1
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: a therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04123-w. [PMID: 35876950 DOI: 10.1007/s00432-022-04123-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most prevalent cancer and the second significant cause of cancer-associated death worldwide. The microRNA-30 is a substantial member of the miRNA family and plays a vital role in expanding several cancers. This microRNA potentially targets interleukin 6 as an inflammatory cytokine in CRC. MATERIALS AND METHODS MSCs were isolated and identified from mice bone marrow and then transduced with lentiviruses containing miR-30C. Transfected MSCs were collected to evaluate IL-6 levels, CT-26 cells were also co-cultured with MSCs, and the effect of apoptosis and IL-6 on the supernatant was assessed. RESULTS Our result showed the expression of IL-6 mRNA and the level of protein were decreased in the supernatant of miR-30-transduced MSC cells compared to the control group. In addition, the rate of apoptosis was assessed, and the obtained data revealed the induction of apoptosis in CT-26 cells when they are in the vicinity of miR-30c-transduced MSCs. DISCUSSION AND CONCLUSION We demonstrated that downregulation of miR-30c was significantly correlated with CRC progression and survival. So, the present study elucidated the anticancer effects of miR-30c in CRC and presented a novel target for CRC therapy.
Collapse
|
4
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Gao SH, Chen CG, Zhuang CB, Zeng YL, Zeng ZZ, Wen PH, Yu YM, Ming L, Zhao JW. Integrating serum microRNAs and electronic health records improved the diagnosis of tuberculosis. J Clin Lab Anal 2021; 35:e23871. [PMID: 34106501 PMCID: PMC8373357 DOI: 10.1002/jcla.23871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background To verify the differential expression of miR‐30c and miR‐142‐3p between tuberculosis patients and healthy controls and to investigate the performance of microRNA (miRNA) and subsequently models for the diagnosis of tuberculosis (TB). Methods We followed up 460 subjects suspected of TB, and finally enrolled 132 patients, including 60 TB patients, 24 non‐TB disease controls (TB‐DCs), and 48 healthy controls (HCs). The differential expression of miR‐30c and miR‐142‐3p in serum samples of the TB patients, TB‐DCs, and HCs were identified by reverse transcription–quantitative real‐time PCR. Diagnostic models were developed by analyzing the characteristics of miRNA and electronic health records (EHRs). These models evaluated by the area under the curves (AUC) and calibration curves were presented as nomograms. Results There were differential expression of miR‐30c and miR‐142‐3p between TB patients and HCs (p < 0.05). Individual miRNA has a limited diagnostic value for TB. However, diagnostic performance has been both significantly improved when we integrated miR‐142‐3p and ordinary EHRs to develop two models for the diagnosis of tuberculosis. The AUC of the model for distinguishing tuberculosis patients from healthy controls has increased from 0.75 (95% CI: 0.66–0.84) to 0.96 (95% CI: 0.92–0.99) and the model for distinguishing tuberculosis patients from non‐TB disease controls has increased from 0.67 (95% CI: 0.55–0.79) to 0.94 (95% CI: 0.89–0.99). Conclusions Integrating serum miR‐142‐3p and EHRs is a good strategy for improving TB diagnosis.
Collapse
Affiliation(s)
- Shu-Hui Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chun-Guang Chen
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou, 450000, China
| | - Chun-Bo Zhuang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu-Ling Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhen-Zhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong-Min Yu
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou, 450000, China
| | - Liang Ming
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun-Wei Zhao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
6
|
Grosso JB, Zoff L, Calvo KL, Maraval MB, Perez M, Carbonaro M, Brignardello C, Morente C, Spinelli SV. Levels of seminal tRNA-derived fragments from normozoospermic men correlate with the success rate of ART. Mol Hum Reprod 2021; 27:6162173. [PMID: 33693947 DOI: 10.1093/molehr/gaab017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/12/2021] [Indexed: 12/23/2022] Open
Abstract
Decreased fertility is becoming an important social and medical problem and the male factor is involved in at least half of infertility cases. Since conventional semen analysis provides limited prediction of male fertility; in this work, we evaluated the potential use of seminal small RNAs (sRNA) as markers of semen quality in ART. Our bioinformatic analyses of available sRNA-seq databases showed that the most abundant sRNA species in seminal plasma of normozoospermic men are tRNA-derived fragments (tRFs), a novel class of regulatory sRNAs. These molecules not only exert their function within cells but also are released into the extracellular environment where they could carry out signaling functions. To evaluate whether the assessment of seminal tRFs in normozoospermic men has a predictive value for the clinical outcome in ART, we performed a prospective study with couples who underwent ICSI cycles with donated oocytes. The results obtained demonstrated that levels of 5'tRF-Glu-CTC, 5'tRF-Lys-CTT, and 5'tRF-Gly-GCC are significantly elevated in seminal samples from cases with repeated failed ICSI cycles, suggesting a potential association between increased seminal tRFs and unexplained male infertility. Interestingly, these tRFs showed a negative association with seminal testosterone, highlighting their involvement in male endocrinology. Our findings also suggest that tRFs could play a role in modulating male reproductive function in response to physiological stress since they showed significant associations with the levels of sperm DNA fragmentation in couples that achieved pregnancy but not in cases with failed ICSI cycles where seminal cortisol levels correlate with sperm quality.
