1
|
Shioka I, Morita R, Yagasaki R, Wuergezhen D, Yamashita T, Fujiwara H, Okuda S. Ex vivo SIM-AFM measurements reveal the spatial correlation of stiffness and molecular distributions in 3D living tissue. Acta Biomater 2024:S1742-7061(24)00539-7. [PMID: 39379233 DOI: 10.1016/j.actbio.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Living tissues each exhibit a distinct stiffness, which provides cells with key environmental cues that regulate their behaviors. Despite this significance, our understanding of the spatiotemporal dynamics and the biological roles of stiffness in three-dimensional tissues is currently limited due to a lack of appropriate measurement techniques. To address this issue, we propose a new method combining upright structured illumination microscopy (USIM) and atomic force microscopy (AFM) to obtain precisely coordinated stiffness maps and biomolecular fluorescence images of thick living tissue slices. Using mouse embryonic and adult skin as a representative tissue with mechanically heterogeneous structures inside, we validate the measurement principle of USIM-AFM. Live measurement of tissue stiffness distributions revealed the highly heterogeneous mechanical nature of skin, including nucleated/enucleated epithelium, mesenchyme, and hair follicle, as well as the role of collagens in maintaining its integrity. Furthermore, quantitative analysis comparing stiffness distributions in live tissue samples with those in preserved tissues, including formalin-fixed and cryopreserved tissue samples, unveiled the distinct impacts of preservation processes on tissue stiffness patterns. This series of experiments highlights the importance of live mechanical testing of tissue-scale samples to accurately capture the true spatiotemporal variations in mechanical properties. Our USIM-AFM technique provides a new methodology to reveal the dynamic nature of tissue stiffness and its correlation with biomolecular distributions in live tissues and thus could serve as a technical basis for exploring tissue-scale mechanobiology. STATEMENT OF SIGNIFICANCE: Stiffness, a simple mechanical parameter, has drawn attention in understanding the mechanobiological principles underlying the homeostasis and pathology of living tissues. To explore tissue-scale mechanobiology, we propose a technique integrating an upright structured illumination microscope and an atomic force microscope. This technique enables live measurements of stiffness distribution and fluorescent observation of thick living tissue slices. Experiments revealed the highly heterogeneous mechanical nature of mouse embryonic and adult skin in three dimensions and the previously unnoticed influences of preservation techniques on the mechanical properties of tissue at microscopic resolution. This study provides a new technical platform for live stiffness measurement and biomolecular observation of tissue-scale samples with micron-scale resolution, thus contributing to future studies of tissue- and organ-scale mechanobiology.
Collapse
Affiliation(s)
- Itsuki Shioka
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ritsuko Morita
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Rei Yagasaki
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Tadahiro Yamashita
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
2
|
Ichikawa T, Wang D, Miyazawa K, Miyata K, Oshima M, Fukuma T. Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins. Commun Biol 2022; 5:487. [PMID: 35595960 PMCID: PMC9122943 DOI: 10.1038/s42003-022-03437-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale. Atomic force microscopy imaging shows that cell fixation can lead to unwanted aggregation of membrane proteins.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Dong Wang
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Faculty of Frontier Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Faculty of Frontier Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Masanobu Oshima
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Faculty of Frontier Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Seelbinder B, Chen J, Brunke S, Vazquez-Uribe R, Santhaman R, Meyer AC, de Oliveira Lino FS, Chan KF, Loos D, Imamovic L, Tsang CC, Lam RPK, Sridhar S, Kang K, Hube B, Woo PCY, Sommer MOA, Panagiotou G. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. MICROBIOME 2020; 8:133. [PMID: 32919472 PMCID: PMC7488854 DOI: 10.1186/s40168-020-00899-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/24/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Antibiotic treatment has a well-established detrimental effect on the gut bacterial composition, but effects on the fungal community are less clear. Bacteria in the lumen of the gastrointestinal tract may limit fungal colonization and invasion. Antibiotic drugs targeting bacteria are therefore seen as an important risk factor for fungal infections and induced allergies. However, antibiotic effects on gut bacterial-fungal interactions, including disruption and resilience of fungal community compositions, were not investigated in humans. We analysed stool samples collected from 14 healthy human participants over 3 months following a 6-day antibiotic administration. We integrated data from shotgun metagenomics, metatranscriptomics, metabolomics, and fungal ITS2 sequencing. RESULTS While the bacterial community recovered mostly over 3 months post treatment, the fungal community was shifted from mutualism at baseline to competition. Half of the bacterial-fungal interactions present before drug intervention had disappeared 3 months later. During treatment, fungal abundances were associated with the expression of bacterial genes with functions for cell growth and repair. By extending the metagenomic species approach, we revealed bacterial strains inhibiting the opportunistic fungal pathogen Candida albicans. We demonstrated in vitro how C. albicans pathogenicity and host cell damage might be controlled naturally in the human gut by bacterial metabolites such as propionate or 5-dodecenoate. CONCLUSIONS We demonstrated that antibacterial drugs have long-term influence on the human gut mycobiome. While bacterial communities recovered mostly 30-days post antibacterial treatment, the fungal community was shifted from mutualism towards competition. Video abstract.
