1
|
Cui Y, Tan C, Zhang W, Jiang P, Sun J, Mei F. Establishment of Mouse Models of Abdominal Aortic Aneurysm. Angiology 2024:33197241284848. [PMID: 39268808 DOI: 10.1177/00033197241284848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular disease that commonly affects elderly individuals but has recently increased in younger populations. As the aneurysm grows, it can cause compression symptoms such as abdominal pain, rupture, and bleeding, which are absent in the early stages. Once an AAA ruptures and causes bleeding, the mortality rate is alarmingly high. Currently, the pathogenesis for AAA is unknown, and therapeutic options are limited, necessitating improvement in treatment efficacy. An essential research method for studying the processes and potential treatment of AAA is establishing animal models using mice. The present study provides a detailed overview of the widely used AAA mouse animal models and their construction strategies, advantages, disadvantages, scope of applications, and prospects.
Collapse
Affiliation(s)
- Yongpan Cui
- Department of Vascular Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Hubei, China
| | - Chengpeng Tan
- Department of Vascular Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Hubei, China
| | - Wuming Zhang
- Department of Vascular Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Hubei, China
| | - Peng Jiang
- Department of Vascular Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Hubei, China
| | - Jianfeng Sun
- Department of Vascular Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Hubei, China
| | - Fei Mei
- Department of Vascular Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Hubei, China
| |
Collapse
|
2
|
Bianchini E, Guala A, Golemati S, Alastruey J, Climie RE, Dalakleidi K, Francesconi M, Fuchs D, Hartman Y, Malik AEF, Makūnaitė M, Nikita KS, Park C, Pugh CJA, Šatrauskienė A, Terentes-Printizios D, Teynor A, Thijssen D, Schmidt-Trucksäss A, Zupkauskienė J, Boutouyrie P, Bruno RM, Reesink KD. The Ultrasound Window Into Vascular Ageing: A Technology Review by the VascAgeNet COST Action. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2183-2213. [PMID: 37148467 DOI: 10.1002/jum.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Non-invasive ultrasound (US) imaging enables the assessment of the properties of superficial blood vessels. Various modes can be used for vascular characteristics analysis, ranging from radiofrequency (RF) data, Doppler- and standard B/M-mode imaging, to more recent ultra-high frequency and ultrafast techniques. The aim of the present work was to provide an overview of the current state-of-the-art non-invasive US technologies and corresponding vascular ageing characteristics from a technological perspective. Following an introduction about the basic concepts of the US technique, the characteristics considered in this review are clustered into: 1) vessel wall structure; 2) dynamic elastic properties, and 3) reactive vessel properties. The overview shows that ultrasound is a versatile, non-invasive, and safe imaging technique that can be adopted for obtaining information about function, structure, and reactivity in superficial arteries. The most suitable setting for a specific application must be selected according to spatial and temporal resolution requirements. The usefulness of standardization in the validation process and performance metric adoption emerges. Computer-based techniques should always be preferred to manual measures, as long as the algorithms and learning procedures are transparent and well described, and the performance leads to better results. Identification of a minimal clinically important difference is a crucial point for drawing conclusions regarding robustness of the techniques and for the translation into practice of any biomarker.
Collapse
Affiliation(s)
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Spyretta Golemati
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jordi Alastruey
- Department of Biomedical Engineering, King's College London, London, UK
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Kalliopi Dalakleidi
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Martina Francesconi
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Pisa, Pisa, Italy
| | - Dieter Fuchs
- Fujifilm VisualSonics, Amsterdam, The Netherlands
| | - Yvonne Hartman
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Afrah E F Malik
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Monika Makūnaitė
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Konstantina S Nikita
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Cardiology and Angiology, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Dimitrios Terentes-Printizios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Teynor
- Faculty of Computer Science, Augsburg University of Applied Sciences, Augsburg, Germany
| | - Dick Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Jūratė Zupkauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pierre Boutouyrie
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Rosa Maria Bruno
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Koen D Reesink
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
3
|
Yin L, Kent EW, Wang B. Progress in murine models of ruptured abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:950018. [PMID: 36035911 PMCID: PMC9411998 DOI: 10.3389/fcvm.2022.950018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/27/2022] [Indexed: 02/03/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a focal dilation of the aorta that is prevalent in aged populations. The progressive and unpredictable expansion of AAA could result in aneurysmal rupture, which is associated with ~80% mortality. Due to the expanded screening efforts and progress in diagnostic tools, an ever-increasing amount of asymptomatic AAA patients are being identified yet without a cure to stop the rampant aortic expansion. A key barrier that hinders the development of effective AAA treatment is our incomplete understanding of the cellular and molecular basis of its pathogenesis and progression into rupture. Animal models provide invaluable mechanistic insights into AAA pathophysiology. However, there is no single experimental model that completely recapitulate the complex biology behind AAA, and different AAA-inducing methodologies are associated with distinct disease course and rupture rate. In this review article, we summarize the established murine models of ruptured AAA and discuss their respective strengths and utilities.
