1
|
Millsaps W, Sung SH, Schnitzer N, Kourkoutis LF, Hovden R. Ronchigram Simulation and Aberration Correction Training using Ronchigram.com. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1911-1912. [PMID: 37612953 DOI: 10.1093/micmic/ozad067.987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- William Millsaps
- Engineering Physics Program, University of Michigan, Ann Arbor, MI, United States
| | - Suk Hyun Sung
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Noah Schnitzer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, United States
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Martis J, Susarla S, Rayabharam A, Su C, Paule T, Pelz P, Huff C, Xu X, Li HK, Jaikissoon M, Chen V, Pop E, Saraswat K, Zettl A, Aluru NR, Ramesh R, Ercius P, Majumdar A. Imaging the electron charge density in monolayer MoS 2 at the Ångstrom scale. Nat Commun 2023; 14:4363. [PMID: 37474521 PMCID: PMC10359339 DOI: 10.1038/s41467-023-39304-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
Four-dimensional scanning transmission electron microscopy (4D-STEM) has recently gained widespread attention for its ability to image atomic electric fields with sub-Ångstrom spatial resolution. These electric field maps represent the integrated effect of the nucleus, core electrons and valence electrons, and separating their contributions is non-trivial. In this paper, we utilized simultaneously acquired 4D-STEM center of mass (CoM) images and annular dark field (ADF) images to determine the projected electron charge density in monolayer MoS2. We evaluate the contributions of both the core electrons and the valence electrons to the derived electron charge density; however, due to blurring by the probe shape, the valence electron contribution forms a nearly featureless background while most of the spatial modulation comes from the core electrons. Our findings highlight the importance of probe shape in interpreting charge densities derived from 4D-STEM and the need for smaller electron probes.
Collapse
Affiliation(s)
- Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Sandhya Susarla
- The National Center for Electron Microscopy (NCEM), The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Archith Rayabharam
- Department of Mechanical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Cong Su
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Timothy Paule
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Philipp Pelz
- The National Center for Electron Microscopy (NCEM), The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cassandra Huff
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Xintong Xu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Marc Jaikissoon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Victoria Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Krishna Saraswat
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Alex Zettl
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Narayana R Aluru
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ramamoorthy Ramesh
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Peter Ercius
- The National Center for Electron Microscopy (NCEM), The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Yang P, Li Z, Yang Y, Li R, Qin L, Zou Y. Effects of Electron Microscope Parameters and Sample Thickness on High Angle Annular Dark Field Imaging. SCANNING 2022; 2022:8503314. [PMID: 35360524 PMCID: PMC8958084 DOI: 10.1155/2022/8503314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Scanning transmission electron microscopy (STEM) developed into a very important characterization tool for atomic analysis of crystalline specimens. High-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) has become one of the most powerful tools to visualize material structures at atomic resolution. However, the parameter of electron microscope and sample thickness is the important influence factors on HAADF-STEM imaging. The effect of convergence angle, spherical aberration, and defocus to HAADF imaging process has been analyzed through simulation. The applicability of two HAADF simulation software has been compared, and suggestions for their usage have been given.
Collapse
Affiliation(s)
- Pucheng Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zheng Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yi Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Rui Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lufei Qin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yunhao Zou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
4
|
Prismatic 2.0 - Simulation software for scanning and high resolution transmission electron microscopy (STEM and HRTEM). Micron 2021; 151:103141. [PMID: 34560356 DOI: 10.1016/j.micron.2021.103141] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
Scanning transmission electron microscopy (STEM), where a converged electron probe is scanned over a sample's surface and an imaging, diffraction, or spectroscopic signal is measured as a function of probe position, is an extremely powerful tool for materials characterization. The widespread adoption of hardware aberration correction, direct electron detectors, and computational imaging methods have made STEM one of the most important tools for atomic-resolution materials science. Many of these imaging methods rely on accurate imaging and diffraction simulations in order to interpret experimental results. However, STEM simulations have traditionally required large calculation times, as modeling the electron scattering requires a separate simulation for each of the typically millions of probe positions. We have created the Prismatic simulation code for fast simulation of STEM experiments with support for multi-CPU and multi-GPU (graphics processing unit) systems, using both the conventional multislice and our recently-introduced PRISM method. In this paper, we introduce Prismatic version 2.0, which adds many new algorithmic improvements, an updated graphical user interface (GUI), post-processing of simulation data, and additional operating modes such as plane-wave TEM. We review various aspects of the simulation methods and codes in detail and provide various simulation examples. Prismatic 2.0 is freely available both as an open-source package that can be run using a C++ or Python command line interface, or GUI, as well within a Docker container environment.