Collapse
Affiliation(s)
- Bastian Seelbinder
- Leibniz Institute for Natural Product Research and Infection Biology-Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Jiarui Chen
- Leibniz Institute for Natural Product Research and Infection Biology-Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China
| | - Sascha Brunke
- Leibniz Institute for Natural Product Research and Infection Biology-Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Lyngby, Denmark
| | - Rakesh Santhaman
- Leibniz Institute for Natural Product Research and Infection Biology-Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Anne-Christin Meyer
- Leibniz Institute for Natural Product Research and Infection Biology-Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Felipe Senne de Oliveira Lino
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Lyngby, Denmark
| | - Ka-Fai Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Daniel Loos
- Leibniz Institute for Natural Product Research and Infection Biology-Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Lejla Imamovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Lyngby, Denmark
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rex Pui-Kin Lam
- Emergency Medicine Unit, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Siddharth Sridhar
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kang Kang
- Leibniz Institute for Natural Product Research and Infection Biology-Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Bernhard Hube
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Lyngby, Denmark
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Lyngby, Denmark.
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology-Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany.
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
4
|
Cizkova K, Malohlava J, Tauber Z. Cell Membrane Nanostructure is Altered by Heat-Induced Antigen Retrieval: A Possible Consequence for Immunocytochemical Detection of Membranous Antigens. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:139-147. [PMID: 31722776 DOI: 10.1017/s1431927619015113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heat-induced antigen retrieval (HIAR) treatment improves the antigen immunodetection in formalin-fixed, paraffin-embedded tissue samples and it can also improve the detection of intracellular antigens in alcohol-fixed cytological samples, although it could deleteriously impact immunodetection, particularly that of membranous antigens. We examined the differences in cell surface topography on MCF7 cells fixed in methanol/acetone (M/A) or 4% paraformaldehyde (4% PFA), as well as the changes caused by HIAR treatment at three different temperatures (60, 90, and 120°C), using atomic force microscopy. Furthermore, the consequences for immunostaining of five membranous antigens [epidermal growth factor receptor (EGFR), E-cadherin, CD9, CD24, and CD44] were examined. Our results illustrate that while there was no one single optimal immunostaining condition for the tested antibodies, the surface topography could be an important factor in successful staining. Generally, the best conditions for successful immunostaining were M/A fixation with no HIAR treatment, whereas in 4% PFA-fixed cells, HIAR treatment at 120°C was optimal. These conditions showed similarity in cell surface skewness. A correlation factor between successful immunocytochemical staining and the skewness parameter was 0.8000. Our results indicate that the presence of valleys, depressions, scratches, and pits on the cell surface is unfavorable for the successful immunodetection of cell surface antigens.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
| | - Jakub Malohlava
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
| |
Collapse
|
5
|
Gosenca Matjaž M, Škarabot M, Gašperlin M, Janković B. Lamellar liquid crystals maintain keratinocytes' membrane fluidity: An AFM qualitative and quantitative study. Int J Pharm 2019; 572:118712. [PMID: 31593808 DOI: 10.1016/j.ijpharm.2019.118712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/21/2023]
Abstract
Despite extensive investigations of lamellar liquid crystals for dermal application, the effects of these systems at the cellular level are still not well elucidated. The key aim of this study was to determine the elasticity and morphological features of keratinocytes after exposure to a lamellar liquid crystal system (LLCS) using atomic force microscopy (AFM) as the method of choice. Prior to AFM assessment, a cell proliferation test and light plus fluorescence imaging were applied to determine the sub-toxic concentration of LLCS. According to the AFM results, slightly altered morphology was observed in the case of fixed keratinocytes, while an intact morphology was visualized on live cells. From the quantitative study, decreased Young's moduli were determined for fixed cells (i.e., 8.6 vs. 15.2 MPa and 1.3 vs. 2.9 MPa for ethanol or PFA-fixed LLCS-treated vs. control cells, respectively) and live cells (i.e., ranging from 0.6 to 2.8 for LLCS-treated vs. 1.1-4.5 MPa for untreated cells), clearly demonstrating increased cell elasticity. This is related to improved membrane fluidity as a consequence of interactions between the acyl chains of cell membrane phosphatidylcholine and those of LLCS. What seems to be of major importance is that the study confirms the potential clinical relevance of such systems in treatment of aged skin with characteristically more rigid epithelial cells.
