- Ruben Zaragoza-Contreras
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Diana A. Aguilar-Ayala
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Miguel A. Ares
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría, Mexico City 06720, Mexico
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (InPer), Ciudad de México 11000, Mexico;
| | - Jorge Francisco Cerna-Cortés
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Lizbel León-Solis
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Fernando Suárez-Sánchez
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Especialidades, Mexico City 06720, Mexico;
| | - Jorge A. González-Y-Merchand
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| |
Collapse
|
2
|
Sánchez-Estrada R, Méndez-Guerrero O, García-Morales L, González-Y-Merchand JA, Cerna-Cortes JF, Menendez MC, García MJ, León-Solís LE, Rivera-Gutiérrez S. Organization and Characterization of the Promoter Elements of the rRNA Operons in the Slow-Growing Pathogen Mycobacterium kumamotonense. Genes (Basel) 2023; 14:genes14051023. [PMID: 37239384 DOI: 10.3390/genes14051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The slow-growing, nontuberculous mycobacterium Mycobacterium kumamotonense possesses two rRNA operons, rrnA and rrnB, located downstream from the murA and tyrS genes, respectively. Here, we report the sequence and organization of the promoter regions of these two rrn operons. In the rrnA operon, transcription can be initiated from the two promoters, named P1 rrnA and PCL1, while in rrnB, transcription can only start from one, called P1 rrnB. Both rrn operons show a similar organization to the one described in Mycobacterium celatum and Mycobacterium smegmatis. Furthermore, by qRT-PCR analyses of the products generated from each promoter, we report that stress conditions such as starvation, hypoxia, and cellular infection affect the contribution of each operon to the synthesis of pre-rRNA. It was found that the products from the PCL1 promoter of rrnA play a pivotal role in rRNA synthesis during all stress conditions. Interestingly, the main participation of the products of transcription from the P1 promoter of rrnB was found during hypoxic conditions at the NRP1 phase. These results provide novel insights into pre-rRNA synthesis in mycobacteria, as well as the potential ability of M. kumamotonense to produce latent infections.
Collapse
Affiliation(s)
- Ricardo Sánchez-Estrada
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomas, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Oscar Méndez-Guerrero
- Departamento de Química Inorgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomas, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Lázaro García-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomas, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Jorge Alberto González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomas, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Jorge Francisco Cerna-Cortes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomas, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - María Carmen Menendez
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, C. Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - María Jesús García
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, C. Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Lizbel Esperanza León-Solís
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomas, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomas, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
4
|
Gibson SER, Harrison J, Molloy A, Cox JAG. Cholesterol-dependent activity of dapsone against non-replicating persistent mycobacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748615 DOI: 10.1099/mic.0.001279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One-third of the world's population is estimated to be latently infected with Mycobacterium tuberculosis. This reservoir of bacteria is largely resistant to antimicrobial treatment that often only targets actively replicating mycobacteria, with current treatment for latent infection revolving around inhibiting the resuscitation event rather than preventing or treating latent infection. As a result, antimicrobials that target latent infection often have little to no activity in vivo. Here we report a method of in vitro analysis of physiologically relevant non-replicating persistence (NRP) utilizing cholesterol as the sole carbon source, alongside hypoxia as a driver of Mycobacterium bovis BCG into the NRP state. Using the minimal cholesterol media NRP assay, we observed an increased state of in vitro resistance to front-line anti-tubercular compounds. However, following a phenotypic screen of an approved-drug library, we identified dapsone as a bactericidal active molecule against cholesterol-dependent NRP M. bovis BCG. Through an overexpression trial of probable antimicrobial target enzymes, we further identified FolP2, a non-functional dihydropteroate synthase homologue, as the likely target of dapsone under cholesterol-NRP due to a significant increase in bacterial resistance when overexpressed. These results highlight the possible reason for little in vivo activity seen for current front-line anti-NRP drugs, and we introduce a new methodology for future drug screening as well as a potential role for dapsone inclusion within the current treatment regime.