Collapse
Affiliation(s)
| | | | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
4
|
Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol 2022; 42:277-288. [PMID: 35045728 PMCID: PMC8866209 DOI: 10.1161/atvbaha.121.317058] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AngII (angiotensin II) infusion in mice has been used to provide mechanistic insight into human abdominal aortic aneurysms for over 2 decades. This is a technically facile animal model that recapitulates multiple facets of the human disease. Although numerous publications have reported abdominal aortic aneurysms with AngII infusion in mice, there remain many fundamental unanswered questions such as uniformity of describing the pathological characteristics and which cell type is stimulated by AngII to promote abdominal aortic aneurysms. Extrapolation of the findings to provide insight into the human disease has been hindered by the preponderance of studies designed to determine the effects on initiation of abdominal aortic aneurysms, rather than a more clinically relevant scenario of determining efficacy on the established disease. The purpose of this review is to enhance understanding of AngII-induced abdominal aortic pathologies in mice, thereby providing greater insight into the human disease.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
5
|
Waduud MA, Kandavelu P, Reay M, Paradine K, Scott DJA, Bailey MA. High-Frequency Three-Dimensional Lumen Volume Ultrasound Is a Sensitive Method to Detect Early Aneurysmal Change in Elastase-Induced Murine Abdominal Aortic Aneurysm. AORTA 2021; 9:215-220. [PMID: 34963161 PMCID: PMC8714318 DOI: 10.1055/s-0041-1731404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Objective
The aim of this study was to investigate the reproducibility of anterior–posterior diameter (APd
max
) and three-dimensional lumen volume (3DLV) measurements of abdominal aortic aneurysms (AAA) in a classical murine AAA model. We also compared the magnitude of change in the aortic size detected with each method of assessment.
Methods
Periadventitial application of porcine pancreatic elastase (PPE AAA) or sham surgery was performed in two cohorts of mice. Cohort 1 was used to assess for observer variability with the APd
max
and 3DLV measurements. Cohort 2 highlighted the relationship between APd
max
and 3DLV and changes in AAA detected.
Results
There was no significant observer variability detected with APd
max
measurement. Similarly, no significant intraobserver variability was evident with 3DLV; however, a small but significant interobserver difference was present. APd
max
and 3DLV measurements of PPE AAA significantly correlated. However, changes in the AAA morphology were detected earlier with 3DLV.
Conclusion
APd
max
and 3DLV are both reliable methods for measuring an AAA. Both these methods correlate with each other. However, changes in AAA morphology were detected earlier with 3DLV, which is important to detect subtle but important changes to aortic geometry in a laboratory setting. 3DLV measurement of AAA is a simple, reproducible, and comprehensive method for assessing changes in disease morphology.
Collapse
Affiliation(s)
- Mohammed A. Waduud
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Vascular Institute, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Parkavi Kandavelu
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Melanie Reay
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Paradine
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - David J. A. Scott
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Vascular Institute, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Marc A. Bailey
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Vascular Institute, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
6
|
MKL1 cooperates with p38MAPK to promote vascular senescence, inflammation, and abdominal aortic aneurysm. Redox Biol 2021; 41:101903. [PMID: 33667992 PMCID: PMC7937568 DOI: 10.1016/j.redox.2021.101903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy. Myocardin related transcription factor A (MRTFA, MKL1) is a multifaceted transcription factor, regulating diverse biological processes. However, a detailed understanding of the mechanistic role of MKL1 in AAA has yet to be elucidated. In this study, we showed induced MKL1 expression in thoracic and abdominal aneurysmal tissues, respectively in both mice and humans. MKL1 global knockout mice displayed reduced AAA formation and aortic rupture compared with wild-type mice. Both gene deletion and pharmacological inhibition of MKL1 markedly protected mice from aortic dissection, an early event in Angiotensin II (Ang II)-induced AAA formation. Loss of MKL1 was accompanied by reduced senescence/proinflammation in the vessel wall and cultured vascular smooth muscle cells (VSMCs). Mechanistically, a deficiency in MKL1 abolished AAA-induced p38 mitogen activated protein kinase (p38MAPK) activity. Similar to MKL1, loss of MAPK14 (p38α), the dominant isoform of p38MAPK family in VSMCs suppressed Ang II-induced AAA formation, vascular inflammation, and senescence marker expression. These results reveal a molecular pathway of AAA formation involving MKL1/p38MAPK stimulation and a VSMC senescent/proinflammatory phenotype. These data support targeting MKL1/p38MAPK pathway as a potential effective treatment for AAA. MKL1 expression is induced in both thoracic and abdominal aneurysmal tissues. Genetic ablation and pharmacological inhibition of MKL1 protect mice from aortic dissection and AAA induced by Ang II. Depletion of MKL1 in mice suppresses Ang II-induced vascular inflammation and senescence. Depletion of MKL1 blunts the activation of p38MAPK and STAT3 pathways. Loss of MAPK14 in VSMCs suppresses Ang II-induced AAA formation, vascular inflammation, and senescence marker expression.
Collapse
|
7
|
Brunet J, Pierrat B, Badel P. Review of Current Advances in the Mechanical Description and Quantification of Aortic Dissection Mechanisms. IEEE Rev Biomed Eng 2021; 14:240-255. [PMID: 31905148 DOI: 10.1109/rbme.2019.2950140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aortic dissection is a life-threatening event associated with a very poor outcome. A number of complex phenomena are involved in the initiation and propagation of the disease. Advances in the comprehension of the mechanisms leading to dissection have been made these last decades, thanks to improvements in imaging and experimental techniques. However, the micro-mechanics involved in triggering such rupture events remains poorly described and understood. It constitutes the primary focus of the present review. Towards the goal of detailing the dissection phenomenon, different experimental and modeling methods were used to investigate aortic dissection, and to understand the underlying phenomena involved. In the last ten years, research has tended to focus on the influence of microstructure on initiation and propagation of the dissection, leading to a number of multiscale models being developed. This review brings together all these materials in an attempt to identify main advances and remaining questions.
