1
|
Kiene F, Ganter M, Bauer BU. Exposure of small ruminants to the Schmallenberg arbovirus in Germany from 2017 to 2018 - animal-specific and flock-management-related risk factors. Prev Vet Med 2024; 230:106274. [PMID: 38971017 DOI: 10.1016/j.prevetmed.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The Schmallenberg virus (SBV), an emerging Orthobunyavirus of mainly ruminant hosts, caused a substantial epidemic in European ruminant populations between 2011 and 2013. The pathogen is transmitted by arthropod vectors (Culicoides spp.) and can cause reproductive disorders and severe malformations of the offspring or stillbirth. The present study aimed to assess SBV seroprevalence among German sheep and goats a few years after the first virus detection in the country (November 2011). In addition, an extensive risk factor analysis including host-specific and husbandry-related factors was implemented. Seroprevalence was determined by examining serum samples from 2759 sheep and 446 goats out of a total of 70 flocks across five German federal states. The samples were withdrawn in the period between 2017 and 2018. Using a commercial competitive ELISA, antibodies against SBV were detected in all 70 investigated flocks. A percentage of 60.1 % (1657/2759) of the sheep and 40.4 % (180/446) of the goat sera contained SBV antibodies. Generalized linear mixed modeling revealed significant effects of host species (sheep > goats), age (old > young) and sex (female > male) on SBV seroprevalence. For both species, also the farming purpose, and for goats, ectoparasite treatment and the presence of cattle on the farm played a role in terms of risk for SBV exposure. The observations from this study still emphasize a wide distribution of the pathogen in Germany. Nevertheless, the observed seroprevalence might not be sufficient to achieve effective herd immunity. Pinpointing risk factors identified susceptible populations for targeted vaccination programs to reduce potential animal losses caused by SBV.
Collapse
Affiliation(s)
- Frederik Kiene
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Martin Ganter
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Benjamin U Bauer
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
2
|
Castilletti C, Mori A, Matucci A, Ronzoni N, Van Duffel L, Rossini G, Sponga P, D'Errico ML, Rodari P, Cristini F, Huits R, Gobbi FG. Oropouche fever cases diagnosed in Italy in two epidemiologically non-related travellers from Cuba, late May to early June 2024. Euro Surveill 2024; 29:2400362. [PMID: 38940002 PMCID: PMC11212459 DOI: 10.2807/1560-7917.es.2024.29.26.2400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Oropouche fever is caused by Oropouche virus (OROV), transmitted primarily through the bite of infected midges, particularly of the genus Culicoides. The virus is mainly circulating in Central and South America where several countries reported an ongoing outbreak. We report here two imported cases of OROV infection identified in Italy, late May-early June 2024. These cases indicate that in the shadow of a massive dengue outbreak in the Americas, the Oropouche outbreak might be more widespread than previously estimated.
Collapse
Affiliation(s)
- Concetta Castilletti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Andrea Matucci
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Niccolò Ronzoni
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Lukas Van Duffel
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
| | - Giada Rossini
- Unità Operativa Complessa Microbiologia, IRCCS Azienda Ospedaliero, University of Bologna, Bologna, Italy
| | - Pietro Sponga
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Maria Luca D'Errico
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Paola Rodari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Francesco Cristini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
| | - Ralph Huits
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Federico Giovanni Gobbi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
3
|
Calado AM, Seixas F, Dos Anjos Pires M. Virus as Teratogenic Agents. Methods Mol Biol 2024; 2753:105-142. [PMID: 38285335 DOI: 10.1007/978-1-0716-3625-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
4
|
Ferrara G, Wernike K, Iovane G, Pagnini U, Montagnaro S. First evidence of schmallenberg virus infection in southern Italy. BMC Vet Res 2023; 19:95. [PMID: 37507724 PMCID: PMC10386761 DOI: 10.1186/s12917-023-03666-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Schmallenberg virus (SBV) is a vector-borne pathogen that mainly affects ruminants. Schmallenberg disease has never been described in southern Italy, although this geographic area displays climatic features suitable for Culicoides biting midges, which transmit the pathogen. An observational study was carried out in the Campania region in 2020 to evaluate the seroprevalence in cattle and water buffalo as well as to identify the risk factors involved in the distribution of SBV. RESULTS Relatively high seroprevalences of 38.2% (cattle) and 43% (water buffalo) were found by using a commercial SBV ELISA, which is comparable to the prevalence obtained in other countries under post-epidemic conditions. A virus neutralization assay performed on positive samples showed high titers in a large percentage of animals which is assumed to indicate recent exposure. Bivariate analysis of several variables revealed some environmental factors associated with higher seroprevalence, such as mean annual temperature, distance from the coast, and altitude. Multivariate logistic regression confirmed the statistical association only for mean annual temperature, that was found to be the main factor responsible for the distribution of the virus in southern Italy. In addition, molecular diagnosis attempts were performed on serum samples and resulted in the detection of SBV RNA in two herds and six animals. CONCLUSIONS In this work we have demonstrated the circulation of SBV in southern Italy using both molecular and serological assays. This study emphasized the essential role of monitoring in preventing the re-emergence of vector-borne diseases in ruminants.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy.
