1
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Gaida JH, Lourenço-Martins H, Yalunin SV, Feist A, Sivis M, Hohage T, García de Abajo FJ, Ropers C. Lorentz microscopy of optical fields. Nat Commun 2023; 14:6545. [PMID: 37848420 PMCID: PMC10582189 DOI: 10.1038/s41467-023-42054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
In electron microscopy, detailed insights into nanoscale optical properties of materials are gained by spontaneous inelastic scattering leading to electron-energy loss and cathodoluminescence. Stimulated scattering in the presence of external sample excitation allows for mode- and polarization-selective photon-induced near-field electron microscopy (PINEM). This process imprints a spatial phase profile inherited from the optical fields onto the wave function of the probing electrons. Here, we introduce Lorentz-PINEM for the full-field, non-invasive imaging of complex optical near fields at high spatial resolution. We use energy-filtered defocus phase-contrast imaging and iterative phase retrieval to reconstruct the phase distribution of interfering surface-bound modes on a plasmonic nanotip. Our approach is universally applicable to retrieve the spatially varying phase of nanoscale fields and topological modes.
Collapse
Affiliation(s)
- John H Gaida
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Hugo Lourenço-Martins
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Sergey V Yalunin
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Armin Feist
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Murat Sivis
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Thorsten Hohage
- Institute of Numerical and Applied Mathematics, University of Göttingen, 37083, Göttingen, Germany
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Claus Ropers
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Iwasaki Y, Akase Z, Shimada K, Harada K, Shindo D. Time-resolved electron holography and its application to an ionic liquid specimen. Microscopy (Oxf) 2023; 72:455-459. [PMID: 36629509 PMCID: PMC10561666 DOI: 10.1093/jmicro/dfad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Time-resolved electron holography was implemented in a transmission electron microscope by means of electron beam gating with a parallel-plate electrostatic deflector. Stroboscopic observations were performed by accumulating gated electron interference images while applying a periodic modulation voltage to a specimen. Electric polarization in an ionic liquid specimen was observed under applied fields. While a static electric field in the specimen was reduced by the polarization of the material, an applied field modulated at 10 kHz was not screened. This indicates that time-resolved electron holography is capable of determining the frequency limit of dynamic response of polarization in materials. Graphical Abstract.
Collapse
Affiliation(s)
- Yoh Iwasaki
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zentaro Akase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Keiko Shimada
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ken Harada
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Shindo
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Liu C, Reisbick SA, Han MG, Pofelski A, Zhu Y. Magnetic Crosstie Formation Driven by In-situ Radio Frequency Excitation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1313-1314. [PMID: 37613315 DOI: 10.1093/micmic/ozad067.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Chuhang Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Spencer A Reisbick
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Myung-Geun Han
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Alexandre Pofelski
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Yimei Zhu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
5
|
Reisbick SA, Han MG, Liu C, Pofelski A, Montgomery E, Jing C, Zhu Y. Broadband Ultrafast Electron Microscopy Using Electrically Driven Pulse Generation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1838-1839. [PMID: 37613982 DOI: 10.1093/micmic/ozad067.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Spencer A Reisbick
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Myung-Geun Han
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Chuhang Liu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Alexandre Pofelski
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Eric Montgomery
- Euclid Techlabs LLC, 365 Remington Blvd. Bolingbrook, IL, USA
| | - Chunguang Jing
- Euclid Techlabs LLC, 365 Remington Blvd. Bolingbrook, IL, USA
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
6
|
Gage TE, Durham DB, Liu H, Guha S, Arslan I, Phatak C. Visualizing Nanosecond Transient Electric Fields with Pulsed Electrons. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2021-2022. [PMID: 37612966 DOI: 10.1093/micmic/ozad067.1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Thomas E Gage
- Argonne National Laboratory, Center for Nanoscale Materials, Lemont, IL, USA
| | - Daniel B Durham
- Argonne National Laboratory, Materials Science Division, Lemont, IL, USA
| | - Haihua Liu
- Argonne National Laboratory, Center for Nanoscale Materials, Lemont, IL, USA
| | - Supratik Guha
- Argonne National Laboratory, Center for Nanoscale Materials, Lemont, IL, USA
| | - Ilke Arslan
- Argonne National Laboratory, Center for Nanoscale Materials, Lemont, IL, USA
| | - Charudatta Phatak
- Argonne National Laboratory, Materials Science Division, Lemont, IL, USA
| |
Collapse
|
7
|
Pofelski A, Liu C, Reisbick S, Han MG, Zhu Y. Vanadium Dioxide Metal Insulator Transition Characterization with In-situ Radio Frequency Excitation Using Ultrafast Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1687. [PMID: 37613833 DOI: 10.1093/micmic/ozad067.868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- A Pofelski