Collapse
|
5
|
Liu JJ. Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-53. [PMID: 34414878 DOI: 10.1017/s1431927621012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.
Collapse
Affiliation(s)
- Jingyue Jimmy Liu
- Department of Physics, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
6
|
Hofer C, Skákalová V, Haas J, Wang X, Braun K, Pennington RS, Meyer JC. Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations. Ultramicroscopy 2021; 227:113292. [PMID: 33992503 DOI: 10.1016/j.ultramic.2021.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/14/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
The simple dependence of the intensity in annular dark field scanning transmission electron microscopy images on the atomic number provides (to some extent) chemical information about the sample, and even allows an elemental identification in the case of light-element single-layer samples. However, the intensity of individual atoms and atomic columns is affected by residual aberrations and the confidence of an identification is limited by the available signal to noise. Here, we show that matching a simulation to an experimental image by iterative optimization provides a reliable analysis of atomic intensities even in presence of residual non-round aberrations. We compare our new method with other established approaches demonstrating its high reliability for images recorded at limited dose and with different aberrations. This is of particular relevance for analyzing moderately beam-sensitive materials, such as most 2D materials, where the limited sample stability often makes it difficult to obtain spectroscopic information at atomic resolution.
Collapse
Affiliation(s)
- Christoph Hofer
- Institute for Applied Physics, Eberhard Karls University of Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany; Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany; Faculty of Physics, University of Vienna, Boltzmanng. 5, 1090 Vienna, Austria.
| | - Viera Skákalová
- Faculty of Physics, University of Vienna, Boltzmanng. 5, 1090 Vienna, Austria
| | - Jonas Haas
- Institute for Applied Physics, Eberhard Karls University of Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany; Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany
| | - Robert S Pennington
- Institute for Applied Physics, Eberhard Karls University of Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany; Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | - Jannik C Meyer
- Institute for Applied Physics, Eberhard Karls University of Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany; Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany; Faculty of Physics, University of Vienna, Boltzmanng. 5, 1090 Vienna, Austria
| |
Collapse
|
7
|
Schnitzer N, Sung SH, Hovden R. Optimal STEM Convergence Angle Selection Using a Convolutional Neural Network and the Strehl Ratio. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:921-928. [PMID: 32758324 DOI: 10.1017/s1431927620001841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The selection of the correct convergence angle is essential for achieving the highest resolution imaging in scanning transmission electron microscopy (STEM). The use of poor heuristics, such as Rayleigh's quarter-phase rule, to assess probe quality and uncertainties in the measurement of the aberration function results in the incorrect selection of convergence angles and lower resolution. Here, we show that the Strehl ratio provides an accurate and efficient way to calculate criteria for evaluating the probe size for STEM. A convolutional neural network trained on the Strehl ratio is shown to outperform experienced microscopists at selecting a convergence angle from a single electron Ronchigram using simulated datasets. Generating tens of thousands of simulated Ronchigram examples, the network is trained to select convergence angles yielding probes on average 85% nearer to optimal size at millisecond speeds (0.02% of human assessment time). Qualitative assessment on experimental Ronchigrams with intentionally introduced aberrations suggests that trends in the optimal convergence angle size are well modeled but high accuracy requires a high number of training datasets. This near-immediate assessment of Ronchigrams using the Strehl ratio and machine learning highlights a viable path toward the rapid, automated alignment of aberration-corrected electron microscopes.
Collapse
Affiliation(s)
- Noah Schnitzer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48019, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, USA
| | - Suk Hyun Sung
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48019, USA
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48019, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
8
|
Lopatin S, Aljarb A, Roddatis V, Meyer T, Wan Y, Fu JH, Hedhili M, Han Y, Li LJ, Tung V. Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism. SCIENCE ADVANCES 2020; 6:eabb8431. [PMID: 32917685 PMCID: PMC11206469 DOI: 10.1126/sciadv.abb8431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
High-resolution scanning transmission electron microscopy (HR-STEM) with spherical aberration correction enables researchers to peer into two-dimensional (2D) materials and correlate the material properties with those of single atoms. The maximum intensity of corrected electron beam is confined in the area having sub-angstrom size. Meanwhile, the residual threefold astigmatism of the electron probe implies a triangular shape distribution of the intensity, whereas its tails overlap and thus interact with several atomic species simultaneously. The result is the resonant modulation of contrast that interferes the determination of phase transition of 2D materials. Here, we theoretically reveal and experimentally determine the origin of resonant modulation of contrast and its unintended impact on violating the power-law dependence of contrast on coordination modes between transition metal and chalcogenide atoms. The finding illuminates the correlation between atomic contrast, spatially inequivalent chalcogenide orientation, and residual threefold astigmatism on determining the atomic structure of emerging 2D materials.