Collapse
Affiliation(s)
- Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Miha Škarabot
- Jožef Stefan Institute, Department of Condensed Matter Physics, Jamova cesta 39, Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Biljana Janković
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Glycerol-3-phosphate acyltransferase 2 expression modulates cell roughness and membrane permeability: An atomic force microscopy study. PLoS One 2017; 12:e0189031. [PMID: 29211789 PMCID: PMC5718561 DOI: 10.1371/journal.pone.0189031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022] Open
Abstract
In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology.
Collapse
|
7
|
Poosarla VG, Wood TL, Zhu L, Miller DS, Yin B, Wood TK. Dispersal and inhibitory roles of mannose, 2-deoxy-d-glucose and N-acetylgalactosaminidase on the biofilm of Desulfovibrio vulgaris. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:779-787. [PMID: 28925553 DOI: 10.1111/1758-2229.12595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Biofilms of sulfate-reducing bacteria (SRB) are often the major cause of microbiologically influenced corrosion. The representative SRB Desulfovibrio vulgaris has previously been shown to have a biofilm that consists primarily of protein. In this study, by utilizing lectin staining, we identified that the biofilm of D. vulgaris also consists of the matrix components mannose, fucose and N-acetylgalactosamine (GalNAc), with mannose predominating. Based on these results, we found that the addition of mannose and the nonmetabolizable mannose analog 2-deoxy-d-glucose inhibits the biofilm formation of D. vulgaris as well as that of D. desulfuricans; both compounds also dispersed the SRB biofilms. In addition, the enzyme N-acetylgalactosaminidase, which degrades GalNAc, was effective in dispersing D. vulgaris biofilms. Therefore, by determining composition of the SRB biofilm, effective biofilm control methods may be devised.
Collapse
Affiliation(s)
- Venkata G Poosarla
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Lei Zhu
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel S Miller
- Dow Microbial Control, Dow Chemical Company, Collegeville, PA 19426, USA
| | - Bei Yin
- Dow Microbial Control, Dow Chemical Company, Collegeville, PA 19426, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Kumar M, Mazur S, Ork BL, Postnikova E, Hensley LE, Jahrling PB, Johnson R, Holbrook MR. Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus. J Virol Methods 2015; 223:13-8. [PMID: 26190637 PMCID: PMC4555185 DOI: 10.1016/j.jviromet.2015.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 01/23/2023]
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30 min of contact time in a cell culture system while a mixture of methanol and acetone required 60 min to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities.
Collapse
Affiliation(s)
- Mia Kumar
- Emerging Viral Pathogens Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Steven Mazur
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States
| | - Britini L Ork
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States
| | - Elena Postnikova
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States
| | - Lisa E Hensley
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States
| | - Peter B Jahrling
- Emerging Viral Pathogens Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States
| | - Reed Johnson
- Emerging Viral Pathogens Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Michael R Holbrook
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States.
| |
Collapse
|
9
|
Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy. Sci Rep 2015; 5:10250. [PMID: 25974639 PMCID: PMC4431353 DOI: 10.1038/srep10250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/08/2015] [Indexed: 11/08/2022] Open
Abstract
Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.
Collapse
|
10
|
Targosz-Korecka M, Brzezinka GD, Danilkiewicz J, Rajfur Z, Szymonski M. Glutaraldehyde fixation preserves the trend of elasticity alterations for endothelial cells exposed to TNF-α. Cytoskeleton (Hoboken) 2015; 72:124-30. [PMID: 25786919 DOI: 10.1002/cm.21217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/08/2015] [Accepted: 02/20/2015] [Indexed: 01/27/2023]
Abstract
Among the users of atomic force microscopy based techniques, there is an ongoing discussion, whether cell elasticity measurements performed on fixed cells could be used for determination of the relative elasticity changes of the native (unfixed) cells subjected to physiologically active external agents. In this article, we present a case, for which the legitimacy of cell fixation for elasticity measurements is justified. We provide an evidence that the alterations of cell elasticity triggered by tumor necrosis factor alpha (TNF-α) in EA.hy926 endothelial cells are preserved after glutaraldehyde (GA) fixation. The value of post-fixation elasticity parameter is a product of the elasticity parameter obtained for living cells and a constant value, dependent on the GA concentration. The modification of the initial value of elasticity parameter caused by remodeling of the cortical actin cytoskeleton is reflected in the elasticity measurements performed on fixed cells. Thus, such fixation procedure may be particularly helpful for experiments, where the influence of an external agent on the cell cortex should be assessed and AFM measurements of living cells are problematic or better statistics is needed.
Collapse
Affiliation(s)
- Marta Targosz-Korecka
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University in Krakow, Krakow, Poland
| | | | | | | | | |
Collapse
|
11
|
Recek N, Cheng X, Keidar M, Cvelbar U, Vesel A, Mozetic M, Sherman J. Effect of cold plasma on glial cell morphology studied by atomic force microscopy. PLoS One 2015; 10:e0119111. [PMID: 25803024 PMCID: PMC4372419 DOI: 10.1371/journal.pone.0119111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/28/2015] [Indexed: 01/12/2023] Open
Abstract
The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.