Collapse
|
8
|
Adelsperger AR, Phillips EH, Ibriga HS, Craig BA, Green LA, Murphy MP, Goergen CJ. Development and growth trends in angiotensin II-induced murine dissecting abdominal aortic aneurysms. Physiol Rep 2019; 6:e13668. [PMID: 29696811 PMCID: PMC5917066 DOI: 10.14814/phy2.13668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022] Open
Abstract
Abdominal aortic aneurysms are pathological dilations that can suddenly rupture, causing more than 15,000 deaths in the U.S. annually. Current treatment focuses on observation until an aneurysm's size warrants surgical intervention. Thus, there is a need for therapeutic intervention to inhibit growth of smaller aneurysms. An experimental aneurysm model that infuses angiotensin II into apolipoprotein E‐deficient mice is widely used to investigate underlying pathological mechanisms and potential therapeutics, but this model has two caveats: (1) aneurysms do not always form, and (2) aneurysm severity and growth is inconsistent among animals. Here we use high‐frequency ultrasound to collect data from angiotensin II‐induced aneurysms to develop prediction models of both aneurysm formation and growth. Baseline measurements of aortic diameter, volume/length, and strain were used with animal mass and age in a quadratic discriminant analysis and logistic regression to build two statistical models to predict disease status. Longitudinal ultrasound data were also acquired from mice with aneurysms to quantify aneurysm diameter, circumferential strain, blood flow velocity, aneurysm volume/length, and thrombus and open‐false lumen volumes over 28 days. Measurements taken at aneurysm diagnosis were used with branching artery information to produce a multiple linear regression model to predict final aneurysm volume/length. All three statistical models could be useful in future aneurysm therapeutic studies to better delineate the effects of preventative and suppressive treatments from normal variations in the angiotensin II aneurysm model.
Collapse
Affiliation(s)
- Amelia R Adelsperger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Hilda S Ibriga
- Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Bruce A Craig
- Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Linden A Green
- IU Health Center for Aortic Disease/Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
9
|
Janus J, Kanber B, Mahbuba W, Beynon C, Ramnarine KV, Lambert DG, Samani NJ, Stringer EJ, Kelly ME. A preclinical ultrasound method for the assessment of vascular disease progression in murine models. ULTRASOUND : JOURNAL OF THE BRITISH MEDICAL ULTRASOUND SOCIETY 2019; 27:85-93. [PMID: 31037092 DOI: 10.1177/1742271x18793919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022]
Abstract
Introduction The efficacy of preclinical ultrasound at providing a quantitative assessment of mouse models of vascular disease is relatively unknown. In this study, preclinical ultrasound was used in combination with a semi-automatic image processing method to track arterial distension alterations in mouse models of abdominal aortic aneurysm and atherosclerosis. Methods Longitudinal B-mode ultrasound images of the abdominal aorta were acquired using a preclinical ultrasound scanner. Arterial distension was assessed using a semi-automatic image processing algorithm to track vessel wall motion over the cardiac cycle. A standard, manual analysis method was applied for comparison. Results Mean arterial distension was significantly lower in abdominal aortic aneurysm mice between day 0 and day 7 post-onset of disease (p < 0.01) and between day 0 and day 14 (p < 0.001), while no difference was observed in sham control mice. Manual analysis detected a significant decrease (p < 0.05) between day 0 and day 14 only. Atherosclerotic mice showed alterations in arterial distension relating to genetic modification and diet. Arterial distension was significantly lower (p < 0.05) in Ldlr-/- (++/--) mice fed high-fat western diet when compared with both wild type (++/++) mice and Ldlr-/- (++/--) mice fed chow diet. The manual method did not detect a significant difference between these groups. Conclusions Arterial distension can be used as an early marker for the detection of arterial disease in murine models. The semi-automatic analysis method provided increased sensitivity to differences between experimental groups when compared to the manual analysis method.
Collapse
Affiliation(s)
- Justyna Janus
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Baris Kanber
- Translational Imaging Group, Department of Medical Physics and Bioengineering, University College London, London, UK
| | | | - Charlotte Beynon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Kumar V Ramnarine
- Department of Medical Physics, University Hospitals of Leicester Trust, Leicester, UK
| | - David G Lambert
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Emma J Stringer
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Michael E Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| |
Collapse
|
10
|
Defective p27 phosphorylation at serine 10 affects vascular reactivity and increases abdominal aortic aneurysm development via Cox-2 activation. J Mol Cell Cardiol 2018; 116:5-15. [PMID: 29408196 DOI: 10.1016/j.yjmcc.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/31/2022]
Abstract
Phosphorylation at serine 10 (S10) is the major posttranslational modification of the tumor suppressor p27, and is reduced in both human and mouse atherosclerosis. Moreover, a lack of p27-phospho-S10 in apolipoprotein E-null mice (apoE-/-) leads to increased high-fat diet-induced atherosclerosis associated with endothelial dysfunction and augmented leukocyte recruitment. In this study, we analyzed whether p27-phospho-S10 modulates additional endothelial functions and associated pathologies. Defective p27-phospho-S10 increases COX-2 activity in mouse aortic endothelial cells without affecting other key regulators of vascular reactivity, reduces endothelium-dependent dilation, and increases arterial contractility. Lack of p27-phospho-S10 also elevates aortic COX-2 expression and thromboxane A2 production, increases aortic lumen diameter, and aggravates angiotensin II-induced abdominal aortic aneurysm development in apoE-/- mice. All these abnormal responses linked to defective p27-phospho-S10 are blunted by pharmacological inhibition of COX-2. These results demonstrate that defective p27-phospho-S10 modifies endothelial behavior and promotes aneurysm formation via COX-2 activation.