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| |
Collapse
|
5
|
Guerra GS, Barriales D, Lorenzo G, Moreno S, Anguita J, Brun A, Abrescia NGA. Immunization with a small fragment of the Schmallenberg virus nucleoprotein highly conserved across the Orthobunyaviruses of the Simbu serogroup reduces viremia in SBV challenged IFNAR -/- mice. Vaccine 2023; 41:3275-3284. [PMID: 37085455 DOI: 10.1016/j.vaccine.2023.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023]
Abstract
Schmallenberg Virus (SBV), an arbovirus from the Peribunyaviridae family and Orthobunyavirus genus, was discovered in late 2011 in Germany and has been circulating in Europe, Asia and Africa ever since. The virus causes a disease associated with ruminants that includes fever, fetal malformation, drop in milk production, diarrhoea and stillbirths, becoming a burden for small and large farms. Building on previous studies on SBV nucleoprotein (SBV-N) as a promising vaccine candidate, we have investigated the possible protein regions responsible for protection. Based on selective truncation of domains designed from the available crystal structure of the SBV-N, we identified both the N-terminal domain (N-term; Met1 - Thr133) and a smaller fragment within (C4; Met1 - Ala58) as vaccine prototypes. Two injections of the N-term and C4 polypeptides protected mice knockout for type I interferon (IFN) receptors (IFNAR-/-) challenged with virulent SBV, opposite to control groups that presented severe signs of morbidity and weight loss. Viremia analyses along with the presence of IFN-γ secreted from splenocytes re-stimulated with the N-terminal region of the protein corroborate that these two portions of SBV-N can be employed as subunit vaccines. Apart from both proteinaceous fragments being easily produced in bacterial cells, the C4 polypeptide shares a high sequence homology (∼87.1 %) with the corresponding region of nucleoproteins of several viruses of the Simbu serogroup, a group of Orthobunyaviruses that comprises SBV and veterinary pathogens like Akabane virus and human infecting viruses like Oropouche. Thus, we propose that this smaller fragment is better suited for vaccine nanoparticle formulation, and it paves the way to further research with other related Orthobunyaviruses.
Collapse
Affiliation(s)
- Gabriel Soares Guerra
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Gema Lorenzo
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Sandra Moreno
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain
| | - Alejandro Brun
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Jiménez-Ruiz S, Vicente J, Risalde MA, Acevedo P, Cano-Terriza D, González-Barrio D, Barroso P, García-Bocanegra I. Survey of Culicoides-borne Bluetongue and Schmallenberg viruses at the wildlife-livestock interface in Doñana National Park (Spain). Transbound Emerg Dis 2022; 69:e1815-e1824. [PMID: 35304824 DOI: 10.1111/tbed.14516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
A cross-sectional study was carried out to assess the circulation of bluetongue virus (BTV) and Schmallenberg virus (SBV) within the wild and domestic ungulate host community in Doñana National Park (southwestern Spain). A total of 440 animals, including 138 cattle, 102 red deer (Cervus elaphus), 101 fallow deer (Dama dama) and 99 wild boar (Sus scrofa) were sampled in 2015 during the seasonal peak of Culicoides spp. (summer-autumn). Serum and spleen samples were analysed to detect exposure (using commercial blocking ELISAs) and infection (by RT-PCR), respectively, to BTV and SBV. Cattle were not tested by BTV-bELISA because all were previously vaccinated against BTV serotypes 1 and 4. High BTV seroprevalences were found in red deer (97.0%) and fallow deer (64.7%). Antibodies against SBV were detected in 37.0% of cattle, 16.8% of red deer, 23.5% of fallow deer and 2.0% of wild boar. Thirty-eight of the 203 deer (18.7%; 17 red deer and 21 fallow deer) were co-exposed to both viral agents. BTV-4 RNA was confirmed in four red deer and two fallow deer. SBV RNA was found in two fallow deer. Co-infections were not detected. Our results indicate high exposure, widespread distribution, and active circulation of BTV and SBV in the ruminant community in the study area. We provide additional evidence for the potential role of wild cervids as reservoirs of these Culicoides-borne viruses in two different epidemiological scenarios: with vaccination (BTV) and without vaccination (SBV) of sympatric livestock. This study highlights the importance of wildlife surveillance, particularly of cervid species, for the proper execution of control programmes of Culicoides-borne diseases in extensively reared livestock. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain.,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain
| | - Joaquín Vicente
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain
| | - María A Risalde
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía, Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, 14004, Spain.,CIBERINFEC
| | - Pelayo Acevedo
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain
| | - David Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain.,CIBERINFEC
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Madrid, 28220, Spain.,SALUVET, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, 28040, Spain
| | - Patricia Barroso
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain.,CIBERINFEC
| |
Collapse
|
7
|
Baseline mapping of Oropouche virology, epidemiology, therapeutics, and vaccine research and development. NPJ Vaccines 2022; 7:38. [PMID: 35301331 PMCID: PMC8931169 DOI: 10.1038/s41541-022-00456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Oropouche virus (OROV) is an arthropod-borne orthobunyavirus found in South America and causes Oropouche fever, a febrile infection similar to dengue. It is the second most prevalent arthropod-borne viral disease in South America after dengue. Over 500,000 cases have been diagnosed since the virus was first discovered in 1955; however, this is likely a significant underestimate given the limited availability of diagnostics. No fatalities have been reported to date, however, up to 60% of cases have a recurrent phase of disease within one month of recovery from the primary disease course. The main arthropod vector is the biting midge Culicoides paraensis, which has a geographic range as far north as the United States and demonstrates the potential for OROV to geographically expand. The transmission cycle is incompletely understood and vertebrate hosts include both non-human primates and birds further supporting the potential ability of the virus to spread. A number of candidate antivirals have been evaluated against OROV in vitro but none showed antiviral activity. Surprisingly, there is only one report in the literature on candidate vaccines. We suggest that OROV is an undervalued pathogen much like chikungunya, Schmallenberg, and Zika viruses were before they emerged. Overall, OROV is an important emerging disease that has been under-investigated and has the potential to cause large epidemics in the future. Further research, in particular candidate vaccines, is needed for this important pathogen.