Collapse
Affiliation(s)
- Nina Recek
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Xiaoqian Cheng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C., United States of America
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C., United States of America
- Department of Neurosurgery, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| | - Uros Cvelbar
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Miran Mozetic
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Jonathan Sherman
- Department of Neurosurgery, The George Washington University, Washington, D.C., United States of America
| |
Collapse
|
12
|
Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, Sivasudha T. Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:684-692. [PMID: 25544184 DOI: 10.1016/j.saa.2014.11.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 11/10/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
Quantum dots not only act as nanocarrier but also act as stable and resistant natural fluorescent bio markers used in various in vitro and in vivo photolabelling and biological applications. In this study, the antimicrobial potential of TGA-CdTe QDs and commercial phenolics (rutin and caffeine) were investigated against Escherichiacoli. UV absorbance and fluorescence quenching study of TGA-CdTe QDs with rutin and caffeine complex was measured by spectroscopic technique. QDs-rutin conjugate exhibited excellent quenching property due to the -OH groups present in the rutin structure. But the same time caffeine has not conjugated with QDs because of lacking of -OH group in its structure. Photolabelling of E. coli with QDs-rutin and QDs-caffeine complex was analyzed by fluorescent microscopic method. Microbe E. coli cell membrane damage was assessed by atomic force (AFM) and confocal microscopy. Based on the results obtained, it is suggested that QDs-rutin conjugate enhance the antimicrobial activity more than the treatment with QDs, rutin and caffeine alone.
Collapse
Affiliation(s)
- Devanesan Arul Ananth
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Angappan Rameshkumar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India; TUV - SUD, South Asia Laboratory, Bangalore 560 058, India
| | - Ramachandran Jeyadevi
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | | | - Natarajan Nagarajan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajalingam Renganathan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Thilagar Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
13
|
Stefanutti E, Papacci F, Sennato S, Bombelli C, Viola I, Bonincontro A, Bordi F, Mancini G, Gigli G, Risuleo G. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2646-55. [PMID: 25017801 DOI: 10.1016/j.bbamem.2014.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022]
Abstract
Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage.
Collapse
Affiliation(s)
- E Stefanutti
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
| | - F Papacci
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - S Sennato
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy; dCNR-IPCF, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
| | - C Bombelli
- CNR, Istituto di Metodologie Chimiche and Dipartimento di Chimica Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - I Viola
- National Nanotechnology Laboratory, Institute Nanoscience-CNR (NNL, CNR-NANO), I-73100 Lecce, Italy and c/o Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
| | - A Bonincontro
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
| | - F Bordi
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy; dCNR-IPCF, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291-00161 Roma, Italy
| | - G Mancini
- CNR, Istituto di Metodologie Chimiche and Dipartimento di Chimica Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - G Gigli
- National Nanotechnology Laboratory, Institute Nanoscience-CNR (NNL, CNR-NANO), I-73100 Lecce, Italy and c/o Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy; Università del Salento, Dip. di Matematica e Fisica Ennio de Giorgi and Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
| | - G Risuleo
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
14
|
Oral cancer diagnostics based on infrared spectral markers and wax physisorption kinetics. Anal Bioanal Chem 2013; 405:1995-2007. [PMID: 23318761 DOI: 10.1007/s00216-012-6625-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Infrared microspectroscopy is an emerging approach for disease analysis owing to its capability for in situ chemical characterization of pathological processes. Synchrotron-based infrared microspectroscopy (SR-IMS) provides ultra-high spatial resolution for profiling biochemical events associated with disease progression. Spectral alterations were observed in cultured oral cells derived from healthy, precancerous, primary, and metastatic cancers. An innovative wax-physisorption-based kinetic FTIR imaging method for the detection of oral precancer and cancer was demonstrated successfully. The approach is based on determining the residual amount of paraffin wax (C(25)H(52)) or beeswax (C(46)H(92)O(2)) on a sample surface after xylene washing. This amount is used as a signpost of the degree of physisorption that altered during malignant transformation. The results of linear discriminant analysis (LDA) of oral cell lines indicated that the methylene (CH(2)) and methyl group (CH(3)) stretching vibrations in the range of 3,000-2,800 cm(-1) have the highest accuracy rate (89.6 %) to discriminate the healthy keratinocytes (NHOK) from cancer cells. The results of wax-physisorption-based FTIR imaging showed a stronger physisorption with beeswax in oral precancerous and cancer cells as compared with that of NHOK, which showed a strong capability with paraffin wax. The infrared kinetic study of oral cavity tissue showed a consistency in the wax physisorption of the cell lines. On the basis of our findings, these results show the potential use of wax-physisorption-based kinetic FTIR imaging for the early screening of oral cancer lesions and the chemical changes during oral carcinogenesis.