Collapse
|
11
|
Jansen CHP, Brangsch J, Reimann C, Adams L, Hamm B, Botnar RM, Makowski MR. In Vivo High-Frequency Ultrasound for the Characterization of Thrombi Associated with Aortic Aneurysms in an Experimental Mouse Model. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2882-2890. [PMID: 28965722 DOI: 10.1016/j.ultrasmedbio.2017.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The development of abdominal aortic aneurysm (AAA) associated thrombi plays an important role during the onset and progression of AAAs. The aim of this study was to evaluate the potential of high-frequency ultrasound for characterization of AAA associated thrombi in an apolipoprotein-E-deficient mouse-model. Ultrasound measurements were performed using a high-resolution ultrasound system (Vevo770, FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) with a 30 MHz linear-array transducer (RMV707 B). Magnetic resonance imaging with a 3 Tesla scanner (Achieva MR system, Philips Healthcare, Best, The Netherlands) and a single-loop microscopy coil was performed as a reference standard. All stages of aneurysm development were evaluated by histologic analyses. The "signal-thrombus-matrix" to "signal-blood" ratio on high-frequency ultrasound measurements showed a strong correlation (R2 = 0.81, p <0.05) with the state of extracellular matrix remodeling. Furthermore, size measurements derived from the high-frequency ultrasound correlated well with magnetic resonance imaging and histology. This study demonstrated that high-frequency ultrasound enables the reliable in vivo quantification of extracellular matrix remodeling at various stages of thrombus development, based on the thrombus echogenicity.
Collapse
Affiliation(s)
| | | | | | - Lisa Adams
- Department of Radiology, Charité, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité, Berlin, Germany
| | - Rene M Botnar
- Division of Imaging Sciences, King's College London, London, United Kingdom; BHF Centre of Excellence, King's College London, London, United Kingdom; Cardioascular Division, King's College London, London, United Kingdom; Wellcome Trust and EPSRC Medical Engineering Center, King's College London, London, United Kingdom; NIHR Biomedical Research Centre, King's College London, London, United Kingdom
| | - Marcus R Makowski
- Division of Imaging Sciences, King's College London, London, United Kingdom; Department of Radiology, Charité, Berlin, Germany
| |
Collapse
|
12
|
Molina-Sánchez P, Jorge I, Martinez-Pinna R, Blanco-Colio LM, Tarin C, Torres-Fonseca MM, Esteban M, Laustsen J, Ramos-Mozo P, Calvo E, Lopez JA, Ceniga MVD, Michel JB, Egido J, Andrés V, Vazquéz J, Meilhac O, Burillo E, Lindholt JS, Martin-Ventura JL. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb Haemost 2017; 113:1335-46. [DOI: 10.1160/th14-10-0874] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/21/2015] [Indexed: 12/18/2022]
Abstract
SummaryAbdominal aortic aneurysm (AAA) evolution is unpredictable, and there is no therapy except surgery for patients with an aortic size > 5 cm (large AAA). We aimed to identify new potential biomarkers that could facilitate prognosis and treatment of patients with AAA. A differential quantitative proteomic analysis of plasma proteins was performed in AAA patients at different stages of evolution [small AAA (aortic size=3�5cm) vs large AAA] using iTRAQ labelling, highthroughput nano-LC-MS/MS and a novel multi-layered statistical model. Among the proteins identified, ApoA-I was decreased in patients with large AAA compared to those with small AAA. These results were validated by ELISA on plasma samples from small (n=90) and large AAA (n=26) patients (150 ± 3 vs 133 ± 5 mg/dl, respectively, p< 0.001). ApoA-I levels strongly correlated with HDL-Cholesterol (HDL-C) concentration (r=0.9, p< 0.001) and showed a negative correlation with aortic size (r=-0.4, p< 0.01) and thrombus volume (r=-0.3, p< 0.01), which remained significant after adjusting for traditional risk factors. In a prospective study, HDL-C independently predicted aneurysmal growth rate in multiple linear regression analysis (n=122, p=0.008) and was inversely associated with need for surgical repair (Adjusted hazard ratio: 0.18, 95 % confidence interval: 0.04�0.74, p=0.018). In a nation-wide Danish registry, we found lower mean HDL-C concentration in large AAA patients (n=6,560) compared with patients with aorto-iliac occlusive disease (n=23,496) (0.89 ± 2.99 vs 1.59 ± 5.74 mmol/l, p< 0.001). Finally, reduced mean aortic AAA diameter was observed in AngII-infused mice treated with ApoA-I mimetic peptide compared with saline-injected controls. In conclusion, ApoAI/ HDL-C systemic levels are negatively associated with AAA evolution. Therapies targeting HDL functionality could halt AAA formation.
Collapse
|
13
|
Animal Models Used to Explore Abdominal Aortic Aneurysms: A Systematic Review. Eur J Vasc Endovasc Surg 2016; 52:487-499. [DOI: 10.1016/j.ejvs.2016.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/01/2016] [Indexed: 01/09/2023]
|
14
|
Apostolakis IZ, Nandlall SD, Konofagou EE. Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:13-28. [PMID: 26168432 PMCID: PMC4703464 DOI: 10.1109/tmi.2015.2453194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Atherosclerosis and Abdominal Aortic Aneurysms (AAAs) are two common vascular diseases associated with mechanical changes in the arterial wall. Pulse Wave Imaging (PWI), a technique developed by our group to assess and quantify the mechanical properties of the aortic wall in vivo, may provide valuable diagnostic information. This work implements piecewise PWI (pPWI), an enhanced version of PWI designed for focal vascular diseases. Localized, sub-regional PWVs and PWI moduli ( EPWI ) were estimated within 2-4 mm wall segments of murine normal, atherosclerotic and aneurysmal arteries. Overall, stiffness was found to increase in the atherosclerotic cases. The mean sub-regional PWV was found to be 2.57±0.18 m/s for the normal aortas (n = 7) with a corresponding mean EPWI of 43.82±5.86 kPa. A significant increase ( (p ≤ 0.001)) in the group means of the sub-regional PWVs was found between the normal aortas and the aortas of mice on high-fat diet for 20 ( 3.30±0.36 m/s) and 30 weeks ( 3.56±0.29 m/s). The mean of the sub-regional PWVs ( 1.57±0.78 m/s) and EPWI values ( 19.23±15.47 kPa) decreased significantly in the aneurysmal aortas (p ≤ 0.05) . Furthermore, the mean coefficient of determination (r(2)) of the normal aortas was significantly higher (p ≤ 0.05) than those of the aneurysmal and atherosclerotic cases. These findings demonstrated that pPWI may be able to provide useful biomarkers for monitoring focal vascular diseases.