Collapse
|
8
|
de Souza Nunes Martins M, Pituco EM, Taniwaki SA, Okuda LH, Richtzenhain LJ. Schmallenberg virus: research on viral circulation in Brazil. Braz J Microbiol 2021; 53:377-383. [PMID: 34708343 PMCID: PMC8549995 DOI: 10.1007/s42770-021-00637-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Schmallenberg virus (SBV—Orthobunyavirus serogroup Simbu) is an emerging RNA vector-borne virus which has an important impact in animal health within Europe, and some Asian and African countries. It is mainly reported in ruminants, causing congenital malformations and stillbirths. However, there are no studies regarding the occurrence, diagnosis, or surveillance of SBV in Brazil, due to the lack of diagnostic techniques available so far. This study aimed to implement a reliable diagnostic technique able to detect the SBV in Brazil and also to investigate occurrence of the virus in this country. A molecular technique, quantitative reverse transcription polymerase chain reaction (RT-qPCR), was used to analyze 1665 bovine blood samples and 313 aborted fetuses, as well as 596 serum samples were analyzed by serological analysis. None of the blood and fetus samples analyzed was positive for SBV, and neither serum samples were reactive for antibodies anti-SBV. Thus, although Brazil presents suitable conditions for the dissemination of the SBV, results of the present study suggest that SBV did not propagate in the analyzed bovine population.
Collapse
Affiliation(s)
- Maira de Souza Nunes Martins
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, CEP 05508 270, Brazil.
| | - Edviges Maristela Pituco
- Pan American Center for Foot-and-Mouth Disease and Veterinary Public Health, Rio de Janeiro, Brazil
| | - Sueli Akemi Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, CEP 05508 270, Brazil
| | | | - Leonardo José Richtzenhain
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, CEP 05508 270, Brazil
| |
Collapse
|
9
|
Kasičová Z, Schreiberová A, Kimáková A, Kočišová A. Blood meal analysis: host-feeding patterns of biting midges (Diptera, Ceratopogonidae, Culicoides Latreille) in Slovakia. Parasite 2021; 28:58. [PMID: 34283022 PMCID: PMC8336726 DOI: 10.1051/parasite/2021058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Biting midges of the genus Culicoides are vectors of important pathogens affecting domestic and wild animals and have played a major role in the re-emergence of new outbreaks of bluetongue (BTV) and Schmallenberg (SBV) viruses in Europe. To determine vector-host specificity, trophic preference from blood meal analysis is of major importance in the surveillance of arthropod-borne diseases. Of 28,752 specimens collected, we identified 17 Culicoides species and investigated a total of 48 host sequences from the blood meals. Culicoides obsoletus/C. scoticus, C. dewulfi, C. pulicaris, C. lupicaris, C. punctatus, C. newsteadi, C. riethi, and C. furcillatus were found to feed on mammals (cattle, horses, and humans), birds (domestic chickens), small rodents (Apodemus flavicollis), and hares (Lepus europaeus). To our knowledge, this is the first study investigating trophic preferences of Culicoides spp. in Slovakia. This study demonstrated that Culicoides species are able to feed on domesticated host vertebrates as well as birds, rodents, and humans.
Collapse
Affiliation(s)
- Zuzana Kasičová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Andrea Schreiberová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Andrea Kimáková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Alica Kočišová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| |
Collapse
|
10
|
Boshra H, Lorenzo G, Charro D, Moreno S, Guerra GS, Sanchez I, Garrido JM, Geijo M, Brun A, Abrescia NGA. A novel Schmallenberg virus subunit vaccine candidate protects IFNAR -/- mice against virulent SBV challenge. Sci Rep 2020; 10:18725. [PMID: 33230115 PMCID: PMC7684302 DOI: 10.1038/s41598-020-73424-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
Schmallenberg virus (SBV), an arthropod-transmitted pathogenic bunyavirus, continues to be a threat to the European livestock industry, causing morbidity and mortality among young ruminant livestock. Here, we describe a novel SBV subunit vaccine, based on bacterially expressed SBV nucleoprotein (SBV-N) administered with a veterinary-grade Saponin adjuvant. When assayed in an IFNAR-/- mouse model, SBV-N with Saponin induced strong non-neutralizing broadly virus-reactive antibodies, decreased clinical signs, as well as significantly reduced viremia. Vaccination assays also suggest that this level of immune protection is cell mediated, as evidenced by the lack of neutralizing antibodies, as well as interferon-γ secretion observed in vitro. Therefore, based on these results, bacterially expressed SBV-N, co-administered with veterinary-grade Saponin adjuvant may serve as a promising economical alternative to current SBV vaccines, and warrant further evaluation in large ruminant animal models. Moreover, we propose that this strategy may be applicable to other bunyaviruses.