Collapse
|
15
|
Bodega G, Suárez I, López-Fernández LA, García MI, Köber M, Penedo M, Luna M, Juárez S, Ciordia S, Oria M, Córdoba J, Fernández B. Ammonia induces aquaporin-4 rearrangement in the plasma membrane of cultured astrocytes. Neurochem Int 2012; 61:1314-24. [PMID: 23022607 DOI: 10.1016/j.neuint.2012.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
Aquaporin-4 (AQP4) is a water channel protein mainly located in the astroglial plasma membrane, the precise function of which in the brain edema that accompanies hepatic encephalopathy (HE) is unclear. Since ammonia is the main pathogenic agent in HE, its effect on AQP4 expression and distribution in confluent primary astroglial cultures was examined via their exposure to ammonium chloride (1, 3 and 5 mM) for 5 and 10 days. Ammonia induced the general inhibition of AQP4 mRNA synthesis except in the 1 mM/5 day treatment. However, the AQP4 protein content measured was dependent on the method of analysis; an apparent increase was recorded in treated cells in in-cell Western assays, while an apparent reduction was seen with the classic Western blot method, perhaps due to differences in AQP4 aggregation. Ammonia might therefore induce the formation of insoluble AQP4 aggregates in the astroglial plasma membrane. The finding of AQP4 in the pellet of classic Western blot samples, plus data obtained via confocal microscopy, atomic force microscopy (using immunolabeled cells with gold nanoparticles) and scanning electron microscopy, all corroborate this hypothesis. The effect of ammonia on AQP4 seems not to be due to any osmotic effect; identical osmotic stress induced by glutamine and salt had no significant effect on the AQP4 content. AQP4 functional analysis (subjecting astrocytes to a hypo-osmotic medium and using flow cytometry to measure cell size) demonstrated a smaller water influx in ammonia-treated astrocytes suggesting that AQP4 aggregates are representative of an inactive status; however, more confirmatory studies are required to fully understand the functional status of AQP4 aggregates. The present results suggest that ammonia affects AQP4 expression and distribution, and that astrocytes change their expression of AQP4 mRNA as well as the aggregation status of the ensuing protein depending on the ammonia concentration and duration of exposure.
Collapse
Affiliation(s)
- Guillermo Bodega
- Departamento de Biología Celular y Genética, Facultad de Biología, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu BY, Zhang GM, Li XL, Chen H. Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy. SCANNING 2012; 34:6-11. [PMID: 21898456 DOI: 10.1002/sca.20269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) is a promising microscopy technique that can provide high-resolution images of bacterial cells without fixation. Three species of bacteria, Xanthomonas campestris, Pseudomonas syringae, and Bacillus subtilis, were used in this study. AFM images were obtained from unfixed and glutaraldehyde-fixed cells, and cell height was measured. The mean height of bacterial cells prepared by fixation was higher than that of those prepared by nonfixation. However, the height changes were different between Gram-negative and Gram-positive bacteria: the mean height of two fixed Gram-negative bacteria, X. campestris and P. syringae, increased by 112.31 and 84.08%, respectively, whereas Gram-positive bacterium, B. subtilis, increased only by 38.79%. The results above indicated that glutaraldehyde fixation could affect the measured height of cells imaged by AFM; further more, the effect of glutaraldehyde fixation on the measured height of Gram-negative bacterial cells imaged by AFM seemed much more than on that of Gram-positive bacterial cells.
Collapse
Affiliation(s)
- Bao You Liu
- Yantai Academy of Agriculture Sciences, Yan Tai, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Chao Y, Zhang T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol 2011; 92:381-92. [PMID: 21881891 PMCID: PMC3181414 DOI: 10.1007/s00253-011-3551-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/06/2011] [Accepted: 08/13/2011] [Indexed: 11/14/2022]
Abstract
Fixation ability of five common fixation solutions, including 2.5% glutaraldehyde, 10% formalin, 4% paraformaldehyde, methanol/acetone (1:1), and ethanol/acetic acid (3:1) were evaluated by using atomic force microscopy in the present study. Three model bacteria, i.e., Escherichia coli, Pseudomonas putida, and Bacillus subtilis were applied to observe the above fixation methods for the morphology preservation of bacterial cells and surface ultrastructures. All the fixation methods could effectively preserve cell morphology. However, for preserving bacterial surface ultrastructures, the methods applying aldehyde fixations performed much better than those using alcohols, since the alcohols could detach the surface filaments (i.e., flagella and pili) significantly. Based on the quantitative and qualitative assessments, the 2.5% glutaraldehyde was proposed as a promising fixation solution both for observing morphology of both bacterial cell and surface ultrastructures, while the methonal/acetone mixture was the worst fixation solution which may obtain unreliable results.