Collapse
Affiliation(s)
| | - Sacha D. Nandlall
- Department of Biomedical Engineering Columbia University, New York, NY 10027 USA
| | - Elisa E. Konofagou
- Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 USA ()
| |
Collapse
|
15
|
Real-time imaging of in-vitro human middle ear using high frequency ultrasound. Hear Res 2015; 326:1-7. [DOI: 10.1016/j.heares.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/19/2022]
|
16
|
Cao M, Theus SA, Straub KD, Figueroa JA, Mirandola L, Chiriva-Internati M, Hermonat PL. AAV2/8-humanFOXP3 gene therapy shows robust anti-atherosclerosis efficacy in LDLR-KO mice on high cholesterol diet. J Transl Med 2015; 13:235. [PMID: 26187646 PMCID: PMC4506442 DOI: 10.1186/s12967-015-0597-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
Inflammation is a key etiologic component in atherogenesis. Previously we demonstrated that adeno-associated virus (AAV) 2/8 gene delivery of Netrin1 inhibited atherosclerosis in the low density lipoprotein receptor knockout mice on high-cholesterol diet (LDLR-KO/HCD). One important finding from this study was that FOXP3 was strongly up-regulated in these Netrin1-treated animals, as FOXP3 is an anti-inflammatory gene, being the master transcription factor of regulatory T cells. These results suggested that the FOXP3 gene might potentially be used, itself, as an agent to limit atherosclerosis. To test this hypothesis AAV2/8 (AAV)/hFOXP3 or AAV/Neo (control) gene therapy virus were tail vein injected into the LDLR-KO/HCD animal model. It was found that hFOXP3 gene delivery was associated with significantly lower HCD-induced atherogenesis, as measured by larger aortic lumen cross sectional area, thinner aortic wall thickness, and lower aortic systolic blood velocity compared with Neo gene-HCD-treated controls. Moreover these measurements taken from the hFOXP3/HCD-treated animals very closely matched those measurements taken from the normal diet (ND) control animals. These data strongly suggest that AAV/hFOXP3 delivery gave a robust anti-atherosclerosis therapeutic effect and further suggest that FOXP3 be examined more stringently as a therapeutic gene for clinical use.
Collapse
Affiliation(s)
- M Cao
- Central Arkansas Veterans Healthcare System, 111J, 4300 West 7th Street, Little Rock, AR, 72205, USA.
| | - S A Theus
- Central Arkansas Veterans Healthcare System, 111J, 4300 West 7th Street, Little Rock, AR, 72205, USA.
| | - K D Straub
- Central Arkansas Veterans Healthcare System, 111J, 4300 West 7th Street, Little Rock, AR, 72205, USA.
| | | | - L Mirandola
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, 79415, USA.
| | - M Chiriva-Internati
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, 79415, USA.
- Kiromic LLC, Lubbock, TX, USA.
| | - P L Hermonat
- Central Arkansas Veterans Healthcare System, 111J, 4300 West 7th Street, Little Rock, AR, 72205, USA.
| |
Collapse
|
17
|
Trachet B, Fraga-Silva RA, Londono FJ, Swillens A, Stergiopulos N, Segers P. Performance comparison of ultrasound-based methods to assess aortic diameter and stiffness in normal and aneurysmal mice. PLoS One 2015; 10:e0129007. [PMID: 26023786 PMCID: PMC4449181 DOI: 10.1371/journal.pone.0129007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/03/2015] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Several ultrasound-based methods are currently used to assess aortic diameter, circumferential strain and stiffness in mice, but none of them is flawless and a gold standard is lacking. We aimed to assess the validity and sensitivity of these methods in control animals and animals developing dissecting abdominal aortic aneurysm. METHODS AND RESULTS We first compared systolic and diastolic diameters as well as local circumferential strains obtained in 47 Angiotensin II-infused ApoE(-/-) mice with three different techniques (BMode, short axis MMode, long axis MMode), at two different abdominal aortic locations (supraceliac and paravisceral), and at three different time points of abdominal aneurysm formation (baseline, 14 days and 28 days). We found that short axis BMode was preferred to assess diameters, but should be avoided for strains. Short axis MMode gave good results for diameters but high standard deviations for strains. Long axis MMode should be avoided for diameters, and was comparable to short axis MMode for strains. We then compared pulse wave velocity measurements using global, ultrasound-based transit time or regional, pressure-based transit time in 10 control and 20 angiotensin II-infused, anti-TGF-Beta injected C57BL/6 mice. Both transit-time methods poorly correlated and were not able to detect a significant difference in PWV between controls and aneurysms. However, a combination of invasive pressure and MMode diameter, based on radio-frequency data, detected a highly significant difference in local aortic stiffness between controls and aneurysms, with low standard deviation. CONCLUSIONS In small animal ultrasound the short axis view is preferred over the long axis view to measure aortic diameters, local methods are preferred over transit-time methods to measure aortic stiffness, invasive pressure-diameter data are preferred over non-invasive strains to measure local aortic stiffness, and the use of radiofrequency data improves the accuracy of diameter, strain as well as stiffness measurements.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rodrigo A. Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Abigaïl Swillens
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Patrick Segers
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| |
Collapse
|
18
|
Morphological and Biomechanical Differences in the Elastase and AngII apoE(-/-) Rodent Models of Abdominal Aortic Aneurysms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:413189. [PMID: 26064906 PMCID: PMC4433642 DOI: 10.1155/2015/413189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022]
Abstract
An abdominal aortic aneurysm (AAA) is a potentially fatal cardiovascular disease with multifactorial development and progression. Two preclinical models of the disease (elastase perfusion and angiotensin II infusion in apolipoprotein-E-deficient animals) have been developed to study the disease during its initiation and progression. To date, most studies have used ex vivo methods to examine disease characteristics such as expanded aortic diameter or analytic methods to look at circulating biomarkers. Herein, we provide evidence from in vivo ultrasound studies of the temporal changes occurring in biomechanical parameters and macromolecules of the aortic wall in each model. We present findings from 28-day studies in elastase-perfused rats and AngII apoE(-/-) mice. While each model develops AAAs specific to their induction method, they both share characteristics with human aneurysms, such as marked changes in vessel strain and blood flow velocity. Histology and nonlinear microscopy confirmed that both elastin and collagen, both important extracellular matrix molecules, are similarly affected in their levels and spatial distribution. Future studies could make use of the differences between these models in order to investigate mechanisms of disease progression or evaluate potential AAA treatments.