Collapse
Affiliation(s)
- Hani Boshra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain. .,Department of Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Bât B43, avenue de Cureghem 6, 4000, Liège, Belgium.
| | - Gema Lorenzo
- Animal Health Research Center (INIA-CISA), 28130, Valdeolmos, Madrid, Spain
| | - Diego Charro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
| | - Sandra Moreno
- Animal Health Research Center (INIA-CISA), 28130, Valdeolmos, Madrid, Spain
| | - Gabriel Soares Guerra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
| | - Isbene Sanchez
- Vacunek SL, Bizkaia Technology Park, 48160, Derio, Spain
| | - Joseba M Garrido
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, Bizkaia, Spain
| | - Marivi Geijo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, Bizkaia, Spain
| | - Alejandro Brun
- Animal Health Research Center (INIA-CISA), 28130, Valdeolmos, Madrid, Spain
| | - Nicola G A Abrescia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain. .,Basque Foundation for Science, IKERBASQUE, 48013, Bilbao, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Jiménez-Martín D, Cano-Terriza D, Díaz-Cao JM, Pujols J, Fernández-Morente M, García-Bocanegra I. Epidemiological surveillance of Schmallenberg virus in small ruminants in southern Spain. Transbound Emerg Dis 2020; 68:2219-2228. [PMID: 33034150 DOI: 10.1111/tbed.13874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022]
Abstract
Schmallenberg virus (SBV) is an emerging Culicoides-borne Orthobunyavirus that affects ruminant species. Between 2011 and 2013, it was responsible for a large-scale epidemic in Europe. In the present study, we aimed to determine the seroprevalence, spatial distribution and risk factors associated with SBV exposure in sheep and goats in the region where the first Schmallenberg disease outbreak in Spain was reported. Blood samples from 1,796 small ruminants from 120 farms were collected in Andalusia (southern Spain) between 2015 and 2017. Antibodies against SBV were detected in 536 of 1,796 animals (29.8%; 95%CI: 27.7-32.0) using a commercial blocking ELISA. The individual seroprevalence according to species was 31.1% (280/900; 95%CI: 28.1-34.1) in sheep and 28.6% (256/896; 95%CI: 25.6-31.5) in goats. The farm prevalence was 76.7% (95%CI: 69.1-84.2). Seropositivity to SBV was confirmed in both sheep and goats in all provinces by virus neutralization test. Two significant (p < .001) spatial clusters of high seroprevalence were identified. The generalized estimating equation analysis showed that management system (extensive), temperature (>14ºC) and altitude (<400 metres above sea level) were risk factors associated with SBV exposure in small ruminants. Our results highlight widespread but not homogeneous circulation of SBV in small ruminant populations in Spain.
Collapse
Affiliation(s)
- Débora Jiménez-Martín
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Cordoba, Cordoba, Spain
| | - David Cano-Terriza
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Cordoba, Cordoba, Spain
| | - José M Díaz-Cao
- Department of Medicine & Epidemiology, Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Ignacio García-Bocanegra
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Cordoba, Cordoba, Spain
| |
Collapse
|
12
|
Jiménez-Ruiz S, Risalde MA, Acevedo P, Arnal MC, Gómez-Guillamón F, Prieto P, Gens MJ, Cano-Terriza D, Fernández de Luco D, Vicente J, García-Bocanegra I. Serosurveillance of Schmallenberg virus in wild ruminants in Spain. Transbound Emerg Dis 2020; 68:347-354. [PMID: 32530115 DOI: 10.1111/tbed.13680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/26/2022]
Abstract
Schmallenberg disease (SBD) is an emerging vector-borne disease that affects domestic and wild ruminants. A long-term serosurvey was conducted to assess exposure to Schmallenberg virus (SBV) in all the wild ruminant species present in mainland Spain. Between 2010 and 2016, sera from 1,216 animals were tested for antibodies against SBV using a commercial blocking ELISA. The overall prevalence of antibodies was 27.1% (95%CI: 24.7-29.7). Statistically significant differences among species were observed, with significantly higher seropositivity found in fallow deer (Dama dama) (45.6%; 99/217), red deer (Cervus elaphus) (31.6%; 97/307) and mouflon (Ovis aries musimon) (28.0%; 33/118) compared to Barbary sheep (Ammotragus lervia) (22.2%; 8/36), Iberian wild goat (Capra pyrenaica) (19.9%; 49/246), roe deer (Capreolus capreolus) (17.5%; 34/194) and Southern chamois (Rupicapra pyrenaica) (10.2%; 10/98). Seropositive animals were detected in 81.4% (57/70; 95%CI: 70.8-88.8) of the sampled populations. SBV seroprevalence ranged from 18.8% (48/256) in bioregion (BR)2 (north-central, Mediterranean) to 32.3% (31/96) in BR1 (northeastern or Atlantic, Eurosiberian). Anti-SBV antibodies were not found before 2012, when the first outbreak of SBD was reported in Spain. In contrast, seropositivity was detected uninterruptedly during the period 2012-2016 and anti-SBV antibodies were found in yearling animals in each of these years. Our results provide evidence of widespread endemic circulation of SBV among wild ruminant populations in mainland Spain in recent years. Surveillance in these species could be a useful tool for monitoring SBV in Europe, particularly in areas where wild ruminants share habitats with livestock.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Maria A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Pelayo Acevedo
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Maria Cruz Arnal
- Departamento de Patología Animal. Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, Spain
| | - Félix Gómez-Guillamón
- Consejería de Medio Ambiente y Ordenación del Territorio (CMAOT), Junta de Andalucía, Málaga, Spain
| | - Paloma Prieto
- Parque Natural Sierras de Cazorla, Segura y Las Villas. Junta de Andalucía, Cazorla (Jaén), Spain
| | - María José Gens
- Consejería de Turismo, Cultura y Medio Ambiente, Dirección General del Medio Natural de la Región de Murcia, Murcia, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal. Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, Spain
| | - Joaquín Vicente
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
13
|
Southwell RM, Sherlock K, Baylis M. Cross-sectional study of British wild deer for evidence of Schmallenberg virus infection. Vet Rec 2020; 187:e64. [PMID: 32447285 DOI: 10.1136/vr.105869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Schmallenberg virus (SBV) is an orthobunyavirus, carried by Culicoides biting midges, that causes reproductive problems in adult ruminants when infected during their gestation period. SBV was first detected in ruminants in the UK in 2011/2012 and then again in 2016. The reason behind the 2016 re-emergence of SBV is unknown, but one possibility is that it can be maintained in wildlife, such as deer. SBV has been detected at high seroprevalence in deer in a number of European countries, but only once in the UK in a single region. METHODS The purpose of this study was to survey wild deer across Great Britain for recent evidence of SBV. Deer hunters were recruited for the purpose of providing postmortem blood samples to be tested for SBV antibodies. RESULTS The seroprevalence of SBV in the British wild deer population was 13.8 per cent; found in red, roe, muntjac and fallow deer species, with more in deer further south. CONCLUSION These results support the growing concern that SBV is now endemic in Great Britain and highlight the need to know the role of wildlife in SBV transmission.
