1
|
Weiß E, Pauletti A, Egilmez A, Bröer S. Testing perioperative meloxicam analgesia to enhance welfare while preserving model validity in an inflammation-induced seizure model. Sci Rep 2024; 14:30563. [PMID: 39702430 DOI: 10.1038/s41598-024-81925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Despite the international effort to improve laboratory animal welfare through the 3R principles (Reduce, Refine, Replace), many scientists still fail to implement and report their assessment of pain and well-being, likely due to concerns regarding the potential effects of analgesics on experimental outcomes. This study aimed to determine whether refining our viral encephalitis model with perioperative analgesia could enhance well-being and recovery after intracerebral virus infection without impacting disease outcomes. We routinely use the Theiler's Murine Encephalomyelitis Virus (TMEV) model to study virus-induced epilepsy. Given the crucial role of immune cell activation in acute seizure development, we evaluated the effects of the non-steroidal anti-inflammatory drug (NSAID) meloxicam on inflammation, neurodegeneration, and neuronal cell proliferation at 7 days post-infection (dpi). Overall, the impact of virus infection on well-being was less severe than anticipated, and meloxicam treatment did not affect well-being or nest building behavior in TMEV-infected mice. Furthermore, meloxicam treatment did not influence key experimental readouts such as seizure burden, central inflammatory response, neurodegeneration, or neuronal proliferation within the hippocampus. Notably, animals experiencing seizures displayed heightened inflammatory responses and neurodegeneration, which were not influenced by meloxicam treatment. In summary, perioperative analgesia did not compromise key outcome measures such as seizure frequency, inflammation, and neurodegeneration or -regeneration in the TMEV model. However, it also did not add any significant benefits to well-being in the first week after intracranial injections.
Collapse
Affiliation(s)
- Edna Weiß
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Alberto Pauletti
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Asya Egilmez
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Sonja Bröer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Pan Y, Cohen S. Reporting practices of anesthetic and analgesic use in rodent orthopedic research. Sci Rep 2024; 14:26225. [PMID: 39557905 PMCID: PMC11574255 DOI: 10.1038/s41598-024-76750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
The Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines, along with the updated ARRIVE 2.0, provide a crucial framework for transparent reporting in animal research. These guidelines enhance the quality and reproducibility of studies while supporting animal welfare. However, concerns persist regarding the reporting practices of biomedical researchers in scientific articles related to anesthesia and analgesia despite the endorsement of ARRIVE guidelines, as has been demonstrated in previous descriptive analyses. The current study systematically reviews articles published from 2016 to 2023 that involve rodent orthopedic surgeries. These procedures were selected as our focus given that anesthetics and analgesics are essential for such high impact procedures. We highlight significant reporting gaps, noting that anesthetic and analgesic details were missing in 29.4% and 74.8% of the articles, respectively. Our findings reveal no correlation between reporting completeness and journal impact factors, indicating that this issue generalized across journals. Furthermore, among articles that did report analgesia use, we observed a low prevalence of multimodal analgesia. Overall, this study underscores the urgent need to develop effective strategies to improve reporting of anesthesia and analgesia in animal studies to enhance ethical standards, animal welfare, and the robustness and reproducibility of research.
Collapse
Affiliation(s)
- Yijun Pan
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Shari Cohen
- Animal Welfare Science Centre, Faculty of Science, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
3
|
Glasenapp A, Bankstahl JP, Bähre H, Glage S, Bankstahl M. Subcutaneous and orally self-administered high-dose carprofen shows favorable pharmacokinetic and tolerability profiles in male and female C57BL/6J mice. Front Vet Sci 2024; 11:1430726. [PMID: 39376917 PMCID: PMC11457584 DOI: 10.3389/fvets.2024.1430726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Surgical interventions in mice require appropriate pain relief to ensure animal welfare and to avoid influence of pain on research findings. Carprofen is a non-steroidal anti-inflammatory drug commonly used as an analgesic for interventions inducing mild to moderate pain in laboratory rodents. Despite its frequent use, species-specific data on pharmacokinetics (PK), side effects, and potential impact on behavioral pain indicators are limited. Methods We determined PK and tolerability profiles of carprofen in healthy male and female C57BL/6J mice (n = 42), administered at highest recommended doses via single subcutaneous (s.c.) injection (20 mg/kg) and oral self-administration (25 mg/kg/24 h) per drinking water (d.w.) for 5 days. Plasma concentrations were measured at various time points after the start of the treatment (n = 6 per time point), and side effects were evaluated using a modified Irwin test battery, hematology, and histopathology. Additionally, potential interference with cage-side behaviors commonly used for pain assessment, such as the mouse grimace scale, wheel running, burrowing, nesting, and grooming activity, was investigated. Results Maximum plasma concentrations of 133.4 ± 11.3 μg/ml were reached 1 h after single s.c. injection with an elimination half-life of 8.52 h. Intake from d.w. resulted in a steady state within 24 h after the start of the treatment with plasma levels of around 60 μg/ml over 5 days in both sexes. The medicated water was well-accepted, and increased d.w. intake was observed in the first 24 h after exposure (p < 0.0001). The Irwin test revealed only minor influence on tested behavior and physiological functions. However, during treatment via d.w., an increase in body temperature (p < 0.0001) was observed, as well as a reduction in voluntary wheel running activity by 49-70% in male mice. Moreover, grooming behavior was slightly affected. Hematology and histopathology were without pathological findings that could be attributed to carprofen treatment. High-dose carprofen can be considered safe and of favorable PK for both administration routes assessed in healthy C57BL/6J mice of both sexes. Further efficacy evaluation of carprofen as monoanalgesic or component of multimodal post-surgical regimens is clearly encouraged; however, the impact on behavioral markers used for pain assessment should be considered in this context.