Collapse
|
19
|
Zhang X, Ha S, Wei W, Duan S, Shi Y, Yang Y. Noninvasive imaging of aortic atherosclerosis by ultrasound biomicroscopy in a mouse model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:111-116. [PMID: 25542946 DOI: 10.7863/ultra.34.1.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The noninvasive and accurate evaluation of vessel characteristics in mouse models has become an intensive focus of vascular medicine. This study aimed to apply ultrasound biomicroscopy to evaluate aortic atherosclerotic progression in a low-density lipoprotein receptor (LDL-R) knockout mouse model of atherosclerosis. METHODS Ten male LDL-R(-/-)C57BL/6 mice aged 16 and 24 weeks and 8 male wild-type C57BL/6 mice aged 16 and 24 weeks were used as experimental and control groups, respectively. Ultrasound biomicroscopy was applied to detect the morphologic characteristics of the aortic root, ascending aorta, aortic arch, and carotid artery and to measure the aortic root intima-media thickness and carotid artery bifurcation. RESULTS Ultrasound biomicroscopy showed a significant increase in the aortic root intima-media thickness from 0.10 ± 0.03 mm in 16-week-old mice to 0.16 ± 0.04 mm in 24-week-old mice (P < .01). The ultrasound biomicroscopically measured intima-media thickness was highly correlated with the histologic measurement (r = 0.81). CONCLUSIONS Ultrasound biomicroscopy could be used for a noninvasive, accurate, and dynamic analysis of aortic atherosclerosis in LDL-R knockout mice.
Collapse
Affiliation(s)
- Xiaoshan Zhang
- Department of Ultrasound, Affiliated Hospital of Innermongolia Medical University, Huhhot, China (X.Z., S.H., W.W., S.D., Y.S.); and Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (Y.Y.)
| | - Si Ha
- Department of Ultrasound, Affiliated Hospital of Innermongolia Medical University, Huhhot, China (X.Z., S.H., W.W., S.D., Y.S.); and Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (Y.Y.)
| | - Wei Wei
- Department of Ultrasound, Affiliated Hospital of Innermongolia Medical University, Huhhot, China (X.Z., S.H., W.W., S.D., Y.S.); and Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (Y.Y.)
| | - Shasha Duan
- Department of Ultrasound, Affiliated Hospital of Innermongolia Medical University, Huhhot, China (X.Z., S.H., W.W., S.D., Y.S.); and Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (Y.Y.)
| | - Yilu Shi
- Department of Ultrasound, Affiliated Hospital of Innermongolia Medical University, Huhhot, China (X.Z., S.H., W.W., S.D., Y.S.); and Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (Y.Y.)
| | - Ya Yang
- Department of Ultrasound, Affiliated Hospital of Innermongolia Medical University, Huhhot, China (X.Z., S.H., W.W., S.D., Y.S.); and Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (Y.Y.).
| |
Collapse
|
20
|
Gavish L, Beeri R, Gilon D, Rubinstein C, Berlatzky Y, Bulut A, Reissman P, Gavish LY, Gertz SD. Arrest of progression of pre-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by low level laser phototherapy. Lasers Surg Med 2014; 46:781-90. [DOI: 10.1002/lsm.22306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Lilach Gavish
- Institute for Medical Research-IMRIC; Hebrew University of Jerusalem; Jerusalem Israel
| | - Ronen Beeri
- Department of Cardiology; Hadassah University Hospital; Jerusalem Israel
| | - Dan Gilon
- Department of Cardiology; Hadassah University Hospital; Jerusalem Israel
| | - Chen Rubinstein
- Department of Vascular Surgery; Hadassah University Hospital; Jerusalem Israel
| | - Yacov Berlatzky
- Department of Vascular Surgery; Hadassah University Hospital; Jerusalem Israel
| | - Atilla Bulut
- Department of Cardiology; Hadassah University Hospital; Jerusalem Israel
| | | | - Leah Y. Gavish
- Institute for Medical Research-IMRIC; Hebrew University of Jerusalem; Jerusalem Israel
| | - S. David Gertz
- Institute for Medical Research-IMRIC; Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
21
|
Prins PA, Hill MF, Airey D, Nwosu S, Perati PR, Tavori H, F. Linton M, Kon V, Fazio S, Sampson UK. Angiotensin-induced abdominal aortic aneurysms in hypercholesterolemic mice: role of serum cholesterol and temporal effects of exposure. PLoS One 2014; 9:e84517. [PMID: 24465413 PMCID: PMC3900396 DOI: 10.1371/journal.pone.0084517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023] Open
Abstract
Objective Understanding variations in size and pattern of development of angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) may inform translational research strategies. Thus, we sought insight into the temporal evolution of AAA in apolipoprotein (apo)E−/− mice. Approach A cohort of mice underwent a 4-week pump-mediated infusion of saline (n = 23) or 1500 ng/kg/min of Ang II (n = 85) and AAA development was tracked via in vivo ultrasound imaging. We adjusted for hemodynamic covariates in the regression models for AAA occurrence in relation to time. Results The overall effect of time was statistically significant (p<0.001). Compared to day 7 of AngII infusion, there was no decrease in the log odds of AAA occurrence by day 14 (−0.234, p = 0.65), but compared to day 21 and 28, the log odds decreased by 9.07 (p<0.001) and 2.35 (p = 0.04), respectively. Hemodynamic parameters were not predictive of change in aortic diameter (Δ) (SBP, p = 0.66; DBP, p = 0.66). Mean total cholesterol (TC) was higher among mice with large versus small AAA (601 vs. 422 mg/ml, p<0.0001), and the difference was due to LDL. AngII exposure was associated with 0.43 mm (95% CI, 0.27 to 0.61, p<0.0001) increase in aortic diameter; and a 100 mg/dl increase in mean final cholesterol level was associated with a 12% (95% CI, 5.68 to 18.23, p<0.0001) increase in aortic diameter. Baseline cholesterol was not associated with change in aortic diameter (p = 0.86). Conclusions These are the first formal estimates of a consistent pattern of Ang II-induced AAA development. The odds of AAA occurrence diminish after the second week of Ang II infusion, and TC is independently associated with AAA size.