Collapse
Affiliation(s)
| | - Kenneth Sherlock
- Institute of Infection and Global Health, University of Liverpool, Neston, UK
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Neston, UK
| |
Collapse
|
14
|
Vengušt G, Žele Vengušt D, Toplak I, Rihtarič D, Kuhar U. Post-epidemic investigation of Schmallenberg virus in wild ruminants in Slovenia. Transbound Emerg Dis 2020; 67:1708-1715. [PMID: 31991522 PMCID: PMC7383813 DOI: 10.1111/tbed.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Abstract
Schmallenberg virus (SBV) is a vector-borne virus belonging to the genus Orthobunyavirus within the Bunyaviridae family. SBV emerged in Europe in 2011 and was characterized by epidemics of abortions, stillbirths and congenital malformations in domestic ruminants. The first evidence of SBV infection in Slovenia was from an ELISA-positive sample from a cow collected in August 2012; clinical manifestations of SBV disease in sheep and cattle were observed in 2013, with SBV RNA detected in samples collected from a total of 28 herds. A potential re-emergence of SBV in Europe is predicted to occur when population-level immunity declines. SBV is also capable of infecting several wild ruminant species, although clinical disease has not yet been described in these species. Data on SBV-positive wild ruminants suggest that these species might be possible sources for the re-emergence of SBV. The aim of this study was to investigate whether SBV was circulating among wild ruminants in Slovenia and whether these species can act as a virus reservoir. A total of 281 blood and spleen samples from wild ruminants, including roe deer, red deer, chamois and European mouflon, were collected during the 2017-2018 hunting season. Serum samples were tested for antibodies against SBV by ELISA; the overall seroprevalence was 18.1%. Seropositive samples were reported from all over the country in examined animal species from 1 to 15 years of age. Spleen samples from the seropositive animals and serum samples from the seronegative animals were tested for the presence of SBV RNA using real-time RT-PCR; all the samples tested negative. Based on the results of the seropositive animals, it was demonstrated that SBV was circulating in wild ruminant populations in Slovenia even after the epidemic, as almost half (23/51) of the seropositive animals were 1 or 2 years old.
Collapse
Affiliation(s)
- Gorazd Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Žele Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Danijela Rihtarič
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Endalew AD, Faburay B, Wilson WC, Richt JA. Schmallenberg Disease-A Newly Emerged Culicoides-borne Viral Disease of Ruminants. Viruses 2019; 11:v11111065. [PMID: 31731618 PMCID: PMC6893508 DOI: 10.3390/v11111065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
First appearing in 2011 in Northern Europe, Schmallenberg virus (SBV), an Orthobunyavirus of the Simbu serogroup, is associated with clinical disease mainly in ruminants such as cattle, sheep and goats. The clinical signs are characterized by abortion and congenital deformities in newborns. The virus is transmitted by Culicoides midges of the Obsoletus complex. SBV infection induces a solid protective immunity that persists for at least 4 or 6 years in sheep and cattle, respectively. SBV infection can be diagnosed directly by real-time RT-qPCR and virus isolation or indirectly by serological assays. Three vaccines are commercially available in Europe. This article provides a comprehensive literature review on this emerging disease regarding pathogenesis, transmission, diagnosis, control and prevention. This review also highlights that although much has been learned since SBV’s first emergence, there are still areas that require further study to devise better mitigation strategies.
