1
|
Kokosinska A, Maboni G, Kelly KM, Molesan A, Sanchez S, Saliki JT, Rissi DR. Lymphoplasmacytic Meningoencephalitis and Neuronal Necrosis Associated With Parvoviral Infection in Cats. Vet Pathol 2019; 56:604-608. [PMID: 30917745 DOI: 10.1177/0300985819837723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurologic manifestations other than cerebellar hypoplasia are rarely associated with feline panleukopenia virus (FPV) infection in cats. Here the authors describe lymphoplasmacytic meningoencephalitis and neuronal necrosis in 2 cats autopsied after exhibiting ataxia and nystagmus. Gross changes consisted of cerebellar herniation through the foramen magnum, with flattening of cerebrocortical gyri and narrowing of sulci. Histologically, lymphoplasmacytic meningoencephalitis, extensive neuronal necrosis, and neuroaxonal degeneration with digestion chambers were present in the telencephalon and brain stem in both cats. Frozen brain tissue of both cats was positive for parvoviral antigen via fluorescent antibody testing, and formalin-fixed, paraffin-embedded tissue sections of brain were immunoreactive for parvovirus antigen and positive for parvoviral DNA on in situ hybridization. Frozen brain tissue from 1 case was positive for parvovirus NS1 and VP2 genes using conventional polymerase chain reaction, and subsequent DNA sequencing and phylogenetic analysis revealed that the viral strain was a FPV. Reverse transcription quantitative polymerase chain reaction on formalin-fixed, paraffin-embedded brain tissue revealed high levels of parvovirus in both cases, supporting an acute and active viral infection. Although rare, FPV infection should be considered in cases of lymphoplasmacytic meningoencephalitis and neuronal necrosis in cats.
Collapse
Affiliation(s)
- Anna Kokosinska
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Grazieli Maboni
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kathleen M Kelly
- 2 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Alex Molesan
- 2 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Susan Sanchez
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jeremiah T Saliki
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Daniel R Rissi
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
2
|
Poncelet L, Garigliany M, Ando K, Franssen M, Desmecht D, Brion JP. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus. Cell Cycle 2016; 15:3482-3489. [PMID: 27830988 DOI: 10.1080/15384101.2016.1249546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The cell cycle-associated neuronal death hypothesis, which has been proposed as a common mechanism for most neurodegenerative diseases, is notably supported by evidencing cell cycle effectors in neurons. However, in naturally occurring nervous system diseases, these markers are not expressed in neuron nuclei but in cytoplasmic compartments. In other respects, the Feline Panleukopenia Virus (FPV) is able to complete its cycle in mature brain neurons in the feline species. As a parvovirus, the FPV is strictly dependent on its host cell reaching the cell cycle S phase to start its multiplication. In this retrospective study on the whole brain of 12 cats with naturally-occurring, FPV-associated cerebellar atrophy, VP2 capsid protein expression was detected by immunostaining not only in some brain neuronal nuclei but also in neuronal cytoplasm in 2 cats, suggesting that viral mRNA translation was still occurring. In these cats, double immunostainings demonstrated the expression of cell cycle S phase markers cyclin A, cdk2 and PCNA in neuronal nuclei. Parvoviruses are able to maintain their host cells in S phase by triggering the DNA damage response. S139 phospho H2A1, a key player in the cell cycle arrest, was detected in some neuronal nuclei, supporting that infected neurons were also blocked into the S phase. PCR studies did not support a co-infection with an adeno or herpes virus. ERK1/2 nuclear accumulation was observed in some neurons suggesting that the ERK signaling pathway might be involved as a mechanism driving these neurons far into the cell cycle.
Collapse
Affiliation(s)
- Luc Poncelet
- a Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium.,b ULB Neuroscience Insitute (UNI) , Brussels , Belgium
| | - Mutien Garigliany
- c Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège , Liège , Belgium
| | - Kunie Ando
- b ULB Neuroscience Insitute (UNI) , Brussels , Belgium.,d Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Mathieu Franssen
- c Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège , Liège , Belgium
| | - Daniel Desmecht
- c Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège , Liège , Belgium
| | - Jean-Pierre Brion
- b ULB Neuroscience Insitute (UNI) , Brussels , Belgium.,d Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| |
Collapse
|
3
|
Verdes JM, de Sant'Ana FJF, Sabalsagaray MJ, Okada K, Calliari A, Moraña JA, de Barros CSL. Calbindin D28k distribution in neurons and reactive gliosis in cerebellar cortex of natural Rabies virus-infected cattle. J Vet Diagn Invest 2016; 28:361-8. [PMID: 27154319 DOI: 10.1177/1040638716644485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rabies has been an enigmatic disease because microscopic findings in central nervous system tissues do not always correlate well with the severity of the clinical illness. Immunohistochemical staining of the calcium-binding protein calbindin (specifically CbD28k) seems to be the technique most used to identify Purkinje neurons under normal and pathological conditions. In the present work, we evaluated CbD28k immunoreactivity in the cerebellar cortex of normal and natural Rabies virus (RABV)-infected cattle. We examined brains from 3 normal cows and from 6 crossbreed cattle with a histologic diagnosis of rabies. Samples were taken from the cerebral cortex, cerebellum, hippocampus, and brainstem. Immunohistochemistry was carried out using the following primary antibodies: anti-RABV, anti-GFAP, and anti-CbD28k. In the cerebellar cortex, RABV infection caused the loss of CbD28k immunostaining in Purkinje cells; some large interneurons in the granular layer maintained their positive CbD28k immunoreaction. The identification of this loss of CbD28k reactivity in cerebellar Purkinje cells of RABV-infected cattle presents a potentially valuable tool to explore the impairment of Ca(2+) homeostasis. In addition, this may become a useful method to identify specific molecular alterations associated with the higher prevalence of Negri bodies in Purkinje cells of cattle. Furthermore, we detected the presence of rabies viral antigens in different regions of the central nervous system, accompanied by microglial proliferation and mild reactive astrogliosis.