Collapse
Affiliation(s)
- Aylina Glasenapp
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jens P. Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Department of Pharmacology, Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
- Department of Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Munk A, Philippi V, Buchecker V, Bankstahl M, Glasenapp A, Blutke A, Michelakaki E, Talbot SR, Huwyler J, Jirkof P, Kopaczka M, Merhof D, Palme R, Potschka H. Refining pain management in mice by comparing multimodal analgesia and NSAID monotherapy for neurosurgical procedures. Sci Rep 2024; 14:18691. [PMID: 39134625 PMCID: PMC11319454 DOI: 10.1038/s41598-024-69075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
While neurosurgical interventions are frequently used in laboratory mice, refinement efforts to optimize analgesic management based on multimodal approaches appear to be rather limited. Therefore, we compared the efficacy and tolerability of combinations of the non-steroidal anti-inflammatory drug carprofen, a sustained-release formulation of the opioid buprenorphine, and the local anesthetic bupivacaine with carprofen monotherapy. Female and male C57BL/6J mice were subjected to isoflurane anesthesia and an intracranial electrode implant procedure. Given the multidimensional nature of postsurgical pain and distress, various physiological, behavioral, and biochemical parameters were applied for their assessment. The analysis revealed alterations in Neuro scores, home cage locomotion, body weight, nest building, mouse grimace scales, and fecal corticosterone metabolites. A composite measure scheme allowed the allocation of individual mice to severity classes. The comparison between groups failed to indicate the superiority of multimodal regimens over high-dose NSAID monotherapy. In conclusion, our findings confirmed the informative value of various parameters for assessment of pain and distress following neurosurgical procedures in mice. While all drug regimens were well tolerated in control mice, our data suggest that the total drug load should be carefully considered for perioperative management. Future studies would be of interest to assess potential synergies of drug combinations with lower doses of carprofen.
Collapse
Affiliation(s)
- Anna Munk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Aylina Glasenapp
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Effrosyni Michelakaki
- Institute of Veterinary Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steven Roger Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Paulin Jirkof
- Office for Animal Welfare and 3R, University of Zurich, Zurich, Switzerland
| | - Marcin Kopaczka
- Department of Electrical Engineering, RWTH Aachen University, Aachen, Germany
| | - Dorit Merhof
- Department of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Rupert Palme
- Department of Biological Sciences and Pathobiology, Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany.
| |
Collapse
|
5
|
da Costa CS, Jorge SDF, Figueiredo MA, Neves DR, Chagas MA. Use of rainbow trout skin treated with glutaraldehyde as a mesh for abdominal hernioplasty in rats. Acta Cir Bras 2024; 39:e393024. [PMID: 39046040 PMCID: PMC11262756 DOI: 10.1590/acb393024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/04/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE To test the use of rainbow trout skin as a surgical mesh in abdominal hernioplasties in rats. METHODS The experiment involved 20 Wistar rats receiving implants of trout skin processed for disinfection in 0.5% glutaraldehyde and preserved in 100% glycerin. The animals were divided into four groups, divided at 7, 15, 30, and 90 days postoperatively. Clinical and infrared thermography evaluations were performed, and after euthanasia, assessments of adhesion formations and sample collection for histological evaluation were conducted. RESULTS The implant was observed to be intact, ensuring the integrity of the abdominal wall, support for the viscera, and normal mobility for the rats for up to 90 days. Low rates of clinical alterations were observed, with an intense inflammatory reaction up to day 7, chronic inflammation and the onset of angiogenesis at day 15, and a low inflammatory reaction with collagenous infiltrate and fibrosis at day 30. At day 90, the implants showed a collagenous and fibrotic infiltrate with a minimal inflammatory infiltrate. CONCLUSIONS The surgical mesh of trout skin performed well, making it a potential alternative for surgical procedures in muscle aponeurotic corrections in the abdominal wall.
Collapse
Affiliation(s)
- Carolina Seabra da Costa
- Universidade Federal Fluminense – Programa de Pós-graduação em Medicina Veterinária Clínica e Reprodução Animal – Niterói (RJ), Brazil
| | - Siria da Fonseca Jorge
- Centro Universitário Serra dos Órgãos – Curso de Graduação em Medicina Veterinária – Teresópolis (RJ), Brazil
| | - Marcelo Abidu Figueiredo
- Universidade Federal Fluminense – Programa de Pós-graduação em Medicina Veterinária Clínica e Reprodução Animal – Niterói (RJ), Brazil
| | - Danielle Rangel Neves
- Centro Universitário Serra dos Órgãos – Curso de Graduação em Medicina Veterinária – Teresópolis (RJ), Brazil
| | - Maurício Alves Chagas
- Universidade Federal Fluminense – Programa de Pós-graduação em Medicina Veterinária Clínica e Reprodução Animal – Niterói (RJ), Brazil
| |
Collapse
|
6
|
Rinwa P, Eriksson M, Cotgreave I, Bäckberg M. 3R-Refinement principles: elevating rodent well-being and research quality. Lab Anim Res 2024; 40:11. [PMID: 38549171 PMCID: PMC10979584 DOI: 10.1186/s42826-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
This review article delves into the details of the 3R-Refinement principles as a vital framework for ethically sound rodent research laboratory. It highlights the core objective of the refinement protocol, namely, to enhance the well-being of laboratory animals while simultaneously improving the scientific validity of research outcomes. Through an exploration of key components of the refinement principles, the article outlines how these ethics should be implemented at various stages of animal experiments. It emphasizes the significance of enriched housing environments that reduce stress and encourage natural behaviors, non-restraint methods in handling and training, refined dosing and sampling techniques that prioritize animal comfort, the critical role of optimal pain management and the importance of regular animal welfare assessment in maintaining the rodents well-being. Additionally, the advantages of collaboration with animal care and ethics committees are also mentioned. The other half of the article explains the extensive benefits of the 3R-Refinement protocol such as heightened animal welfare, enhanced research quality, reduced variability, and positive feedback from researchers and animal care staff. Furthermore, it addresses avenues for promoting the adoption of the protocol, such as disseminating best practices, conducting training programs, and engaging with regulatory bodies. Overall, this article highlights the significance of 3R-Refinement protocol in aligning scientific advancement with ethical considerations along with shaping a more compassionate and responsible future for animal research.