Collapse
Affiliation(s)
- Abaineh D. Endalew
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - Bonto Faburay
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - William C. Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Disease Research Unit, Manhattan, KS 66506, USA
- Correspondence: (W.C.W.); (J.A.R.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
- Correspondence: (W.C.W.); (J.A.R.)
| |
Collapse
|
16
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
17
|
Jiménez-Ruiz S, Paniagua J, Isla J, Martínez-Padilla AB, de Los Ángeles Risalde M, Caballero-Gómez J, Cano-Terriza D, Pujols J, Arenas A, García-Bocanegra I. Description of the first Schmallenberg disease outbreak in Spain and subsequent virus spreading in domestic ruminants. Comp Immunol Microbiol Infect Dis 2019; 65:189-193. [PMID: 31300112 DOI: 10.1016/j.cimid.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022]
Abstract
Schmallenberg disease (SBD) is an emerging disease transmitted mainly among ruminant species by biting midges of the genus Culicoides. Since the Schmallenberg virus (SBV) was first identified in Germany in late 2011, it rapidly spread to other European countries. The aims of the present study were to describe the first SBD outbreak in Spain and to assess the spread and risk factors associated with SBV infection in domestic ruminants from nearby farms during the following year. In March 2012, one malformed stillborn lamb from a sheep farm located in Cordoba province (Southern Spain) was subjected to necropsy. Pathological compatible lesions and molecular analyses confirmed the first SBV infection in Spain. Afterwards, serum samples from 505 extensively reared domestic ruminants from 29 farms were analysed using both blocking ELISA and virus neutralization test against SBV. The overall seroprevalence was 54.4% (CI95%: 50.0-58.7). Antibodies were detected in 70.6%, 46.0% and 34.8% of cattle, sheep and goats, respectively. A generalized estimating equation model indicated that the main risk factors associated with SBV infection were: species (cattle), age (adult), and absence of animal insecticide treatment. Pathological and molecular results confirmed the presence of SBV in Spain few months after it was firstly identified in Germany. The seroprevalence detected indicates a widespread circulation of SBV in nearby domestic ruminant farms one year after this first outbreak was reported in Spain. Further studies are warranted to determine the spatio-temporal trend of SBV in domestic ruminants in this country.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain; Grupo de Sanidad y Biotecnología, Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla la Mancha, (SaBio-IREC, UCLM-CSIC-JCCM), 13005, Ciudad Real, Spain
| | - Jorge Paniagua
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain
| | - Julio Isla
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain
| | - Ana Belén Martínez-Padilla
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain
| | - María de Los Ángeles Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario de Córdoba, 14004 Córdoba, Spain
| | - Javier Caballero-Gómez
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario de Córdoba, 14004 Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitario de Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
18
|
Esteves F, Cruz R, Vasconcelos-Nóbrega C, Santos C, Ferreira AS, Petrovic T, Cardoso L, Coelho AC, Vala H, Nascimento MSJ, Mesquita JR. Bulk-Tank Milk Longitudinal Serosurvey Reveals Decreasing Schmallenberg Virus Circulation in a Confined Population of Portuguese Sheep. Vector Borne Zoonotic Dis 2019; 19:708-710. [PMID: 30990772 DOI: 10.1089/vbz.2018.2420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: In 2011, Schmallenberg virus (SBV) was first detected in dairy cattle herds in The Netherlands and Germany having since then spread across Europe. Today studies are starting to show a decrease in new SBV infections, a circumstance that raises alerts for possible re-emergence if ideal conditions for vector development occur. To assess the potential decrease in SBV circulation, we performed a 2-year longitudinal serological investigation for SBV infection at the herd level by using bulk-tank milk of a specific sheep breed from central Portugal. Materials and Methods: Bulk-tank milk samples from 68 flocks were collected in both 2015 and 2016, and lactosera were tested for IgG anti-SBV by EIA. Results and Discussion: Results show that in 2015, 92.6% (95% confidence interval [CI]: 83.9-96.8) of the bulk-tank milk samples were positive, whereas in 2016 only 77.9% (95% CI: 66.7-86.1 of the samples from the same flocks were positive. Differences in the 2015/2016 seroprevalences showed to be statistically significant (p = 0.027). This significant decrease at the herd level seems to be in agreement with reported data from other European countries and raise alerts, since increasingly favorable conditions (higher number of susceptible animals) are now present, potentially favoring SBV epidemics if improved conditions for midge replication occur in the future.
Collapse
Affiliation(s)
- Fernando Esteves
- Centre for Studies in Education and Health Technologies (CI&DETS), Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Rita Cruz
- Centre for Studies in Education and Health Technologies (CI&DETS), Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Cármen Vasconcelos-Nóbrega
- Centre for Studies in Education and Health Technologies (CI&DETS), Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Carla Santos
- Centre for Studies in Education and Health Technologies (CI&DETS), Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Ana S Ferreira
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Oporto, Porto, Portugal
| | - Tamas Petrovic
- Scientific Veterinary Institute "Novi Sad," Novi Sad, Serbia
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana C Coelho
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Helena Vala
- Centre for Studies in Education and Health Technologies (CI&DETS), Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria S J Nascimento
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Oporto, Porto, Portugal.,Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Oporto, Porto, Portugal
| | - João R Mesquita
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Oporto, Porto, Portugal
| |
Collapse
|
19
|
Potential use of hematological and acute phase protein parameters in the diagnosis of acute Schmallenberg virus infection in experimentally infected calves. Comp Immunol Microbiol Infect Dis 2019; 64:146-152. [PMID: 31174690 DOI: 10.1016/j.cimid.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The initial viraemic phase of Schmallenberg virus (SBV) infection in bovine animals is characterized by the non-specific and inconspicuous clinical signs of pyrexia (>40 °C), drop in milk yield and sometimes diarrhea. As a result, the early detection of SBV epizootics can difficult, and typically only become apparent when the congenital form of the disease is observed. The aim of the study was to describe the course of the acute phase response and haematological findings in bovine calves following experimental SBV infection. No clinical signs except for increase in rectal temperature were observed in the calves inoculated subcutaneously with a Polish strain of SBV. Viral RNA was detected in serum at 2 and 4 days post inoculation (dpi). SBV antibodies were first detected by ELISA (9-21 dpi), and subsequently by virus neutralization test (14-32 dpi). The hematological parameters showed a reduction in mid-size leucocytes (MID), and also in red blood cell count (RBC). An increase in mean corpuscular hemoglobin was also observed in SBV infected calves. No significant difference in acute phase proteins (APP) was observed between experimentally infected and control calves, suggesting limited potential as diagnostic biomarker of acute SBV infection.