Collapse
Affiliation(s)
- Petra A. Prins
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - Michael F. Hill
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - David Airey
- Department of Biostatistics, VUMC, Nashville, Tennessee, United States of America
| | - Sam Nwosu
- Department of Biostatistics, VUMC, Nashville, Tennessee, United States of America
| | | | - Hagai Tavori
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - Valentina Kon
- Department of Pediatrics, VUMC, Nashville, Tennessee, United States of America
| | - Sergio Fazio
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, Tennessee, United States of America
| | - Uchechukwu K. Sampson
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
22
|
Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice. PLoS One 2013; 8:e82026. [PMID: 24312398 PMCID: PMC3843717 DOI: 10.1371/journal.pone.0082026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/28/2013] [Indexed: 11/19/2022] Open
Abstract
Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1) in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.
Collapse
|
23
|
Molecular imaging of experimental abdominal aortic aneurysms. ScientificWorldJournal 2013; 2013:973150. [PMID: 23737735 PMCID: PMC3655677 DOI: 10.1155/2013/973150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease.
Collapse
|
24
|
Alves KZ, Soletti RC, de Britto MA, de Matos DG, Soldan M, Borges HL, Machado JC. In vivo endoluminal ultrasound biomicroscopic imaging in a mouse model of colorectal cancer. Acad Radiol 2013; 20:90-8. [PMID: 22959583 DOI: 10.1016/j.acra.2012.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES The gold-standard tool for colorectal cancer detection is colonoscopy, but it provides only mucosal surface visualization. Ultrasound biomicroscopy allows a clear delineation of the epithelium and adjacent colonic layers. The aim of this study was to design a system to generate endoluminal ultrasound biomicroscopic images of the mouse colon, in vivo, in an animal model of inflammation-associated colon cancer. MATERIALS AND METHODS Thirteen mice (Mus musculus) were used. A 40-MHz miniprobe catheter was inserted into the accessory channel of a pediatric flexible bronchofiberscope. Control mice (n = 3) and mice treated with azoxymethane and dextran sulfate sodium (n = 10) were subjected to simultaneous endoluminal ultrasound biomicroscopy and white-light colonoscopy. The diagnosis obtained with endoluminal ultrasound biomicroscopy and colonoscopy was compared and confirmed by postmortem histopathology. RESULTS Endoluminal ultrasound biomicroscopic images showed all layers of the normal colon and revealed lesions such as lymphoid hyperplasias and colon tumors. Additionally, endoluminal ultrasound biomicroscopy was able to detect two cases of mucosa layer thickening, confirmed by histology. Compared to histologic results, the sensitivities of endoluminal ultrasound biomicroscopy and colonoscopy were 0.95 and 0.83, respectively, and both methods achieved specificities of 1.0. CONCLUSIONS Endoluminal ultrasound biomicroscopy can be used, in addition to colonoscopy, as a diagnostic method for colonic lesions. Moreover, experimental endoluminal ultrasound biomicroscopy in mouse models is feasible and might be used to further develop research on the differentiation between benign and malignant colonic diseases.
Collapse
|
25
|
Bartoli MA, Kober F, Cozzone P, Thompson RW, Alessi MC, Bernard M. In vivo assessment of murine elastase-induced abdominal aortic aneurysm with high resolution magnetic resonance imaging. Eur J Vasc Endovasc Surg 2012; 44:475-81. [PMID: 22939881 DOI: 10.1016/j.ejvs.2012.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES There are, to date, no published non-invasive or longitudinal studies performed in mice to measure aortic diameter and wall thickness in an elastase-induced abdominal aortic aneurysm. This MRI study at 11.75 T aimed at evaluating the reliability of longitudinal in vivo aortic diameter and wall thickness measurements in this particular model. METHODS Adult male C57BL/6 mice underwent transient elastase or heat-inactivated elastase perfusion (controls). Aortic dilatation was measured before, during and immediately after elastase perfusion, and again 14 days after, with a calibrated ocular grid. MRI was performed just before initial surgery and at day 14 before harvest using an 11.75 T MR microscopy imager. RESULTS Aortic diameter was significantly greater in elastase-perfused mice compared to controls as measured by optic grid (1.150 ± 0.153 mm vs 0.939 ± 0.07 mm, P = 0.038) and according to MRI measurement of the outer diameter on spin echo images (1.203 ± 0.105 mm vs 1070 ± 0.048 mm, P = 0.0067). Aortic wall thickness was found to be significantly increased in elastase-perfused mice at day 14. CONCLUSIONS This study demonstrates in the mouse elastase-induced aneurysm model that characterization of aneurysm development by its inner and outer vessel diameter and vessel wall thickness can be carried out longitudinally using high resolution MRI without significant mortality.