Collapse
Affiliation(s)
- Puneet Rinwa
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden
| | - Marie Eriksson
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden
| | - Ian Cotgreave
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden
| | - Matilda Bäckberg
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden.
| |
Collapse
|
7
|
Nordén ES, Veras I, Yadav P, Løken K, Dishington H, Thorstensen C, Sjaastad I, Rasmussen H. Clinical efficacy of buprenorphine after oral dosing in rats undergoing major surgery. Lab Anim 2024; 58:34-43. [PMID: 37669442 PMCID: PMC10919059 DOI: 10.1177/00236772231178417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 09/07/2023]
Abstract
Serum corticosterone, serum buprenorphine, body weight change, consumption of food and water and behaviour-based pain assessment were measured in catheterised and non-catheterised male Wistar rats undergoing myocardial infarct (MI) surgery under general anaesthesia following buprenorphine dosing by subcutaneous (Bup-SC, 0.05 mg/kg) and oral (Bup-O, 0.4 mg/kg) routes. Buprenorphine was dosed subcutaneously at half an hour before and 8, 16 and 24 hours after surgery (Bup-SC), orally at one hour before surgery (Bup-O1) or at one hour before and 12 hours after surgery (Bup-O2) in catheterised rats and at one hour before and 24 hours after surgery (Bup-O24) in non-catheterised rats. Serum corticosterone, body weight changes and food and water consumption were not significantly different between treatments in catheterised rats. Bup-SC resulted in rapidly decreasing serum concentrations below the clinically effective concentrations (1 ng/mL) already at two hours after the first dose. Bup-O provided significantly higher and slowly decreasing serum concentrations, at or above clinically effective concentrations, for 24 hours (Bup-O1) and 42 hours (Bup-O2) after surgery. In non-catheterised rats, body weight development and food consumption were significantly higher in Bup-O24 rats compared to Bup-SC rats. The results indicate that a SC buprenorphine dose of 0.05 mg/kg every eight hours provides long periods of serum concentrations below clinically effective levels, and that a higher dose and/or more frequent dosage are required to provide stable serum concentrations at or above clinically effective levels. A single oral buprenorphine dose of 0.4 mg/kg provides clinically effective and stable serum concentrations for 24 hours in rats after MI surgery.
Collapse
Affiliation(s)
- Einar Sjaastad Nordén
- Institute for Experimental Medical Research, Oslo University Hospital, Norway
- K. G. Jebsen Centre for Cardiac Research, University of Oslo, Norway
| | - Ioanni Veras
- Department of Molecular Medicine, University of Oslo, Norway
| | - Prakash Yadav
- Department of Comparative Medicine, Oslo University Hospital, Norway
| | - Kari Løken
- Department of Comparative Medicine, Oslo University Hospital, Norway
| | - Hilde Dishington
- Institute for Experimental Medical Research, Oslo University Hospital, Norway
- K. G. Jebsen Centre for Cardiac Research, University of Oslo, Norway
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, Norway
- K. G. Jebsen Centre for Cardiac Research, University of Oslo, Norway
| | - Henrik Rasmussen
- Department of Comparative Medicine, Oslo University Hospital, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
8
|
Wolter A, Bucher CH, Kurmies S, Schreiner V, Konietschke F, Hohlbaum K, Klopfleisch R, Löhning M, Thöne-Reineke C, Buttgereit F, Huwyler J, Jirkof P, Rapp AE, Lang A. A buprenorphine depot formulation provides effective sustained post-surgical analgesia for 72 h in mouse femoral fracture models. Sci Rep 2023; 13:3824. [PMID: 36882427 PMCID: PMC9992384 DOI: 10.1038/s41598-023-30641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Adequate pain management is essential for ethical and scientific reasons in animal experiments and should completely cover the period of expected pain without the need for frequent re-application. However, current depot formulations of Buprenorphine are only available in the USA and have limited duration of action. Recently, a new microparticulate Buprenorphine formulation (BUP-Depot) for sustained release has been developed as a potential future alternative to standard formulations available in Europe. Pharmacokinetics indicate a possible effectiveness for about 72 h. Here, we investigated whether the administration of the BUP-Depot ensures continuous and sufficient analgesia in two mouse fracture models (femoral osteotomy) and could, therefore, serve as a potent alternative to the application of Tramadol via the drinking water. Both protocols were examined for analgesic effectiveness, side effects on experimental readout, and effects on fracture healing outcomes in male and female C57BL/6N mice. The BUP-Depot provided effective analgesia for 72 h, comparable to the effectiveness of Tramadol in the drinking water. Fracture healing outcome was not different between analgesic regimes. The availability of a Buprenorphine depot formulation for rodents in Europe would be a beneficial addition for extended pain relief in mice, thereby increasing animal welfare.
Collapse
Affiliation(s)
- Angelique Wolter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Christian H Bucher
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kurmies
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Viktoria Schreiner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Frank Konietschke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Max Löhning
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Anna E Rapp
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Kim J, Cannon BA, Freeman LE, Tan S, Knych HK, Kendall LV. High-dose Meloxicam Provides Improved Analgesia in Female CD1 Mice: A Pharmacokinetic and Efficacy Study. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:74-80. [PMID: 36755203 PMCID: PMC9936853 DOI: 10.30802/aalas-jaalas-22-000064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Meloxicam is a nonsteroidal anti-inflammatory analgesic drug that is often used in mice. However, doses of 1 to 5 mg/kg given twice daily were recently reported to provide inadequate analgesia. Some studies suggest that doses of up to 20 mg/kg may be necessary for adequate pain management. We investigated the analgesia provided by a high-dose of meloxicam in female CD1 mice. Pharmacokinetic analyses demonstrated that a subcutaneous injection of 10 mg/kg or 20 mg/kg of meloxicam produced therapeutic plasma concentrations for at least 12 h. Ovariectomies via ventral laparotomy were performed to assess analgesic efficacy. Mice were treated immediately before surgery with a high-dose of 10 mg/kg, a low-dose of 2.5 mg/kg, or saline, followed by every 12 h for 36 h. At 3, 6, 12, 24, and 48 h after surgery, mice were assessed for pain based on the following behaviors: distance traveled, time mobile, grooming, rearing, hunched posture, orbital tightening, and von Frey. Initially, some mice received a 20-mg/kg loading dose followed by 10 mg/kg every 12 h. This regimen caused severe morbidity and mortality in 2 mice. Subsequently, this regimen was abandoned, and mice assigned to the high-dose group received 10 mg/kg every 12 h. Mice that received the 10-mg/kg dose after surgery showed less orbital tightening between 3 to 6 h and reduced frequency of hunched posture for 48 h compared with mice that received either the low-dose or saline. However, mice were significantly less mobile for 6 to 12 h after surgery regardless of treatment. These data indicate that a meloxicam dose of 10 mg/kg every 12 h provides better analgesia than a 2.5-mg/kg dose but does not completely alleviate pain.