Collapse
|
20
|
Veldhuis A, Mars J, Stegeman A, van Schaik G. Changing surveillance objectives during the different phases of an emerging vector-borne disease outbreak: The Schmallenberg virus example. Prev Vet Med 2019; 166:21-27. [PMID: 30935502 DOI: 10.1016/j.prevetmed.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/09/2018] [Accepted: 03/08/2019] [Indexed: 11/27/2022]
Abstract
In the late summer of 2011, a sudden rise in incidence of fever, drop in milk production and diarrhoea was observed in dairy cows in the eastern region of the Netherlands and in north-western Germany. In the autumn of 2011, a novel orthobunyavirus was identified by metagenomic analyses in samples from acutely diseased cows on a farm near the German city of Schmallenberg, and was thereafter named Schmallenberg virus (SBV). Due to the novelty of the virus, there was an immediate need for knowledge regarding the epidemiological characteristics of SBV-infections to inform surveillance and control strategies. A rapid assessment of the spread and impact of an emerging disease supports decision-makers on allocation of resources. This paper reviews the disease mitigation activities during and after the SBV epidemic in the Netherlands, to illustrate the phases in surveillance when a new (vector-borne) pathogen emerges in a country or region. Immediate and short-term disease mitigation activities that were initiated after SBV was identified are discussed in detail, as well as ways to enhance future surveillance (e.g. by syndromic surveillance) and preparedness for similar disease outbreaks. By doing so, lessons learnt from the SBV epidemic will also improve surveillance for other emerging diseases in cattle.
Collapse
Affiliation(s)
- Anouk Veldhuis
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands.
| | - Jet Mars
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands
| | - Arjan Stegeman
- Utrecht University, Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht, the Netherlands
| | - Gerdien van Schaik
- GD Animal Health, Department of Research and Development, Deventer, the Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht, the Netherlands
| |
Collapse
|
21
|
Bouchemla F, Agoltsov VA, Larionov SV, Popova OM, Shvenk EV. Epizootiological study on spatiotemporal clusters of Schmallenberg virus and Lumpy skin diseases: The case of Russia. Vet World 2018; 11:1229-1236. [PMID: 30410226 PMCID: PMC6200570 DOI: 10.14202/vetworld.2018.1229-1236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Aim: The submitted article attempts to highlight and specify the development of Schmallenberg virus (SBV) and lumpy skin disease (LSD) in cartographic illustrations, as well as to assess the epizootic situation of these diseases in the world, especially in Russia. Materials and Methods: Outbreaks (samples were collected from clinically healthy as well as suspected animals in infected areas) were confirmed and reported to the World Organization for Animal Health by veterinary officials representing countries in different geographical regions in the world. The reports showed that ELISA and polymerase chain reaction were used to identify SBV and LSD, taking into account number of infected, dead, and susceptible animals in infection foci since their first registration including in Russia. Once conventional statistical population (arrange data according to the main goal by regions, infected, and dead animals) was defined, a model was installed. A geo-information system, QuickMAP, was used to clarify the disease distribution map, and through the illustrations, analysis values were obtained. Results: Using information clusters of some epizootological criteria in various territories has demonstrated 1.302 focus of infection of SBV, of which 63.22% were registered in Europe and 36.78% in Russia. The seroprevalence in Russia was about 7.92% of the examined animals. According to the morbidity structure, the causative agent mainly affected cattle (64.76%), small ruminants (33.68%), and goats (1.56%). A global assessment of the effectiveness of primary epizootic diagnosis by practicing veterinarians was 63.19%, i.e., of 100 suspicion reports of SBV, 63.19 cases are confirmed by laboratory methods. A detailed assessment of the types of animals affected by the disease showed that it was easily diagnosed in sheep (70.38%), cattle (60.4%), and goats (48.57%), respectively. In the wild animal species, a significant prevalence was recorded as- 54.5%. In 2016, 1.209 foci of LSD were registered in the world, with 20.548 heads of cattle affected, while 8.5% of them identified in Russia (in 2017, the figure was 7.5%). Different maps had been generated in QuickMAP. Cluster analysis of the infected livestock in different regions in Russia showed that, in 2016, the Chechen Republic, Krasnodar, and Volgograd regions were, respectively, severely, moderately, and mildly affected. In 2017, the situation changed and Saratov, Orenburg regions, and Bashkiria were severely affected. However, the number of outbreaks decreased by 84.81% by contribution to the previous year. Eritrea, Namibia, and South Africa were leading in a cluster of most infected areas in 2017. Conclusion: Infectious diseases do not know borders. The emergence of SBV and LSD in the territory of the Russian Federation has followed the most common general dynamics of transborder diseases without ignoring details. The epizootic risk from wild animals and favorable climatic conditions is critical to fight against transmission of these diseases in Russia.