Collapse
Affiliation(s)
- Yuanqing Chao
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | | |
Collapse
|
18
|
Andreeva N, Bassi D, Cappa F, Cocconcelli P, Parmigiani F, Ferrini G. Nanomechanical analysis of Clostridium tyrobutyricum spores. Micron 2010; 41:945-52. [DOI: 10.1016/j.micron.2010.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
|
19
|
FRANCIS L, GONZALEZ D, RYDER T, BAER K, REES M, WHITE J, CONLAN R, WRIGHT C. Optimized sample preparation for high-resolution AFM characterization of fixed human cells. J Microsc 2010; 240:111-21. [DOI: 10.1111/j.1365-2818.2010.03392.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Lee GJ, Park EJ, Choi S, Park JH, Jeong KH, Kim KS, Lee SH, Park HK. Observation of angiotensin II-induced changes in fixed and live mesangial cells by atomic force microscopy. Micron 2010; 41:220-6. [DOI: 10.1016/j.micron.2009.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/29/2009] [Indexed: 11/16/2022]
|
21
|
Städler B, Blättler TM, Franco-Obregón A. Time-lapse imaging of in vitro myogenesis using atomic force microscopy. J Microsc 2010; 237:63-9. [PMID: 20055919 DOI: 10.1111/j.1365-2818.2009.03302.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myoblast therapy relies on the integration of skeletal muscle stem cells into distinct muscular compartments for the prevention of clinical conditions such as heart failure, or bladder dysfunction. Understanding the fundamentals of myogenesis is hence crucial for the success of these potential medical therapies. In this report, we followed the rearrangement of the surface membrane structure and the actin cytoskeletal organization in C2C12 myoblasts at different stages of myogenesis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). AFM imaging of living myoblasts undergoing fusion unveiled that within minutes of making cell-cell contact, membrane tubules appear that unite the myoblasts and increase in girth as fusion proceeds. CLSM identified these membrane tubules as built on scaffolds of actin filaments that nucleate at points of contact between fusing myoblasts. In contrast, similarly behaving membrane tubules are absent during cytokinesis. The results from our study in combination with recent findings in literature further expand the understanding of the biochemical and membrane structural rearrangements involved in the two fundamental cellular processes of division and fusion.
Collapse
Affiliation(s)
- B Städler
- Laboratory of Biosensors and Bioelectronics, Mechanobiology Laboratory, Institute for Biomedical Engineering, ETH Zurich, Switzerland
| | | | | |
Collapse
|
22
|
Wozniak MJ, Kawazoe N, Tateishi T, Chen G. Monitoring of mechanical properties of serially passaged bovine articular chondrocytes by atomic force microscopy. Micron 2009; 40:870-5. [PMID: 19595604 DOI: 10.1016/j.micron.2009.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/03/2009] [Accepted: 06/10/2009] [Indexed: 11/30/2022]
Abstract
Atomic force microscopy (AFM) is a powerful tool in imaging cells and tissues and probing their mechanical properties. Articular chondrocytes, the cells responsible for the production and maintenance of cartilaginous extracellular matrix in the knee joint, change their morphology and dedifferentiate during in vitro expansion culture. It was unclear if the mechanical properties of chondrocytes change accompanying phenotype variation. The elasticity of in vitro serially cultured bovine articular chondrocytes was investigated using AFM. The chondrocytes changed their morphology from round to spindle-like. The freeze-dried P0 chondrocytes showed significantly higher modulus than did the serially passaged (P1-P4) chondrocytes. The change of chondrocyte morphology was accompanied with a decrease of elastic modulus.
Collapse
Affiliation(s)
- Michal Jerzy Wozniak
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | |
Collapse
|
23
|
Barachini S, Trombi L, Danti S, D'Alessandro D, Battolla B, Legitimo A, Nesti C, Mucci I, D'Acunto M, Cascone MG, Lazzeri L, Mattii L, Consolini R, Petrini M. Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine. Stem Cells Dev 2009; 18:293-305. [PMID: 18444788 DOI: 10.1089/scd.2008.0017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising source of progenitor cells having the potential to repair and to regenerate diseased or damaged skeletal tissues. Bone marrow (BM) has been the first source reported to contain MSCs. However, BM-derived cells are not always acceptable, due to the highly invasive drawing and the decline in MSC number and differentiative capability with increasing age. Human umbilical cord blood (UCB), obtainable by donation with a noninvasive method, has been introduced as an alternative source of MSCs. Here human UCB-derived MSCs isolation and morpho-functional characterization are reported. Human UCB-derived mononuclear cells, obtained by negative immunoselection, exhibited either an osteoclast-like or a mesenchymal-like phenotype. However, we were able to obtain homogeneous populations of MSCs that displayed a fibroblast-like morphology, expressed mesenchym-related antigens and showed differentiative capacities along osteoblastic and early chondroblastic lineages. Furthermore, this study is one among a few papers investigating human UCB-derived MSC growth and differentiation on three-dimensional scaffolds focusing on their potential applications in regenerative medicine and tissue engineering. UCB-derived MSCs were proved to grow on biodegradable microfiber meshes; additionally, they were able to differentiate toward mature osteoblasts when cultured inside human plasma clots, suggesting their potential application in orthopedic surgery.