Collapse
Affiliation(s)
- Savannah E R Gibson
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - James Harrison
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Antonia Molloy
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
5
|
Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM. Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria. Nat Commun 2022; 13:5320. [PMID: 36085278 PMCID: PMC9463166 DOI: 10.1038/s41467-022-32553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival. We speculated that the production of specific cell wall lipid(s) that inhibit NPC1 could have been a critical step in the evolution of pathogenicity. We therefore investigated whether lipid extracts from clinical Mtb strains from multiple Mtb lineages, Mtb complex (MTBC) members and non-tubercular mycobacteria (NTM) inhibit the NPC pathway. We report that inhibition of the NPC pathway was present in all clinical isolates from Mtb lineages 1, 2, 3 and 4, Mycobacterium bovis and the NTM, Mycobacterium abscessus and Mycobacterium avium. However, lipid extract from Mycobacterium canettii, which is considered to resemble the common ancestor of the MTBC did not inhibit the NPC1 pathway. We conclude that the evolution of NPC1 inhibitory mycobacterial cell wall lipids evolved early and post divergence from Mycobacterium canettii-related mycobacteria and that this activity contributes significantly to the promotion of disease.
Collapse
Affiliation(s)
- Yuzhe Weng
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
6
|
García-Morales L, Del Portillo P, Anzola JM, Ares MA, Helguera-Repetto AC, Cerna-Cortes JF, Méndez-Tenorio A, García MJ, Otal I, Martín C, Gonzalez-y-Merchand JA, Rivera-Gutiérrez S. The Lack of the TetR-Like Repressor Gene BCG_2177c (Rv2160A) May Help Mycobacteria Overcome Intracellular Redox Stress and Survive Longer Inside Macrophages When Surrounded by a Lipid Environment. Front Cell Infect Microbiol 2022; 12:907890. [PMID: 35873160 PMCID: PMC9301340 DOI: 10.3389/fcimb.2022.907890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria, like other microorganisms, survive under different environmental variations by expressing an efficient adaptive response, oriented by regulatory elements, such as transcriptional repressors of the TetR family. These repressors in mycobacteria also appear to be related to cholesterol metabolism. In this study, we have evaluated the effect of a fatty acid (oleic–palmitic–stearic)/cholesterol mixture on some phenotypic and genotypic characteristics of a tetR-mutant strain (BCG_2177c mutated gene) of M. bovis BCG, a homologous of Rv2160A of M. tuberculosis. In order to accomplish this, we have analyzed the global gene expression of this strain by RNA-seq and evaluated its neutral-lipid storage capacity and potential to infect macrophages. We have also determined the macrophage response by measuring some pro- and anti-inflammatory cytokine expressions. In comparison with wild-type microorganisms, we showed that the mutation in the BCG_2177c gene did not affect the growth of M. bovis BCG in the presence of lipids but it probably modified the structure/composition of its cell envelope. Compared to with dextrose, an overexpression of the transcriptome of the wild-type and mutant strains was observed when these mycobacteria were cultured in lipids, mainly at the exponential phase. Twelve putative intracellular redox balance maintenance genes and four others coding for putative transcriptional factors (including WhiB6 and three TetR-like) were the main elements repeatedly overexpressed when cultured in the presence of lipids. These genes belonged to the central part of what we called the “genetic lipid signature” for M. bovis BCG. We have also found that all these mycobacteria genotypic changes affected the outcome of BCG-infected macrophages, being the mutant strain most adapted to persist longer inside the host. This high persistence result was also confirmed when mutant-infected macrophages showed overexpression of the anti-inflammatory cytokine TGF-β versus pro-inflammatory cytokines. In summary, the lack of this TetR-like repressor expression, within a lipid environment, may help mycobacteria overcome intracellular redox stress and survive longer inside their host.