Collapse
Affiliation(s)
- Fayssal Bouchemla
- Department of Animal Disease, Veterinarian and Sanitarian Expertise, Faculty of Veterinary Medicine, Vavilov Saratov State Agrarian University, Saratov, Russia
| | - Valery Alexandrovich Agoltsov
- Department of Animal Disease, Veterinarian and Sanitarian Expertise, Faculty of Veterinary Medicine, Vavilov Saratov State Agrarian University, Saratov, Russia
| | - Sergey Vasilievich Larionov
- Department of Animal Disease, Veterinarian and Sanitarian Expertise, Faculty of Veterinary Medicine, Vavilov Saratov State Agrarian University, Saratov, Russia
| | - Olga Mikhailovna Popova
- Department of Food Technology, Faculty of Veterinary Medicine, Vavilov Saratov State Agrarian University, Saratov, Russia
| | - Ekaterina Vladimirovna Shvenk
- Department of Animal Disease, Veterinarian and Sanitarian Expertise, Faculty of Veterinary Medicine, Vavilov Saratov State Agrarian University, Saratov, Russia.,Department of Epidemiology and Risk Assessment, Saratov Scientific and Research Veterinary Institute Branch of Federal Research Center on Virology and Microbiology, Saratov, Russia
| |
Collapse
|
22
|
Esteves F, Cruz R, Vasconcelos-Nóbrega C, Santos C, Ferreira AS, Petrovic T, Cardoso L, Coelho AC, Vala H, Nascimento MSJ, Mesquita JR. Serologic evidence for Schmallenberg virus circulation at high altitude, Central Portugal, 2015-2016. Transbound Emerg Dis 2018; 65:1553-1556. [PMID: 29761919 DOI: 10.1111/tbed.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 01/08/2023]
Affiliation(s)
- F. Esteves
- Centre for Studies in Education and Health Technologies (CI&DETS); Agrarian School of Viseu; Polytechnic Institute of Viseu; Viseu Portugal
| | - R. Cruz
- Centre for Studies in Education and Health Technologies (CI&DETS); Agrarian School of Viseu; Polytechnic Institute of Viseu; Viseu Portugal
| | - C. Vasconcelos-Nóbrega
- Centre for Studies in Education and Health Technologies (CI&DETS); Agrarian School of Viseu; Polytechnic Institute of Viseu; Viseu Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - C. Santos
- Centre for Studies in Education and Health Technologies (CI&DETS); Agrarian School of Viseu; Polytechnic Institute of Viseu; Viseu Portugal
| | - A. S. Ferreira
- Laboratory of Microbiology; Department of Biological Sciences; Faculty of Pharmacy; University of Porto; Porto Portugal
| | - T. Petrovic
- Scientific Veterinary Institute “Novi Sad”; Novi Sad Serbia
| | - L. Cardoso
- Animal and Veterinary Research Centre (CECAV); University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - A. C. Coelho
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - H. Vala
- Centre for Studies in Education and Health Technologies (CI&DETS); Agrarian School of Viseu; Polytechnic Institute of Viseu; Viseu Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - M. S. J. Nascimento
- Laboratory of Microbiology; Department of Biological Sciences; Faculty of Pharmacy; University of Porto; Porto Portugal
- Epidemiology Research Unit (EPIUnit); Institute of Public Health; University of Porto; Porto Portugal
| | - J. R. Mesquita
- Centre for Studies in Education and Health Technologies (CI&DETS); Agrarian School of Viseu; Polytechnic Institute of Viseu; Viseu Portugal
- Epidemiology Research Unit (EPIUnit); Institute of Public Health; University of Porto; Porto Portugal
| |
Collapse
|
23
|
Blacklaws BA, Daly JM. Emerging viruses of zoonotic and veterinary importance. Vet J 2018; 233:1-2. [PMID: 29486873 PMCID: PMC7129228 DOI: 10.1016/j.tvjl.2017.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/02/2022]
Affiliation(s)
- B A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK.
| | - J M Daly
- School of Veterinary Medicine & Science,University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
24
|
Akabane, Aino and Schmallenberg virus-where do we stand and what do we know about the role of domestic ruminant hosts and Culicoides vectors in virus transmission and overwintering? Curr Opin Virol 2017; 27:15-30. [PMID: 29096232 DOI: 10.1016/j.coviro.2017.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022]
Abstract
Akabane, Aino and Schmallenberg virus belong to the Simbu serogroup of Orthobunyaviruses and depend on Culicoides vectors for their spread between ruminant hosts. Infections of adults are mostly asymptomatic or associated with only mild symptoms, while transplacental crossing of these viruses to the developing fetus can have important teratogenic effects. Research mainly focused on congenital malformations has established a correlation between the developmental stage at which a fetus is infected and the outcome of an Akabane virus infection. Available data suggest that a similar correlation also applies to Schmallenberg virus infections but is not yet entirely conclusive. Experimental and field data furthermore suggest that Akabane virus is more efficient in inducing congenital malformations than Aino and Schmallenberg virus, certainly in cattle. The mechanism by which these Simbu viruses cross-pass yearly periods of very low vector abundance in temperate climate zones remains undefined. Yearly wind-borne reintroductions of infected midges from tropical endemic regions with year-round vector activity have been proposed, just as overwintering in long-lived adult midges. Experimental and field data however indicate that a role of vertical virus transmission in the ruminant host currently cannot be excluded as an overwintering mechanism. More studies on Culicoides biology and specific groups of transplacentally infected newborn ruminants without gross malformations are needed to shed light on this matter.
Collapse
|