Collapse
Affiliation(s)
- Jeffrey Kim
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences,,Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado,,Corresponding author.
| | - Brinley A Cannon
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences,,Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Layne E Freeman
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences,,Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Sarah Tan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences,,Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Heather K Knych
- Department of Veterinary Molecular Biosciences and K.L. Maddy Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, California
| | - Lon V Kendall
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences,,Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
10
|
Oates R, Tarbert DK. Treatment of Pain in Rats, Mice, and Prairie Dogs. Vet Clin North Am Exot Anim Pract 2023; 26:151-174. [PMID: 36402479 DOI: 10.1016/j.cvex.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent myomorph and scuiromorph rodent analgesia studies are reviewed and evaluated for potential clinical application. Differences between laboratory animal studies and clinical use in diseased animals are discussed. Analgesia classes reviewed include local anesthetics, nonsteroidal anti-inflammatories, acetaminophen, opioids, and adjuvants such as anticonvulsants. Routes of administration including sustained-release mechanisms are discussed, as are reversal agents. Drug interactions are reviewed in the context of beneficial multimodal analgesia as well as potential adverse effects. Dosage recommendations for clinical patients are explored.
Collapse
Affiliation(s)
- Rhonda Oates
- Research and Teaching Animal Care Program, University of California - Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Danielle K Tarbert
- Companion Exotic Animal Medicine and Surgery Service, Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
11
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Heidrun Potschka,
| |
Collapse
|
12
|
Buchecker V, Koska I, Pace C, Talbot SR, Palme R, Bleich A, Potschka H. Toward Evidence-Based Severity Assessment in Mouse Models with Repeated Seizures: (II.) Impact of Surgery and Intrahippocampal Kainate. Eur Surg Res 2023; 64:89-107. [PMID: 35073547 PMCID: PMC9808668 DOI: 10.1159/000522156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Chronic epilepsy models require neurosurgical procedures including depth electrode implants. The intrahippocampal kainate model is a frequently used chronic paradigm, which is based on chemoconvulsant administration and status epilepticus induction during the surgical procedure. This experimental approach raises the question of the extent to which this approach affects postsurgical recovery. In addition to the short- and long-term impact of the surgical intervention, a potential impact of highly frequent electrographic seizure events needs to be considered in the context of severity assessment. METHODS Various behavioral, biochemical, and telemetric parameters were analyzed in four experimental groups of mice: 1st naive, 2nd with transmitter implants, 3rd with transmitter and electrode implants, and 4th with transmitter implants, electrode implants, and kainate-induced status epilepticus. RESULTS During the early postsurgical phase, transmitter implants caused a transient impact on Mouse Grimace scores and intragroup increase of fecal corticosterone metabolites. Additional craniotomy was associated with an influence on total heart rate variability and fecal corticosterone metabolites. Heart rate and Irwin score increases as well as a prolonged increase in Mouse Grimace scores pointed to an added burden related to the induction of a nonconvulsive status epilepticus. Data from the chronic phase argued against a relevant influence of frequent electrographic seizures on behavioral patterns, fecal corticosterone metabolites, heart rate, and its variability. However, Irwin scores indicated long-term changes in some animals with increased reactivity, body tone, and Straub tail. Interestingly, selected behavioral and telemetric data from the early post-status epilepticus phase correlated with the frequency of electrographic seizure events in the chronic phase. CONCLUSION In conclusion, our findings argue against the pronounced impact of highly frequent electrographic seizures on the well-being of mice. However, an increased level of nervousness in a subgroup of animals should be considered for handling procedures and refinement measures. In the early postsurgical phase, several parameters indicate an influence of the interventions with evidence that the nonconvulsive status epilepticus can negatively affect the recovery. Thus, the development and validation of refinement efforts should focus on this experimental phase. Finally, the datasets suggest that simple readout parameters may predict the long-term consequences of the epileptogenic insult. Respective biomarker candidates require further validation in the follow-up studies in models with subgroups of animals with or without epilepsy development.
Collapse
Affiliation(s)
- Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Claudia Pace
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
- *Heidrun Potschka,
| |
Collapse
|
13
|
Sadar MJ, Mans C. Hystricomorph Rodent Analgesia. Vet Clin North Am Exot Anim Pract 2023; 26:175-186. [PMID: 36402480 DOI: 10.1016/j.cvex.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limited information on the analgesic efficacy and safety of even clinically commonly used analgesic drugs in guinea pigs and chinchillas is available. Buprenorphine and meloxicam are currently the most common analgesics routinely used to treat painful conditions in guinea pigs and chinchillas. Hydromorphone has also shown to be an effective analgesic drug in these species, with limited adverse effects. Tramadol in chinchillas does not provide analgesia even at high doses, and no information is available on the efficacy of this drug in guinea pigs. Multimodal analgesic protocols should be considered whenever possible.