Collapse
Affiliation(s)
- Lázaro García-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Patricia Del Portillo
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá, Colombia
| | - Juan M. Anzola
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá, Colombia
- Facultad de Ingeniería y Ciencias Básicas, Universidad Central, Bogotá, D.C., Colombia
| | - Miguel A. Ares
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Addy C. Helguera-Repetto
- Departamento de Inmuno-Bioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Jorge F. Cerna-Cortes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alfonso Méndez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María J. García
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jorge A. Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- *Correspondence: Jorge A. Gonzalez-y-Merchand, ; Sandra Rivera-Gutiérrez,
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- *Correspondence: Jorge A. Gonzalez-y-Merchand, ; Sandra Rivera-Gutiérrez,
| |
Collapse
|
7
|
Chandra P, Coullon H, Agarwal M, Goss CW, Philips JA. Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection. J Clin Invest 2022; 132:152509. [PMID: 35104812 PMCID: PMC8803325 DOI: 10.1172/jci152509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3β-hydroxysteroid dehydrogenase (3β-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| | - Héloise Coullon
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| | - Mansi Agarwal
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles W Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| |
Collapse
|
8
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Wang N, Sarathy JP, Zimmerman M, Kaya F, Wang H, Dartois V, Carter CL. On-Slide Heat Sterilization Enables Mass Spectrometry Imaging of Tissue Infected with High-Threat Pathogens Outside of Biocontainment: A Study Directed at Mycobacterium tuberculosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2664-2674. [PMID: 34672552 PMCID: PMC8653782 DOI: 10.1021/jasms.1c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 05/16/2023]
Abstract
Mass spectrometry imaging investigations of tissues infected with agents that require high-security biocontainment, such as Mycobacterium tuberculosis, have been limited due to incompatible sterilization techniques. Here we describe an on-slide heat sterilization method that enables mass spectrometry imaging investigations of pharmaceuticals, lipids, and metabolites in infected tissue samples outside of biocontainment. An evaluation of different temperatures and incubation times determined that 100 °C for 1 h was essential to sterilize 5 times the bacterial burden observed in tuberculosis (TB) cavity sections. Laser-capture microdissection combined with liquid chromatography with tandem mass spectrometry quantitation, in addition to mass spectrometry imaging, showed that no degradation was observed following the on-slide heat sterilization protocol for a variety of drug classes covering a range of physicochemical properties. Utilizing the tissue mimetic model, we demonstrated that the detection of lipid and metabolite ions was not impacted by heat sterilization and that, for several metabolites, the on-slide heat sterilization method improved the sensitivity when compared to control samples. An application of the on-slide heat sterilization to M. tuberculosis infected tissue enabled the first detection and spatial distribution of lipids indicative of a lysosomal storage disease phenotype within TB granuloma macrophages, in addition to the differential distribution of metabolites central to the fatty acid oxidation pathway. These initial investigations detected a pronounced heterogeneity within the cellular regions and necrotic cores of individual TB granulomas and across different evolving granulomas. This study provides the framework for mass spectrometry imaging investigations of high-threat pathogens outside of biocontainment.
Collapse
Affiliation(s)
- Ning Wang
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Jansy P. Sarathy
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Matthew Zimmerman
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Firat Kaya
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Han Wang
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Véronique Dartois
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
- Department
of Medical Sciences, Hackensack School of
Medicine, Nutley, New Jersey 07110, United States
| | - Claire L. Carter
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
- Department
of Pathology, Hackensack School of Medicine, Nutley, New Jersey 07110, United States
| |
Collapse
|
10
|
Fenofibrate Facilitates Post-Active Tuberculosis Infection in Macrophages and is Associated with Higher Mortality in Patients under Long-Term Treatment. J Clin Med 2020; 9:jcm9020337. [PMID: 31991736 PMCID: PMC7073736 DOI: 10.3390/jcm9020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects and persists in macrophages. This study aimed to investigate the effects of long-term fenofibrate treatment in patients with tuberculosis (TB), and the intracellular viability of Mtb in human macrophages. Methods: Epidemiological data from the National Health Insurance Research Database of Taiwan were used to present outcomes of TB patients treated with fenofibrate. In the laboratory, we assessed Mtb infection in macrophages treated with or without fenofibrate. Mtb growth, lipid accumulation in macrophages, and expression of transcriptional genes were examined. Results: During 11 years of follow-up, TB patients treated with fenofibrate presented a higher risk of mortality. Longer duration of fenofibrate use was associated with a significantly higher risk of mortality. Treatment with fenofibrate significantly increased the number of bacilli in human macrophages in vitro. Fenofibrate did not reduce, but induced an increasing trend in the intracellular lipid content of macrophages. In addition, dormant genes of Mtb, icl1, tgs1, and devR, were markedly upregulated in response to fenofibrate treatment. Our results suggest that fenofibrate may facilitate intracellular Mtb persistence. Conclusions: Our data shows that long-term treatment with fenofibrate in TB patients is associated with a higher mortality. The underlying mechanisms may partly be explained by the upregulation of Mtb genes involved in lipid metabolism, enhanced intracellular growth of Mtb, and the ability of Mtb to sustain a nutrient-rich reservoir in human macrophages, observed during treatment with fenofibrate.