Collapse
Affiliation(s)
- Julieta B Grosso
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Luciana Zoff
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | | | - María Belén Maraval
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | | | | | | | | | - Silvana V Spinelli
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| |
Collapse
|
7
|
Tuberculosis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers. Cells 2020; 9:cells9102160. [PMID: 32987746 PMCID: PMC7598604 DOI: 10.3390/cells9102160] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the most lethal infectious diseases with estimates of approximately 1.4 million human deaths in 2018. M. tuberculosis has a well-established ability to circumvent the host immune system to ensure its intracellular survival and persistence in the host. Mechanisms include subversion of expression of key microRNAs (miRNAs) involved in the regulation of host innate and adaptive immune response against M. tuberculosis. Several studies have reported differential expression of miRNAs during active TB and latent tuberculosis infection (LTBI), suggesting their potential use as biomarkers of disease progression and response to anti-TB therapy. This review focused on the miRNAs involved in TB pathogenesis and on the mechanism through which miRNAs induced during TB modulate cell antimicrobial responses. An attentive study of the recent literature identifies a group of miRNAs, which are differentially expressed in active TB vs. LTBI or vs. treated TB and can be proposed as candidate biomarkers.
Collapse
|
8
|
Pagacz K, Kucharski P, Smyczynska U, Grabia S, Chowdhury D, Fendler W. A systemic approach to screening high-throughput RT-qPCR data for a suitable set of reference circulating miRNAs. BMC Genomics 2020; 21:111. [PMID: 32005151 PMCID: PMC6995162 DOI: 10.1186/s12864-020-6530-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background The consensus on how to choose a reference gene for serum or plasma miRNA expression qPCR studies has not been reached and none of the potential candidates have yet been convincingly validated. We proposed a new in silico approach of finding a suitable reference for human, circulating miRNAs and identified a new set of endogenous reference miRNA based on miRNA profiling experiments from Gene Expression Omnibus. We used 3 known normalization algorithms (NormFinder, BestKeeper, GeNorm) to calculate a new normalization score. We searched for a universal set of endogenous miRNAs and validated our findings on 2 new datasets using our approach. Results We discovered and validated a set of 13 miRNAs (miR-222, miR-92a, miR-27a, miR-17, miR-24, miR-320a, miR-25, miR-126, miR-19b, miR-199a-3p, miR-30b, miR-30c, miR-374a) that can be used to create a reliable reference combination of 3 miRNAs. We showed that on average the mean of 3 miRNAs (p = 0.0002) and 2 miRNAs (p = 0.0031) were a better reference than single miRNA. The arithmetic means of 3 miRNAs: miR-24, miR-222 and miR-27a was shown to be the most stable combination of 3 miRNAs in validation sets. Conclusions No single miRNA was suitable as a universal reference in serum miRNA qPCR profiling, but it was possible to designate a set of miRNAs, which consistently contributed to most stable combinations.
Collapse
Affiliation(s)
- Konrad Pagacz
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemyslaw Kucharski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Institute of Applied Computer Science, Lodz University of Technology, Lodz, Poland
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Szymon Grabia
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Institute of Applied Computer Science, Lodz University of Technology, Lodz, Poland
| | | | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland. .,Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|