Collapse
Affiliation(s)
- Miranda J Sadar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA.
| | - Christoph Mans
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
14
|
Aulehner K, Leenaars C, Buchecker V, Stirling H, Schönhoff K, King H, Häger C, Koska I, Jirkof P, Bleich A, Bankstahl M, Potschka H. Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats-A systematic review. Front Vet Sci 2022; 9:930005. [PMID: 36277074 PMCID: PMC9583882 DOI: 10.3389/fvets.2022.930005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022] Open
Abstract
Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.
Collapse
Affiliation(s)
- Katharina Aulehner
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah King
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
15
|
Kendall LV, Bailey AL, Singh B, McGee W. Toxic Effects of High-dose Meloxicam and Carprofen on Female CD1 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:75-80. [PMID: 34920791 PMCID: PMC8786377 DOI: 10.30802/aalas-jaalas-21-000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nonsteroidal anti-inflammatory drugs meloxicam and carprofen are commonly used as analgesics in mice. The current recommended doses of meloxicam at 0.2-1.0 mg/kg once daily and carprofen at 5-10 mg/kg twice daily may not be adequate to provide analgesia in mice. Several studies have suggested that doses up to 20 mg/kg of meloxicam and carprofen are needed to provide analgesic efficacy. This study investigated the clinical safety of these higher doses of meloxicam and carprofen by evaluating their potential for renal and gastrointestinal toxicity. Female CD-1 mice were given 20 mg/kg of either meloxicam, carprofen, or an equivalent volume of saline subcutaneously once daily for 3 or 7 d. On day 4, mice treated for 3 d were euthanized, and on days 8 and 15, mice treated for 7 d were euthanized. Blood was collected by cardiocentesis for serum chemistry analysis. Feces was collected from the colon for fecal occult blood testing, and tissues were collected for histopathology. No clinically significant changes in serum chemistry profiles were found in the drug-treated mice at any time point as compared with the saline controls. Fecal occult blood and histologic evidence of gastritis was associated with meloxicam administration in mice evaluated at days 4 and 8. By day 15, there was no association with meloxicam treatment and the presence of fecal occult blood or gastritis. There was no association between fecal occult blood and gastritis in the carprofen or saline-treated mice regardless of the treatment durations. These findings suggest that 20 mg/kg of meloxicam in mice causes gastric toxicity when given for 3 or 7 d and should be used cautiously; however, carprofen at 20 mg/kg appears to have minimal toxic effects with regard to the parameters measured.
Collapse
Affiliation(s)
- Lon V Kendall
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
- Corresponding author.
| | - Alexandrea L Bailey
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Benjamin Singh
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Whitney McGee
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
16
|
Lidocaine and bupivacaine as part of multimodal pain management in a C57BL/6J laparotomy mouse model. Sci Rep 2021; 11:10918. [PMID: 34035397 PMCID: PMC8149411 DOI: 10.1038/s41598-021-90331-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
While the use of local anesthesia as part of multimodal pain management is common practice in human and veterinarian surgery, these drugs are not applied routinely in rodent surgery. Several recommendations on the use of local anesthesia exist, but systematic studies on their efficacy and side effects are lacking. In the present study, male and female C57BL/6J mice were subjected to a sham vasectomy or a sham embryo transfer, respectively. We tested whether a mixture of subcutaneously injected Lidocaine and Bupivacaine in combination with systemic Paracetamol applied via drinking water results in superior pain relief when compared to treatment with local anesthesia or Paracetamol alone. We applied a combination of methods to assess behavioral, emotional, and physiological changes indicative of pain. Voluntary Paracetamol intake via drinking water reached the target dosage of 200 mg/kg in most animals. Local anesthesia did not lead to obvious side effects such as irregular wound healing or systemic disorders. No relevant sex differences were detected in our study. Sevoflurane anesthesia and surgery affected physiological and behavioral measurements. Surprisingly, Paracetamol treatment alone significantly increased the Mouse Grimace Scale. Taken together, mice treated with a combination of local anesthesia and systemic analgesia did not show fewer signs of post-surgical pain or improved recovery compared to animals treated with either local anesthesia or Paracetamol.
Collapse
|
17
|
Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals (Basel) 2020; 10:ani10101726. [PMID: 32977561 PMCID: PMC7598254 DOI: 10.3390/ani10101726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
The 3Rs, Replacement, Reduction and Refinement, is a framework to ensure the ethical and justified use of animals in research. The implementation of refinements is required to alleviate and minimise the pain and suffering of animals in research. Public acceptability of animal use in research is contingent on satisfying ethical and legal obligations to provide pain relief along with humane endpoints. To fulfil this obligation, staff, researchers, veterinarians, and technicians must rapidly, accurately, efficiently and consistently identify, assess and act on signs of pain. This ability is paramount to uphold animal welfare, prevent undue suffering and mitigate possible negative impacts on research. Identification of pain may be based on indicators such as physiological, behavioural, or physical ones. Each has been used to develop different pain scoring systems with potential benefits and limitations in identifying and assessing pain. Grimace scores are a promising adjunctive behavioural technique in some mammalian species to identify and assess pain in research animals. The use of this method can be beneficial to animal welfare and research outcomes by identifying animals that may require alleviation of pain or humane intervention. This paper highlights the benefits, caveats, and potential applications of grimace scales.