Collapse
|
11
|
Gordhan BG, Peters J, Kana BD. Application of model systems to study adaptive responses of Mycobacterium tuberculosis during infection and disease. ADVANCES IN APPLIED MICROBIOLOGY 2019; 108:115-161. [PMID: 31495404 DOI: 10.1016/bs.aambs.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) claims more human lives than any other infectious organism. The lethal synergy between TB-HIV infection and the rapid emergence of drug resistant strains has created a global public health threat that requires urgent attention. Mycobacterium tuberculosis, the causative agent of TB is an exquisitely well-adapted human pathogen, displaying the ability to promptly remodel metabolism when encountering stressful environments during pathogenesis. A careful study of the mechanisms that enable this adaptation will enhance the understanding of key aspects related to the microbiology of TB disease. However, these efforts require microbiological model systems that mimic host conditions in the laboratory. Herein, we describe several in vitro model systems that generate non-replicating and differentially culturable mycobacteria. The changes that occur in the metabolism of M. tuberculosis in some of these models and how these relate to those reported for human TB disease are discussed. We describe mechanisms that tubercle bacteria use to resuscitate from these non-replicating conditions, together with phenotypic heterogeneity in terms of culturabiliy of M. tuberculosis in sputum. Transcriptional changes in M. tuberculosis that allow for adaptation of the organism to the lung environment are also summarized. Finally, given the emerging importance of the microbiome in various infectious diseases, we provide a description of how the lung and gut microbiome affect susceptibility to TB infection and response to treatment. Consideration of these collective aspects will enhance the understanding of basic metabolism, physiology, drug tolerance and persistence in M. tuberculosis to enable development of new therapeutic interventions.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Julian Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh Davandra Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
12
|
Biochemical characterization of acyl-coenzyme A synthetases involved in mycobacterial steroid side-chain catabolism and molecular design: synthesis of an anti-mycobacterial agent. 3 Biotech 2019; 9:169. [PMID: 30997306 DOI: 10.1007/s13205-019-1703-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/03/2019] [Indexed: 01/26/2023] Open
Abstract
The metabolism of host cholesterol by Mycobacterium tuberculosis is an important factor for both its virulence and pathogenesis. However, the rationale for this cholesterol metabolism has not been fully understood yet. In the present study, we characterized several previously undescribed acyl-CoA synthetases that are involved in the steroid side-chain degradation in Mycobacterium smegmatis, and an analogue of intermediate from steroid degradation, 5'-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was successfully designed and synthesized to be used as a specific anti-mycobacterial agent. The acyl-CoA synthetases exhibited strong preferences for the length of side chain. FadD19 homologs, including FadD19 (MSMEG_5914), FadD19-2 (MSMEG_2241), and FadD19-4 (MSMEG_3687), are unanimously favorable cholesterol with a C8 alkanoate side chain. FadD17 (MSMEG_5908) and FadD1 (MSMEG_4952) showed high preferences for steroids, containing a C5 alkanoate side chain. FadD8 (MSMEG_1098) exhibited specific activity toward cholestenoate with a C8 alkanoate side chain. An acylsulfamoyl analogue of lithocholate, 5'-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was designed and synthesized. As expected, the intermediate analogue not only specifically inhibited those steroid-activated acyl-CoA synthetases, but also selectively inhibited the growth of mycobacterial species, including M. tuberculosis, M. smegmatis, and Mycobacterium neoaurum. Overall, our research advanced our understanding of mycobacterial steroid degradation and provided new insights to develop novel mechanism-based anti-mycobacterial agents.