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - C Liu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - S Reisbick
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - M G Han
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Y Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
8
|
Reisbick SA, Pofelski A, Han MG, Liu C, Montgomery E, Jing C, Sawada H, Zhu Y. Characterization of transverse electron pulse trains using RF powered traveling wave metallic comb striplines. Ultramicroscopy 2023; 249:113733. [PMID: 37030159 DOI: 10.1016/j.ultramic.2023.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Advancements in ultrafast electron microscopy have allowed elucidation of spatially selective structural dynamics. However, as the spatial resolution and imaging capabilities have made progress, quantitative characterization of the electron pulse trains has not been reported at the same rate. In fact, inexperienced users have difficulty replicating the technique because only a few dedicated microscopes have been characterized thoroughly. Systems replacing laser driven photoexcitation with electrically driven deflectors especially suffer from a lack of quantified characterization because of the limited quantity. The primary advantages to electrically driven systems are broader frequency ranges, ease of use and simple synchronization to electrical pumping. Here, we characterize the technical parameters for electrically driven UEM including the shape, size and duration of the electron pulses using low and high frequency chopping methods. At high frequencies, pulses are generated by sweeping the electron beam across a chopping aperture. For low frequencies, the beam is continuously forced off the optic axis by a DC potential, then momentarily aligned by a countering pulse. Using both methods, we present examples that measure probe durations of 2 ns and 10 ps for the low and high frequency techniques, respectively. We also discuss how the implementation of a pulsed probe affects STEM imaging conditions by adjusting the first condenser lens.
Collapse
|
9
|
Flannigan DJ, VandenBussche EJ. Pulsed-beam transmission electron microscopy and radiation damage. Micron 2023; 172:103501. [PMID: 37390662 DOI: 10.1016/j.micron.2023.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
We review the use of pulsed electron-beams in transmission electron microscopes (TEMs) for the purpose of mitigating specimen damage. We begin by placing the importance of TEMs with respect to materials characterization into proper context, and we provide a brief overview of established methods for reducing or eliminating the deleterious effects of beam-induced damage. We then introduce the concept of pulsed-beam TEM, and we briefly describe the basic methods and instrument configurations used to create so-called temporally structured electron beams. Following a brief overview of the use of high-dose-rate pulsed-electron beams in cancer radiation therapy, we review historical speculations and more recent compelling but mostly anecdotal findings of a pulsed-beam TEM damage effect. This is followed by an in-depth technical review of recent works seeking to establish cause-and-effect relationships, to conclusively uncover the presence of an effect, and to explore the practicality of the approach. These studies, in particular, provide the most compelling evidence to date that using a pulsed electron beam in the TEM is indeed a viable way to mitigate damage. Throughout, we point out current gaps in understanding, and we conclude with a brief perspective of current needs and future directions.
Collapse
Affiliation(s)
- David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
11
|
Curtis WA, Willis SA, Flannigan DJ. Single-photoelectron collection efficiency in 4D ultrafast electron microscopy. Phys Chem Chem Phys 2022; 24:14044-14054. [PMID: 35640169 DOI: 10.1039/d2cp01250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In femtosecond (fs) 4D ultrafast electron microscopy (UEM), a tradeoff is made between photoelectrons per packet and time resolution. One consequence of this can be longer-than-desirable acquisition times for low-density packets, and particularly for low repetition rates when complete photothermal dissipation is required. Thus, gaining an understanding of photoelectron trajectories in the gun region is important for identifying factors that limit collection efficiency (CE; fraction of photoelectrons that enter the illumination system). Here, we continue our work on the systematic study of photoelectron trajectories in the gun region of a Thermo Fisher/FEI Tecnai Femto UEM, focusing specifically on CE in the single-electron regime. Using General Particle Tracer, calculated field maps, and the exact architecture of the Tecnai Femto UEM, we simulated the effects of fs laser parameters and key gun elements on CE. The results indicate CE strongly depends upon the laser spot size on the source, the (unbiased) Wehnelt aperture diameter, and the incident photon energy. The CE dispersion with laser spot size is found to be strongly dependent on aperture diameter, being nearly dispersionless for the largest apertures. A gun crossover is also observed, with the beam-waist position being dependent on the aperture diameter, further illustrating that the Wehnelt aperture acts as a simple, fixed electrostatic lens in UEM mode. This work provides further insights into the operational aspects of fs 4D UEM.
Collapse
Affiliation(s)
- Wyatt A Curtis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Simon A Willis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|