Collapse
|
18
|
Buprenorphine Analgesia Reduces Survival With ALM Resuscitation in a Rat Model of Uncontrolled Hemorrhage: Concerns for Trauma-Related Research. Shock 2020; 55:379-387. [PMID: 32925604 DOI: 10.1097/shk.0000000000001630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The effect of analgesia on physiological systems has received little attention in trauma research. Our aim was to examine the effect of two different analgesics, buprenorphine and carprofen, on adenosine, lidocaine, and magnesium (ALM) resuscitation in a rat model of laparotomy and non-compressible hemorrhage. Male Sprague-Dawley rats were randomly assigned to Saline Carprieve, ALM Carprieve, Saline Buprenorphine, or ALM Buprenorphine (all n = 10). Anesthetized animals underwent surgical placement of chronic catheters and laparotomy, then hemorrhage was induced by liver resection (60% left lateral lobe). After 15 min, animals received 0.7 mL/kg 3% NaCl ± ALM bolus, and after 60 min, 4 h 0.5 mL/kg/h 0.9% NaCl±ALM drip with 72 h monitoring. Carprieve groups received 5 mg/kg s.c. every 24 h and Buprenorphine groups received 0.05 mg/kg Temgesic every 6 to 12 h. Survival, hemodynamics, blood chemistry, and hematology were measured. ALM Carprieve led to 100% survival compared to 40% survival in ALM Buprenorphine group (P = 0.004). In Saline-treated rats, buprenorphine reduced median survival time by 91% (22 h to 2 h). Recovery of mean arterial pressure (MAP) at 60 min was lower in the buprenorphine versus Carprieve groups (83% vs. 101% for ALM and 62% vs. 95% for Saline groups). Buprenorphine was also associated with higher blood lactates and potassium. No analgesic-related differences were found in total white cells, lymphocytes, platelet count, hyperthermia, weight loss, or pica. We conclude that reduced survival and MAP recovery appears to a buprenorphine effect on cardiovascular function. Until the underlying mechanisms can be elucidated, buprenorphine should be used with caution in small and possibly large models of trauma and shock.
Collapse
|
19
|
Severity Classification of Surgical Procedures and Application of Health Monitoring Strategies in Animal Research Proposals: A Retrospective Review. Altern Lab Anim 2020. [DOI: 10.1177/026119291804600508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animal experimentation has been one of the most controversial areas of animal use, mainly due to the intentional harms inflicted upon the animals used. In an effort to reduce these harms, research on refinement has increased significantly over the past 20 years. However, the extent to which these efforts have helped to reduce the severity of the research procedures, and thus animal suffering, is uncertain. To provide an indication of the awareness and implementation of refinement methods, we reviewed the experimental techniques for 684 surgical interventions described in 506 animal research applications that had been sent to the German competent authorities for approval in 2010. In this paper, we describe and discuss the severity categorisation of the proposed surgeries and the planned health monitoring strategies. We found that the researchers frequently underestimated the levels of pain, suffering, distress and lasting harm that were to be inflicted on the animals. Furthermore, the planned health monitoring strategies were generally flawed. To ensure responsible treatment of animals and high-quality science, adequate training of research workers in recognising and alleviating animal suffering is essential.
Collapse
|
20
|
Bobot M, Thomas L, Moyon A, Fernandez S, McKay N, Balasse L, Garrigue P, Brige P, Chopinet S, Poitevin S, Cérini C, Brunet P, Dignat-George F, Burtey S, Guillet B, Hache G. Uremic Toxic Blood-Brain Barrier Disruption Mediated by AhR Activation Leads to Cognitive Impairment during Experimental Renal Dysfunction. J Am Soc Nephrol 2020; 31:1509-1521. [PMID: 32527975 DOI: 10.1681/asn.2019070728] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Uremic toxicity may play a role in the elevated risk of developing cognitive impairment found among patients with CKD. Some uremic toxins, like indoxyl sulfate, are agonists of the transcription factor aryl hydrocarbon receptor (AhR), which is widely expressed in the central nervous system and which we previously identified as the receptor of indoxyl sulfate in endothelial cells. METHODS To characterize involvement of uremic toxins in cerebral and neurobehavioral abnormalities in three rat models of CKD, we induced CKD in rats by an adenine-rich diet or by 5/6 nephrectomy; we also used AhR-/- knockout mice overloaded with indoxyl sulfate in drinking water. We assessed neurologic deficits by neurobehavioral tests and blood-brain barrier disruption by SPECT/CT imaging after injection of 99mTc-DTPA, an imaging marker of blood-brain barrier permeability. RESULTS In CKD rats, we found cognitive impairment in the novel object recognition test, the object location task, and social memory tests and an increase of blood-brain barrier permeability associated with renal dysfunction. We found a significant correlation between 99mTc-DTPA content in brain and both the discrimination index in the novel object recognition test and indoxyl sulfate concentrations in serum. When we added indoxyl sulfate to the drinking water of rats fed an adenine-rich diet, we found an increase in indoxyl sulfate concentrations in serum associated with a stronger impairment in cognition and a higher permeability of the blood-brain barrier. In addition, non-CKD AhR-/- knockout mice were protected against indoxyl sulfate-induced blood-brain barrier disruption and cognitive impairment. CONCLUSIONS AhR activation by indoxyl sulfate, a uremic toxin, leads to blood-brain barrier disruption associated with cognitive impairment in animal models of CKD.
Collapse
Affiliation(s)
- Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France .,Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Laurent Thomas
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Anaïs Moyon
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Samantha Fernandez
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Nathalie McKay
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Laure Balasse
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Philippe Garrigue
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Pauline Brige
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Laboratoire d'Imagerie Interventionelle Expérimentale, Aix-Marseille Université, Marseille, France
| | - Sophie Chopinet
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Laboratoire d'Imagerie Interventionelle Expérimentale, Aix-Marseille Université, Marseille, France.,Service de Chirurgie générale et transplantation hépatique, Hôpital de la Timone, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Stéphane Poitevin
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Claire Cérini
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Philippe Brunet
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Françoise Dignat-George
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Stéphane Burtey
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Benjamin Guillet
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Guillaume Hache
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France .,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Pharmacie, Hôpital de la Timone, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
21
|
Saphier S, Yacov G, Wenger A, Klausner Z, Rosner A, Goldvaser M, Katalan S. The Effect of Anesthetic Regimens on Intestinal Absorption of Passively Absorbed Drugs in Rats. Pharm Res 2020; 37:87. [PMID: 32356106 DOI: 10.1007/s11095-020-02809-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Different anesthetic regimens are used during single pass intestinal perfusion (SPIP) experiments for the study of intestinal drug absorption in rats. We examined the ketamine/xylazine anesthetic combination to evaluate its influence on drug absorption compared to older regimens. Additionally, we examined whether supplementary analgesia has any effect on drug absorption and the effect of the different anesthetic regimens on induction time and stress response. METHODS Rats were anesthetized using four different anesthetic regimens; ketamine/midazolam, pentobarbital, ketamine/xylazine and ketamine/xylazine/butorphanol. Three model drugs were administered to rat intestines and Peff was calculated. Stress response was evaluated by quantifying blood corticosterone levels and induction time was recorded. RESULTS We found absorption under pentobarbital to be higher or similar to absorption under ketamine/midazolam. These results partly correlate with past literature data. Ketamine/xylazine was found to give similar or higher Peff compared to pentobarbital and ketamine/midazolam. Addition of butorphanol did not affect absorption and reduced induction time and stress. CONCLUSIONS In studies of intestinal drug absorption, the ketamine/xylazine combination is superior to other anesthetic regimens as it is more convenient and seems to affect absorption to a lesser extent. Addition of butorphanol is highly recommended as it did not affect absorption but led to a more effective and less stress inducing experiment.