Collapse
|
13
|
Del Portillo P, García-Morales L, Menéndez MC, Anzola JM, Rodríguez JG, Helguera-Repetto AC, Ares MA, Prados-Rosales R, Gonzalez-y-Merchand JA, García MJ. Hypoxia Is Not a Main Stress When Mycobacterium tuberculosis Is in a Dormancy-Like Long-Chain Fatty Acid Environment. Front Cell Infect Microbiol 2019; 8:449. [PMID: 30687646 PMCID: PMC6333855 DOI: 10.3389/fcimb.2018.00449] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
The capacity of Mycobacterium tuberculosis (Mtb) to sense, respond and adapt to a variable and hostile environment within the host makes it one of the most successful human pathogens. During different stages of infection, Mtb is surrounded by a plethora of lipid molecules and current evidence points out the relevance of fatty acids during the infectious process. In this study, we have compared the transcriptional response of Mtb to hypoxia in cultures supplemented with a mix of even long-chain fatty acids or dextrose as main carbon sources. Using RNA sequencing, we have identified differential expressed genes in early and late hypoxia, defined according to the in vitro Wayne and Hayes model, and compared the results with the exponential phase of growth in both carbon sources. We show that the number of genes over-expressed in the lipid medium was quite low in both, early and late hypoxia, relative to conditions including dextrose, with the exception of transcripts of stable and non-coding RNAs, which were more expressed in the fatty acid medium. We found that sigB and sigE were over-expressed in the early phase of hypoxia, confirming their pivotal role in early adaptation to low oxygen concentration independently of the carbon source. A drastic contrast was found with the transcriptional regulatory factors at early hypoxia. Only 2 transcriptional factors were over-expressed in early hypoxia in the lipid medium compared to 37 that were over-expressed in the dextrose medium. Instead of Rv0081, known to be the central regulator of hypoxia in dextrose, Rv2745c (ClgR), seems to play a main role in hypoxia in the fatty acid medium. The low level of genes associated to the stress-response during their adaptation to hypoxia in fatty acids, suggests that this lipid environment makes hypoxia a less stressful condition for the tubercle bacilli. Taken all together, these results indicate that the presence of lipid molecules shapes the metabolic response of Mtb to an adaptive state for different stresses within the host, including hypoxia. This fact could explain the success of Mtb to establish long-term survival during latent infection.
Collapse
Affiliation(s)
- Patricia Del Portillo
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | - María Carmen Menéndez
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Manuel Anzola
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Juan Germán Rodríguez
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Torre de Investigación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Rafael Prados-Rosales
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Cooperative Research bioGUNE (CICbioGUNE), Bizkaia Technology Park, Derio, Spain
| | - Jorge A. Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Jesús García
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Modelling a Silent Epidemic: A Review of the In Vitro Models of Latent Tuberculosis. Pathogens 2018; 7:pathogens7040088. [PMID: 30445695 PMCID: PMC6313694 DOI: 10.3390/pathogens7040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is the primary cause of death by a single infectious agent; responsible for around two million deaths in 2016. A major virulence factor of TB is the ability to enter a latent or Non-Replicating Persistent (NRP) state which is presumed untreatable. Approximately 1.7 billion people are latently infected with TB and on reactivation many of these infections are drug resistant. As the current treatment is ineffective and diagnosis remains poor, millions of people have the potential to reactivate into active TB disease. The immune system seeks to control the TB infection by containing the bacteria in a granuloma, where it is exposed to stressful anaerobic and nutrient deprived conditions. It is thought to be these environmental conditions that trigger the NRP state. A number of in vitro models have been developed that mimic conditions within the granuloma to a lesser or greater extent. These different models have all been utilised for the research of different characteristics of NRP Mycobacterium tuberculosis, however their disparity in approach and physiological relevance often results in inconsistencies and a lack of consensus between studies. This review provides a summation of the different NRP models and a critical analysis of their respective advantages and disadvantages relating to their physiological relevance.
Collapse
|
15
|
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:200-214. [PMID: 30514504 DOI: 10.1016/j.tube.2018.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) infection caused by Mycobacterium tuberculosis (Mtb) is still a persistent global health problem, particularly in developing countries. The World Health Organization (WHO) reported a mortality rate of about 1.8 million worldwide due to TB complications in 2015. The Bacillus Calmette-Guérin (BCG) vaccine was introduced in 1921 and is still widely used to prevent TB development. This vaccine offers up to 80% protection against various forms of TB; however its efficacy against lung infection varies among different geographical settings. Devastatingly, the development of various forms of drug-resistant TB strains has significantly impaired the discovery of effective and safe anti-bacterial agents. Consequently, this necessitated discovery of new drug targets and novel anti-TB therapeutics to counter infection caused by various Mtb strains. Importantly, various factors that contribute to TB development have been identified and include bacterial resuscitation factors, host factors, environmental factors and genetics. Furthermore, Mtb-induced epigenetic changes also play a crucial role in evading the host immune response and leads to bacterial persistence and dissemination. Recently, the application of GeneXpert MTB/RIF® to rapidly diagnose and identify drug-resistant strains and discovery of different molecular markers that distinguish between latent and active TB infection has motivated and energised TB research. Therefore, this review article will briefly discuss the current TB state, highlight various mechanisms employed by Mtb to evade the host immune response as well as to discuss some modern molecular techniques that may potentially target and inhibit Mtb replication.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa.