Collapse
Affiliation(s)
- Sergei Lopatin
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Areej Aljarb
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
- Department of Physics, King Abdulaziz University, Jeddah 23955-6900, Saudi Arabia
| | - Vladimir Roddatis
- Institute of Materials Physics, University of Goettingen, Goettingen, Germany
| | - Tobias Meyer
- 4th Institute of Physics - Solids and Nanostructures, University of Goettingen, Goettingen, Germany
| | - Yi Wan
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jui-Han Fu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Hedhili
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yimo Han
- Department of Molecular Biology, Princeton University, NJ 08544-1044, USA
| | - Lain-Jong Li
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vincent Tung
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Meyer J. Resolving the controversy. NATURE MATERIALS 2018; 17:210-211. [PMID: 29467507 DOI: 10.1038/s41563-018-0026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Jannik Meyer
- Physics of Nanostructured Materials Group, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Fine tuning an aberration corrected ADF-STEM. Ultramicroscopy 2018; 186:62-65. [DOI: 10.1016/j.ultramic.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
|
11
|
Kirkland EJ. Computation in electron microscopy. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2016; 72:1-27. [DOI: 10.1107/s205327331501757x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/19/2015] [Indexed: 11/11/2022]
Abstract
Some uses of the computer and computation in high-resolution transmission electron microscopy are reviewed. The theory of image calculation using Bloch wave and multislice methods with and without aberration correction is reviewed and some applications are discussed. The inverse problem of reconstructing the specimen structure from an experimentally measured electron microscope image is discussed. Some future directions of software development are given.
Collapse
|
12
|
Nguyen D, Findlay S, Etheridge J. The spatial coherence function in scanning transmission electron microscopy and spectroscopy. Ultramicroscopy 2014; 146:6-16. [DOI: 10.1016/j.ultramic.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
13
|
Nie YF, Zhu Y, Lee CH, Kourkoutis LF, Mundy JA, Junquera J, Ghosez P, Baek DJ, Sung S, Xi XX, Shen KM, Muller DA, Schlom DG. Atomically precise interfaces from non-stoichiometric deposition. Nat Commun 2014; 5:4530. [DOI: 10.1038/ncomms5530] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/27/2014] [Indexed: 11/09/2022] Open
|
14
|
Detector non-uniformity in scanning transmission electron microscopy. Ultramicroscopy 2013; 124:52-60. [DOI: 10.1016/j.ultramic.2012.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/24/2012] [Accepted: 09/03/2012] [Indexed: 11/23/2022]
|
15
|
Scanning transmission electron microscopy: Albert Crewe's vision and beyond. Ultramicroscopy 2012; 123:90-8. [DOI: 10.1016/j.ultramic.2012.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/15/2012] [Indexed: 11/22/2022]
|
16
|
Grillo V, Rotunno E. STEM_CELL: a software tool for electron microscopy: part 1--simulations. Ultramicroscopy 2012; 125:97-111. [PMID: 23265085 DOI: 10.1016/j.ultramic.2012.10.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/24/2012] [Accepted: 10/27/2012] [Indexed: 11/18/2022]
Abstract
The software STEM_CELL, here presented, is a useful tool for (S) TEM simulation. In particular innovative solutions are presented in (1) the supercell manipulation and parameters setting (2) simulation execution through the modified Kirkland routines (3) simulation post-processing with extended output and comprehensive graphic tools (4) image contrast interpretation through a strain channeling equation accounting for strain effects in STEM-ADF.
Collapse
|
17
|
Hovden R, Muller DA. Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope. Ultramicroscopy 2012; 123:59-65. [PMID: 22727335 DOI: 10.1016/j.ultramic.2012.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 04/17/2012] [Accepted: 04/29/2012] [Indexed: 10/28/2022]
Abstract
Mono-atomic-layer membranes such as graphene offer new opportunities for imaging and detecting individual light atoms in transmission electron microscopes (TEM). For such applications where multiple scattering and diffraction effects are weak, we evaluate the detection efficiency and interpretability of single atom images for the most common detector geometries using quantitative quantum mechanical simulations. For well-resolved and atomically-thin specimens, the low angle annular dark field (LAADF) detector can provide a significant increase in signal-to-noise over other common detector geometries including annular bright field and incoherent bright field. This dramatically improves the visibility of organic specimens on atomic-layer membranes. Simulations of Adenosine Triphosphate (ATP) imaged under ideal conditions indicate the minimal dose requirements for elastic imaging by STEM or conventional TEM still exceed previously reported dose limits.
Collapse
Affiliation(s)
- Robert Hovden
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 148532, USA.
| | | |
Collapse
|