Collapse
Affiliation(s)
- Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, P.O.B 19, 7410001, Ness-Ziona, Israel.
| | - Guy Yacov
- Department of Pharmacology, Israel Institute for Biological Research, P.O.B 19, 7410001, Ness-Ziona, Israel
| | - Ada Wenger
- Department of Organic Chemistry, Israel Institute for Biological Research, P.O.B 19, 7410001, Ness-Ziona, Israel
| | - Ziv Klausner
- Department of Applied Mathematics, Israel Institute for Biological Research, P.O.B 19, 7410001 Ness-Ziona, Israel
| | - Amir Rosner
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, P.O.B 19, 7410001 Ness-Ziona, Israel
| | - Michael Goldvaser
- Department of Organic Chemistry, Israel Institute for Biological Research, P.O.B 19, 7410001, Ness-Ziona, Israel
| | - Shahaf Katalan
- Department of Pharmacology, Israel Institute for Biological Research, P.O.B 19, 7410001, Ness-Ziona, Israel.
| |
Collapse
|
22
|
Chartier LC, Hebart ML, Howarth GS, Whittaker AL, Mashtoub S. Affective state determination in a mouse model of colitis-associated colorectal cancer. PLoS One 2020; 15:e0228413. [PMID: 31986185 PMCID: PMC6984705 DOI: 10.1371/journal.pone.0228413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Behavioural indicators of affective state, including burrowing, clinical scores and the Mouse Grimace Score have not yet been validated in mouse models of chronic gastrointestinal disease. Additionally, a comparison of these methods has not been characterised. This study aimed to determine which behavioural assessment was the optimal indicator of disease, evidenced by correlation with clinically-assessed measures, in an azoxymethane (AOM)/dextran sulphate sodium (DSS) mouse model of colitis-associated colorectal cancer. C57BL/6 mice were allocated to four groups (n = 10/group); 1) saline control, 2) saline+buprenorphine, 3) AOM+DSS+water, 4) AOM+DSS+buprenorphine. Mice were gavaged thrice weekly with water or buprenorphine (0.5mg/kg; 80μL) for 9 weeks. Disease activity index (DAI) was measured daily; burrowing and grimace analyses occurred on days -1, 5, 19, 26, 40, 47 and 61. Colonoscopies were performed on days 20, 41 and 62. All animals were euthanized on day 63. Burrowing activity and retrospective grimace analyses were unaffected (P>0.05), whilst DAI was significantly increased (P<0.05) in mice with colitis-associated colorectal cancer compared to normal controls. In addition, DAI was positively correlated with colonoscopically-assessed severity and tumour number (P<0.05). We conclude that traditional measures of DAI or clinical scoring provide the most reliable assessment of wellbeing in mice with colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Lauren C. Chartier
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Michelle L. Hebart
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Gordon S. Howarth
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- School of Medicine, The University of Western Australia, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
23
|
Culbreth MJ, Biryukov SS, Shoe JL, Dankmeyer JL, Hunter M, Klimko CP, Rosario-Acevedo R, Fetterer DP, Moreau AM, Welkos SL, Cote CK. The Use of Analgesics during Vaccination with a Live Attenuated Yersinia pestis Vaccine Alters the Resulting Immune Response in Mice. Vaccines (Basel) 2019; 7:vaccines7040205. [PMID: 31816945 PMCID: PMC6963655 DOI: 10.3390/vaccines7040205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The administration of antipyretic analgesics prior to, in conjunction with, or due to sequelae associated with vaccination is a common yet somewhat controversial practice. In the context of human vaccination, it is unclear if even short-term analgesic regimens can significantly alter the resulting immune response, as literature exists to support several scenarios including substantial immune interference. In this report, we used a live attenuated Yersinia pestis vaccine to examine the impact of analgesic administration on the immune response elicited by a single dose of a live bacterial vaccine in mice. Mice were assessed by evaluating natural and provoked behavior, as well as food and water consumption. The resulting immune responses were assessed by determining antibody titers against multiple antigens and assaying cellular responses in stimulated splenocytes collected from vaccinated animals. We observed no substantial benefit to the mice associated with the analgesic administration. Splenocytes from both C57BL/6 and BALB/c vaccinated mice receiving acetaminophen have a significantly reduced interferon-gamma (IFN-γ) recall response. Additionally, there is a significantly lower immunoglobulin (Ig)G2a/IgG1 ratio in vaccinated BALB/c mice treated with either acetaminophen or meloxicam and a significantly lower IgG2c/IgG1 ratio in vaccinated C57BL/6 mice treated with acetaminophen. Taken together, our data indicate that the use of analgesics, while possibly ethically warranted, may hinder the accurate characterization and evaluation of novel vaccine strategies with little to no appreciable benefits to the vaccinated mice.