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| |
Collapse
|
16
|
Soran H, Ho JH, Durrington PN. Acquired low cholesterol: diagnosis and relevance to safety of low LDL therapeutic targets. Curr Opin Lipidol 2018; 29:318-326. [PMID: 29746303 DOI: 10.1097/mol.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Acquired hypocholesterolaemia occurs more commonly than inherited hypocholesterolaemia but has received little attention in the literature. In this review, we discuss the causes and underlying mechanisms of acquired hypocholesterolaemia and its relevance to safety of therapeutically induced decreased LDL cholesterol levels. RECENT FINDINGS Hypocholesterolaemia is increasingly identified as cholesterol testing becomes more widespread in the assessment of cardiovascular risk. Lower therapeutic targets for LDL cholesterol are also being achieved more regularly with the introduction of more intensive cholesterol-lowering regimens. Acquired hypocholesterolaemia may be the presenting feature of treatable diseases. Understanding its mechanisms may also provide new treatment approaches for neoplastic disease, such as breast cancer, and infections, such as tuberculosis. SUMMARY When hypocholesterolaemia is discovered, it is important to identify its cause. Further research into the pathogenesis of hypocholesterolaemia may provide new therapies for primary diseases underlying it.
Collapse
Affiliation(s)
- Handrean Soran
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- Department of Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jan Hoong Ho
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- Department of Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul N Durrington
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| |
Collapse
|
17
|
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJC. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4972762. [PMID: 29873719 PMCID: PMC5989597 DOI: 10.1093/femspd/fty036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Africa Health Research Institute, K-RITH Tower Building, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
18
|
High-density lipoprotein suppresses tumor necrosis factor alpha production by mycobacteria-infected human macrophages. Sci Rep 2018; 8:6736. [PMID: 29712918 PMCID: PMC5928146 DOI: 10.1038/s41598-018-24233-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/23/2018] [Indexed: 12/23/2022] Open
Abstract
Immune responses to parasitic pathogens are affected by the host physiological condition. High-density lipoprotein (HDL) and low-density lipoprotein (LDL) are transporters of lipids between the liver and peripheral tissues, and modulate pro-inflammatory immune responses. Pathogenic mycobacteria are parasitic intracellular bacteria that can survive within macrophages for a long period. Macrophage function is thus key for host defense against mycobacteria. These basic facts suggest possible effects of HDL and LDL on mycobacterial diseases, which have not been elucidated so far. In this study, we found that HDL and not LDL enhanced mycobacterial infections in human macrophages. Nevertheless, we observed that HDL remarkably suppressed production of tumor necrosis factor alpha (TNF-α) upon mycobacterial infections. TNF-α is a critical host-protective cytokine against mycobacterial diseases. We proved that toll-like receptor (TLR)-2 is responsible for TNF-α production by human macrophages infected with mycobacteria. Subsequent analysis showed that HDL downregulates TLR2 expression and suppresses its intracellular signaling pathways. This report demonstrates for the first time the substantial action of HDL in mycobacterial infections to human macrophages.
Collapse
|
19
|
Aguilar-Ayala DA, Cnockaert M, Vandamme P, Palomino JC, Martin A, Gonzalez-Y-Merchand J. Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions. J Med Microbiol 2018; 67:282-285. [DOI: 10.1099/jmm.0.000681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Diana Angelica Aguilar-Ayala
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Juan Carlos Palomino
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Anandi Martin
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
- Laboratory of Medical Microbiology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Jorge Gonzalez-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| |
Collapse
|
20
|
Aguilar-Ayala DA, Tilleman L, Van Nieuwerburgh F, Deforce D, Palomino JC, Vandamme P, Gonzalez-Y-Merchand JA, Martin A. The transcriptome of Mycobacterium tuberculosis in a lipid-rich dormancy model through RNAseq analysis. Sci Rep 2017; 7:17665. [PMID: 29247215 PMCID: PMC5732278 DOI: 10.1038/s41598-017-17751-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is currently the number one killer among infectious diseases worldwide. Lipids are abundant molecules during the infectious cycle of Mycobacterium tuberculosis (Mtb) and studies better mimicking its actual metabolic state during pathogenesis are needed. Though most studies have focused on the mycobacterial lipid metabolism under standard culture conditions, little is known about the transcriptome of Mtb in a lipid environment. Here we determined the transcriptome of Mtb H37Rv in a lipid-rich environment (cholesterol and fatty acid) under aerobic and hypoxic conditions, using RNAseq. Lipids significantly induced the expression of 368 genes. A main core lipid response was observed involving efflux systems, iron caption and sulfur reduction. In co-expression with ncRNAs and other genes discussed below, may act coordinately to prepare the machinery conferring drug tolerance and increasing a persistent population. Our findings could be useful to tag relevant pathways for the development of new drugs, vaccines and new strategies to control TB.