Collapse
Affiliation(s)
- Serena Barachini
- RRMR/CUCCS, Regional Network of Regenerative Medicine/Center for the Clinical Use of Stem Cells, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Birukova AA, Arce FT, Moldobaeva N, Dudek SM, Garcia JGN, Lal R, Birukov KG. Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 5:30-41. [PMID: 18824415 DOI: 10.1016/j.nano.2008.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 06/19/2008] [Accepted: 07/30/2008] [Indexed: 12/11/2022]
Abstract
Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Biomedical Sciences, Department of Medicine, Section of Pulmonary and Critical Care Medicine University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Variations in mass transfer to single endothelial cells. Biomech Model Mechanobiol 2008; 8:183-93. [DOI: 10.1007/s10237-008-0127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/03/2008] [Indexed: 11/26/2022]
|
26
|
Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin. Biophys J 2008; 95:886-94. [PMID: 18408039 DOI: 10.1529/biophysj.107.127167] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disruption of pulmonary endothelial cell (EC) barrier function is a critical pathophysiologic event in highly morbid inflammatory conditions such as sepsis and acute respiratory disease stress syndrome. Actin cytoskeleton, an essential regulator of endothelial permeability, is a dynamic structure whose stimuli-induced rearrangement is linked to barrier modulation. Here, we used atomic force microscopy to characterize structural and mechanical changes in the F-actin cytoskeleton of cultured human pulmonary artery EC in response to both barrier-enhancing (induced by sphingosine 1-phosphate (S1P)) and barrier-disrupting (induced by thrombin) conditions. Atomic force microscopy elasticity measurements show differential effects: for the barrier protecting molecule S1P, the elastic modulus was elevated significantly on the periphery; for the barrier-disrupting molecule thrombin, on the other hand, it was elevated significantly in the central region of the cell. The force and elasticity maps correlate with F-actin rearrangements as identified by immunofluorescence analysis. Significantly, reduced expression (via siRNA) of cortactin, an actin-binding protein essential to EC barrier regulation, resulted in a shift in the S1P-mediated elasticity pattern to more closely resemble control, unstimulated endothelium.
Collapse
|
27
|
Danti S, D'Acunto M, Trombi L, Berrettini S, Pietrabissa A. A Micro/Nanoscale Surface Mechanical Study on Morpho-Functional Changes in Multilineage-Differentiated Human Mesenchymal Stem Cells. Macromol Biosci 2007; 7:589-98. [PMID: 17477443 DOI: 10.1002/mabi.200600271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In recent years MSCs have become a very attractive tool in tissue engineering and regenerative medicine because of their ability to be committed along several lineages through chemical or physical stimuli. Nevertheless their therapeutic potential and plasticity are not yet totally understood. This report describes the use of AFM together with conventional microscopies to obtain mechanical information on cell surfaces and deposited extra cellular matrix molecules, after inducing the differentiation of human MSCs towards three typical mesoderm phenotypes. The aim is to correlate morphological, functional, and mechanical aspects of human MSCs to obtain a deeper understanding of their great potential.
Collapse
Affiliation(s)
- Serena Danti
- Centre for Clinical Use of Stem Cells, University of Pisa, Italy.
| | | | | | | | | |
Collapse
|
28
|
Muramatsu H, Yamamoto Y, Sato A, Enomoto S, Kim WS, Chang SM, Kim JM. Long polymeric tips of atomic force microscopy for large biological samples. J Microsc 2007; 224:146-51. [PMID: 17204061 DOI: 10.1111/j.1365-2818.2006.01688.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show a new atomic force microscopy technique for obtaining high-resolution topographic images of large bio-samples. To obtain high-resolution topographic images for the samples, we fabricated a long polymeric tip with a small protrusion using two-photon adsorbed photo-polymerization techniques. The obtained tip length was over 50 microm, and the tip was used directly to visualize COS-1 and 293 cells. Compared with commercial tips, the long tip made it easier to obtain topographic images of the large cells. In the magnified topographic images, the sub-100-nm resolution was confirmed with the long tips. This long probe tip is expected to broaden large sample-related studies and applications in the future.