Collapse
Affiliation(s)
- Marilynn J. Culbreth
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Comparative Medicine Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Sergei S. Biryukov
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Jennifer L. Shoe
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Jennifer L. Dankmeyer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Melissa Hunter
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Christopher P. Klimko
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Raysa Rosario-Acevedo
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - David P. Fetterer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Biostatistics Medicine Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Alicia M. Moreau
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Pathology Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Susan L. Welkos
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Christopher K. Cote
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
- Correspondence:
| |
Collapse
|
24
|
Foley PL, Kendall LV, Turner PV. Clinical Management of Pain in Rodents. Comp Med 2019; 69:468-489. [PMID: 31822323 PMCID: PMC6935704 DOI: 10.30802/aalas-cm-19-000048] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
Abstract
The use of effective regimens for mitigating pain remain underutilized in research rodents despite the general acceptance of both the ethical imperative and regulatory requirements intended to maximize animal welfare. Factors contributing to this gap between the need for and the actual use of analgesia include lack of sufficient evidence-based data on effective regimens, under-dosing due to labor required to dose analgesics at appropriate intervals, concerns that the use of analgesics may impact study outcomes, and beliefs that rodents recover quickly from invasive procedures and as such do not need analgesics. Fundamentally, any discussion of clinical management of pain in rodents must recognize that nociceptive pathways and pain signaling mechanisms are highly conserved across mammalian species, and that central processing of pain is largely equivalent in rodents and other larger research species such as dogs, cats, or primates. Other obstacles to effective pain management in rodents have been the lack of objective, science-driven data on pain assessment, and the availability of appropriate pharmacological tools for pain mitigation. To address this deficit, we have reviewed and summarized the available publications on pain management in rats, mice and guinea pigs. Different drug classes and specific pharmacokinetic profiles, recommended dosages, and routes of administration are discussed, and updated recommendations are provided. Nonpharmacologic tools for increasing the comfort and wellbeing of research animals are also discussed. The potential adverse effects of analgesics are also reviewed. While gaps still exist in our understanding of clinical pain management in rodents, effective pharmacologic and nonpharmacologic strategies are available that can and should be used to provide analgesia while minimizing adverse effects. The key to effective clinical management of pain is thoughtful planning that incorporates study needs and veterinary guidance, knowledge of the pharmacokinetics and mechanisms of action of drugs being considered, careful attention to individual differences, and establishing an institutional culture that commits to pain management for all species as a central component of animal welfare.
Collapse
Affiliation(s)
- Patricia L Foley
- Division of Comparative Medicine, Georgetown University, Washington, DC;,
| | - Lon V Kendall
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Patricia V Turner
- Charles River, Wilmington, Massachusetts, Dept of Pathobiology, University of Guelph, Guelph, Canada
| |
Collapse
|
25
|
Keubler LM, Hoppe N, Potschka H, Talbot SR, Vollmar B, Zechner D, Häger C, Bleich A. Where are we heading? Challenges in evidence-based severity assessment. Lab Anim 2019; 54:50-62. [PMID: 31718424 DOI: 10.1177/0023677219877216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evidence-based severity assessment in laboratory animals is, apart from the ethical responsibility, imperative to generate reproducible, standardized and valid data. However, the path towards a valid study design determining the degree of pain, distress and suffering experienced by the animal is lined with pitfalls and obstacles as we will elucidate in this review. Furthermore, we will ponder on the genesis of a holistic concept relying on multifactorial composite scales. These have to combine robust and reliable parameters to measure the multidimensional aspects that define the severity of animal experiments, generating a basis for the substantiation of the refinement principle.
Collapse
Affiliation(s)
- Lydia M Keubler
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Nils Hoppe
- Centre for Ethics and Law in the Life Sciences, University of Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | | |
Collapse
|
26
|
Minimum Information in In Vivo Research. Handb Exp Pharmacol 2019; 257:197-222. [PMID: 31541320 DOI: 10.1007/164_2019_285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Data quality, reproducibility and reliability are a matter of concern in many scientific fields including biomedical research. Robust, reproducible data and scientific rigour form the foundation on which future studies are built and determine the pace of knowledge gain and the time needed to develop new and innovative drugs that provide benefit to patients. Critical to the attainment of this is the precise and transparent reporting of data. In the current chapter, we will describe literature highlighting factors that constitute the minimum information that is needed to be included in the reporting of in vivo research. The main part of the chapter will focus on the minimum information that is essential for reporting in a scientific publication. In addition, we will present a table distinguishing information necessary to be recorded in a laboratory notebook or another form of internal protocols versus information that should be reported in a paper. We will use examples from the behavioural literature, in vivo studies where the use of anaesthetics and analgesics are used and finally ex vivo studies including histological evaluations and biochemical assays.
Collapse
|
27
|
|
28
|
Administration of Tramadol or Buprenorphine via the drinking water for post-operative analgesia in a mouse-osteotomy model. Sci Rep 2019; 9:10749. [PMID: 31341225 PMCID: PMC6656891 DOI: 10.1038/s41598-019-47186-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Adequate analgesia is essential whenever pain might occur in animal experiments. Unfortunately, the selection of suitable analgesics for mice in bone-linked models is limited. Here, we evaluated two analgesics – Tramadol [0.1 mg/ml (Tlow) vs. 1 mg/ml (Thigh)] and Buprenorphine (Bup; 0.009 mg/ml) – after a pre-surgical injection of Buprenorphine, in a mouse-osteotomy model. The aim of this study was to verify the efficacy of these opioids in alleviating pain-related behaviors, to provide evidence for adequate dosages and to examine potential side effects. High concentrations of Tramadol affected water intake, drinking frequency, food intake and body weight negatively in the first 2–3 days post-osteotomy, while home cage activity was comparable between all groups. General wellbeing parameters were strongly influenced by anesthesia and analgesics. Model-specific pain parameters did not indicate more effective pain relief at high concentrations of Tramadol. In addition, ex vivo high-resolution micro computed tomography (µCT) analysis and histology analyzing bone healing outcomes showed no differences between analgesic groups with respect to newly formed mineralized bone, cartilage and vessels. Our results show that high concentrations of Tramadol do not improve pain relief compared to low dosage Tramadol and Buprenorphine, but rather negatively affect animal wellbeing.
Collapse
|