Collapse
Affiliation(s)
- Diana A Aguilar-Ayala
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium.
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | | | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Jorge A Gonzalez-Y-Merchand
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anandi Martin
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Pôle of Medical Microbiology, Institute of Experimental and Clinical Research, Université Catholique de, Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Garcia-Morales L, Leon-Solis L, Monroy-Muñoz IE, Talavera-Paulin M, Serafin-López J, Estrada-Garcia I, Rivera-Gutierrez S, Cerna-Cortes JF, Helguera-Repetto AC, Gonzalez-Y-Merchand JA. Comparative proteomic profiles reveal characteristic Mycobacterium tuberculosis proteins induced by cholesterol during dormancy conditions. MICROBIOLOGY-SGM 2017; 163:1237-1247. [PMID: 28771131 DOI: 10.1099/mic.0.000512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholesterol has been reported to play an important role during Mycobacterium tuberculosis infection and during its dormant state inside the host. We present the determination of proteomic profiles of M. tuberculosis H37Rv in the presence of cholesterol as the sole carbon source under exponential growth and in two in vitro dormancy phases (NRP1 and NRP2). Using 2D-PAGE, we detected that M. tuberculosis expressed a high diversity of proteins in both exponential and non-replicative phases. We also found that cholesterol was involved in the overexpression of some proteins related to sulfur metabolism (CysA2), electron transport (FixB), cell wall synthesis (Ald), iron storage (BfrB), protein synthesis (Tig and EF-Tu) and dormancy maintenance (HspX and TB 31.7). According to our results we propose that proteins Ald, BfrB, FadA5 and TB31.7 are likely to play a fundamental role during in vitro dormancy of M. tuberculosis in the presence of cholesterol, helping to counteract its intracellular hostile microenvironment.
Collapse
Affiliation(s)
- Lazaro Garcia-Morales
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Lizbel Leon-Solis
- Laboratorios de Biologicos y Reactivos de México S.A. de C.V., Birmex. Instituto Nacional de Virologia. Prolongacion Manuel Carpio No. 492, Delegacion Miguel Hidalgo 11340, Ciudad de Mexico, Mexico
| | - Irma E Monroy-Muñoz
- Departamento de Genetica y Genomica Humana, Torre de Investigacion, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, SSA. Montes Urales 800, Lomas de Chapultepec, Ciudad de Mexico, 11000, Mexico
| | - Moises Talavera-Paulin
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Jeanet Serafin-López
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Iris Estrada-Garcia
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Sandra Rivera-Gutierrez
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Jorge F Cerna-Cortes
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Addy C Helguera-Repetto
- Departamento de Inmunobioquimica, Torre de Investigacion, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, SSA. Montes Urales 800, Lomas de Chapultepec, Ciudad de Mexico, 11000, Mexico
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| |
Collapse
|
22
|
Bhusal RP, Bashiri G, Kwai BXC, Sperry J, Leung IKH. Targeting isocitrate lyase for the treatment of latent tuberculosis. Drug Discov Today 2017; 22:1008-1016. [PMID: 28458043 DOI: 10.1016/j.drudis.2017.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/04/2017] [Accepted: 04/20/2017] [Indexed: 01/11/2023]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that can remain dormant for many years before becoming active. One way to control and eliminate TB is the identification and treatment of latent TB, preventing infected individuals from developing active TB and thus eliminating the subsequent spread of the disease. Isocitrate lyase (ICL) is involved in the mycobacterial glyoxylate and methylisocitrate cycles. ICL is important for the growth and survival of M. tuberculosis during latent infection. ICL is not present in humans and is therefore a potential therapeutic target for the development of anti-TB agents. Here, we explore the evidence linking ICL to persistent survival of M. tuberculosis. The structure, mechanism and inhibition of the enzyme is also discussed.
Collapse
Affiliation(s)
- Ram Prasad Bhusal
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Ghader Bashiri
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Brooke X C Kwai
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| |
Collapse
|