Collapse
Affiliation(s)
- Hiroshi Muramatsu
- School of Bionics, Tokyo University of Technology, Katakura, Hachioji, Tokyo 192-0982, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Falconi M, Teti G, Zago M, Pelotti S, Gobbi P, Breschi L, Mazzotti G. Effect of Fixative on Chromatin Structure and DNA Detection. Microsc Res Tech 2007; 70:599-606. [PMID: 17323367 DOI: 10.1002/jemt.20440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we analyzed the chromatin ultrastructure in interphase cells after different chemical fixations. In light of the fact that there is little information regarding the fixation of biological samples in combination with molecular biology methods (such as DNA extraction and in situ hybridization methods) we analyzed the ultrastructure of chromatin in interphase cells fixed with different fixatives and tested under the same conditions for both DNA extraction and in situ hybridization. The results showed that, among the different combinations and concentrations we analyzed, the solution of 4% paraformaldehyde/0.1% glutaraldehyde was the best compromise in order to achieve a well-preserved morphology, successful DNA extraction, and specific signaling of in situ hybridization, suggesting a low interference of this fixative with the chromatin organization.
Collapse
Affiliation(s)
- Mirella Falconi
- Department of Anatomical Sciences, University of Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Bálint Z, Krizbai IA, Wilhelm I, Farkas AE, Párducz A, Szegletes Z, Váró G. Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:113-20. [PMID: 17115151 DOI: 10.1007/s00249-006-0112-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/20/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Understanding the reaction of living cells in response to different extracellular stimuli, such as hyperosmotic stress, is of primordial importance. Mannitol, a cell-impermeable non-toxic alcohol, has been used successfully for reversible opening of the blood-brain barrier in hyperosmotic concentrations. In this study we analyzed the effect of hyperosmotic mannitol on the shape and surface structure of living cerebral endothelial cells by atomic force microscope imaging technique. Addition of clinically relevant concentrations of mannitol to the culture medium of the confluent cells induced a decrease of about 40% in the observed height of the cells. This change was consistent both at the nuclear and peripheral region of the cells. After mannitol treatment even a close examination of the contact surface between the cells did not reveal gap between them. We could observe the appearance of surface protrusions of about 100 nm. By force measurements the elasticity of the cells were estimated. While the Young's modulus of the control cells appeared to be 8.04 +/- 0.12 kPa, for the mannitol-treated cells it decreased to an estimated value of 0.93 +/- 0.04 kPa which points to large structural changes inside the cell.
Collapse
Affiliation(s)
- Zoltán Bálint
- Institute of Biophysics, Biological Research Center of Hungarian Academy of Sciences, Temesvari krt 62, Szeged 6726, Hungary
| | | | | | | | | | | | | |
Collapse
|
31
|
McNamee CE, Pyo N, Tanaka S, Kanda Y, Higashitani K. Imaging of a soft, weakly adsorbing, living cell with a colloid probe tapping atomic force microscope technique. Colloids Surf B Biointerfaces 2006; 47:85-9. [PMID: 16406494 DOI: 10.1016/j.colsurfb.2005.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/09/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Here, we propose a new method to improve the atomic force microscopy (AFM) image resolution of soft samples, such as cells, in liquid. Attaching a colloid probe to a cantilever was seen improve the image resolution of a living cell in a physiological buffer solution, obtained by the normal tapping mode, when compared to an image obtained using a regular cantilever tip. This may be due to the averaging out of the cantilever tip swinging caused by the visco-elasticity of the cell. The resolution was best, when silica spheres with a 3.3 microm diameter were attached. Although larger spheres gave a resolution better than a bare cantilever tip, their resolution was less than that obtained for the 3.3 microm diameter silica colloid. This dependency of the image resolution on the colloid probe size may be a result of the increased macroscopic van der Waals attraction between the cell and probe, the decreased repulsive force dependence on the cantilever probe radius, and the decrease in resolution due to the increased probe size. The size of the colloid probe, which should be attached to the cantilever to give the best image resolution, would be the one that optimises the combined result of these facts.
Collapse
Affiliation(s)
- Cathy E McNamee
- Department of Chemical Engineering, Kyoto University-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
32
|
Pernak A, Iwanik K, Majewski P, Grzymisławski M, Pernak J. Ionic liquids as an alternative to formalin in histopathological diagnosis. Acta Histochem 2005; 107:149-56. [PMID: 15885759 DOI: 10.1016/j.acthis.2005.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 02/01/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
Asymmetry of cations and the type of anions play a key role in the properties of ionic liquids (ILs) as fixatives for tissue preservation. 1-Methyl-3-octyloxymethylimidazolium tetrafluoroborate has proven to be a very good fixative, with similar effects as formalin. Our study shows that it is applicable for both histological and immunohistochemical purposes. After treatment with 1-methyl-3-octyloxymethylimidazolium tetrafluoroborate, tissue sections are more intensely stained. With respect to expression patterns and staining intensity, immunohistochemical staining is comparable in tissues fixed in formalin and the selected ILs. The present study demonstrates the properties of 1-methyl-3-octyloxymethylimidazolium tetrafluoroborate for tissue preservation in histopathological procedures, eliminating the requirement of formalin.
Collapse
Affiliation(s)
- Agnieszka Pernak
- University of Medical Sciences in Poznań, Przybyszewskiego 49, Poznań 60-355, Poland
| | | | | | | | | |
Collapse
|