Collapse
Affiliation(s)
- José Manuel Verdes
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Fabiano José Ferreira de Sant'Ana
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - María Jesús Sabalsagaray
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Kosuke Okada
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Aldo Calliari
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - José Antonio Moraña
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Claudio Severo Lombardo de Barros
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| |
Collapse
|
4
|
Garigliany M, Gilliaux G, Jolly S, Casanova T, Bayrou C, Gommeren K, Fett T, Mauroy A, Lévy E, Cassart D, Peeters D, Poncelet L, Desmecht D. Feline panleukopenia virus in cerebral neurons of young and adult cats. BMC Vet Res 2016; 12:28. [PMID: 26895627 PMCID: PMC4759964 DOI: 10.1186/s12917-016-0657-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background Perinatal infections with feline panleukopenia virus (FPV) have long been known to be associated with cerebellar hypoplasia in kittens due to productive infection of dividing neuroblasts. FPV, like other parvoviruses, requires dividing cells to replicate which explains the usual tropism of the virus for the digestive tract, lymphoid tissues and bone marrow in older animals. Results In this study, the necropsy and histopathological analyses of a series of 28 cats which died from parvovirus infection in 2013 were performed. Infections were confirmed by real time PCR and immunohistochemistry in several organs. Strikingly, while none of these cats showed cerebellar atrophy or cerebellar positive immunostaining, some of them, including one adult, showed a bright positive immunostaining for viral antigens in cerebral neurons (diencephalon). Furthermore, infected neurons were negative by immunostaining for p27Kip1, a cell cycle regulatory protein, while neighboring, uninfected, neurons were positive, suggesting a possible re-entry of infected neurons into the mitotic cycle. Next-Generation Sequencing and PCR analyses showed that the virus infecting cat brains was FPV and presented a unique substitution in NS1 protein sequence. Given the role played by this protein in the control of cell cycle and apoptosis in other parvoviral species, it is tempting to hypothesize that a cause-to-effect between this NS1 mutation and the capacity of this FPV strain to infect neurons in adult cats might exist. Conclusions This study provides the first evidence of infection of cerebral neurons by feline panleukopenia virus in cats, including an adult. A possible re-entry into the cell cycle by infected neurons has been observed. A mutation in the NS1 protein sequence of the FPV strain involved could be related to its unusual cellular tropism. Further research is needed to clarify this point.
Collapse
Affiliation(s)
- Mutien Garigliany
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Gautier Gilliaux
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Sandra Jolly
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Tomas Casanova
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Calixte Bayrou
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Kris Gommeren
- Department of Clinical Sciences, University of Liège, Liège, Belgium.
| | - Thomas Fett
- Department of Infectious and Parasitic Diseases, Centre for Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Axel Mauroy
- Department of Infectious and Parasitic Diseases, Centre for Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Etienne Lévy
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Dominique Cassart
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Dominique Peeters
- Department of Clinical Sciences, University of Liège, Liège, Belgium.
| | - Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, Free University of Brussels, Brussels, Belgium.
| | - Daniel Desmecht
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| |
Collapse
|
5
|
Poncelet L, Héraud C, Springinsfeld M, Ando K, Kabova A, Beineke A, Peeters D, Op De Beeck A, Brion JP. Identification of feline panleukopenia virus proteins expressed in Purkinje cell nuclei of cats with cerebellar hypoplasia. Vet J 2012; 196:381-7. [PMID: 23159676 DOI: 10.1016/j.tvjl.2012.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/04/2012] [Accepted: 10/13/2012] [Indexed: 11/24/2022]
Abstract
Parvoviruses depend on initiation of host cell division for their replication. Undefined parvoviral proteins have been detected in Purkinje cells of the cerebellum after experimental feline panleukopenia virus (FPV) infection of neonatal kittens and in naturally occurring cases of feline cerebellar hypoplasia. In this study, a parvoviral protein in the nucleus of Purkinje cells of kittens with cerebellar hypoplasia was shown by immunoprecipitation to be the FPV viral capsid protein VP2. In PCR-confirmed, FPV-associated feline cerebellar hypoplasia, expression of the FPV VP2 protein was demonstrated by immunohistochemistry in Purkinje cell nuclei in 4/10 cases and expression of the FPV non-structural protein NS1 was demonstrated in Purkinje cell nuclei in 5/10 cases. Increased nuclear ERK1 expression was observed in several Purkinje cells in 1/10 kittens. No expression of the G1 and S mitotic phase marker proliferating cell nuclear antigen (PCNA) was evident in Purkinje cell nuclei. These results support the hypothesis that FPV is able to proceed far into its replication cycle in post-mitotic Purkinje cells.
Collapse
Affiliation(s)
- Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, B-1070 Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|