Collapse
Affiliation(s)
- M A Bartoli
- Aix-Marseille université, CNRS, CRMBM UMR, Marseille, France.
| | | | | | | | | | | |
Collapse
|
26
|
Gavish L, Rubinstein C, Berlatzky Y, Gavish LY, Beeri R, Gilon D, Bulut A, Harlev M, Reissman P, Gertz SD. Low level laser arrests abdominal aortic aneurysm by collagen matrix reinforcement in apolipoprotein E-deficient mice. Lasers Surg Med 2012; 44:664-74. [DOI: 10.1002/lsm.22068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
|
27
|
Murine ultrasound imaging for circumferential strain analyses in the angiotensin II abdominal aortic aneurysm model. J Vasc Surg 2012; 56:462-9. [PMID: 22503226 DOI: 10.1016/j.jvs.2012.01.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The underlying causes of abdominal aortic aneurysms (AAAs) remain obscure, although research tools such as the angiotensin II (Ang II) apolipoprotein E-deficient (apoE(-/-)) mouse model have aided investigations. Longitudinal imaging and determination of biomechanical forces in this small-scale model have been difficult. We hypothesized that high-frequency ultrasound biomicroscopy combined with speckle-tracking analytical strategies can be used to define the role of circumferential mechanical strain in AAA formation in the Ang II/apoE(-/-) mouse model of AAAs. We simultaneously examined dietary perturbations that might impact the biomechanical properties of the aortic wall, hypothesizing that the generalized inflammatory phenotype associated with diet-induced obesity would be associated with accelerated loss of circumferential strain and aneurysmal aortic degeneration. METHODS Receiving either a 60 kcal% fat Western diet or standard 10 kcal% fat normal chow, Ang II-treated apoE(-/-) mice (n = 34) underwent sequential aortic duplex ultrasound scan imaging (Vevo 2100 System; VisualSonics, Toronto, Ontario, Canada) of their entire aorta. Circumferential strains were calculated using speckle-tracking algorithms and a custom MatLab analysis. RESULTS Decreased strains in all aortic locations after just 3 days of Ang II treatment were observed, and this effect progressed during the 4-week observation period. Anatomic segments along the aorta impacted wall strain (baseline highest in ascending aorta; P < .05), whereas diet did not. At 2 and 4 weeks, there was the largest progressive decrease in strain in the paravisceral/supraceliac aorta (P < .05), which was the segment most likely to be involved in aneurysm formation in this model. CONCLUSIONS In the Ang II/apoE(-/-) aneurysm model, the aorta significantly stiffens (with decreased strain) shortly after Ang II infusion, and this progressively continues through the next 4 weeks. High-fat feeding did not have an impact on wall strain. Delineation of biomechanical factors and AAA morphology via duplex scan and speckle-tracking algorithms in mouse models should accelerate insights into human AAAs.
Collapse
|
28
|
Miyama N, Dua MM, Schultz GM, Kosuge H, Terashima M, Pisani LJ, Dalman RL, McConnell MV. Bioluminescence and Magnetic Resonance Imaging of Macrophage Homing to Experimental Abdominal Aortic Aneurysms. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macrophage infiltration is a prominent feature of abdominal aortic aneurysm (AAA) progression. We used a combined imaging approach with bioluminescence (BLI) and magnetic resonance imaging (MRI) to study macrophage homing and accumulation in experimental AAA disease. Murine AAAs were created via intra-aortic infusion of porcine pancreatic elastase. Mice were imaged over 14 days after injection of prepared peritoneal macrophages. For BLI, macrophages were from transgenic mice expressing luciferase. For MRI, macrophages were labeled with iron oxide particles. Macrophage accumulation during aneurysm progression was observed by in situ BLI and by in vivo 7T MRI. Mice were sacrificed after imaging for histologic analysis. In situ BLI ( n = 32) demonstrated high signal in the AAA by days 7 and 14, which correlated significantly with macrophage number and aortic diameter. In vivo 7T MRI ( n = 13) at day 14 demonstrated T2* signal loss in the AAA and not in sham mice. Immunohistochemistry and Prussian blue staining confirmed the presence of injected macrophages in the AAA. BLI and MRI provide complementary approaches to track macrophage homing and accumulation in experimental AAAs. Similar dual imaging strategies may aid the study of AAA biology and the evaluation of novel therapies.
Collapse
Affiliation(s)
- Noriyuki Miyama
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Monica M. Dua
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey M. Schultz
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Hisanori Kosuge
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Masahiro Terashima
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Laura J. Pisani
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Ronald L. Dalman
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Michael V. McConnell
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
29
|
Klink A, Heynens J, Herranz B, Lobatto ME, Arias T, Sanders HMHF, Strijkers GJ, Merkx M, Nicolay K, Fuster V, Tedgui A, Mallat Z, Mulder WJM, Fayad ZA. In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging. J Am Coll Cardiol 2012; 58:2522-30. [PMID: 22133853 DOI: 10.1016/j.jacc.2011.09.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/17/2011] [Accepted: 09/05/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The goal of this study was to use noninvasive conventional and molecular magnetic resonance imaging (MRI) to detect and characterize abdominal aortic aneurysms (AAAs) in vivo. BACKGROUND Collagen is an essential constituent of aneurysms. Noninvasive MRI of collagen may represent an opportunity to help detect and better characterize AAAs and initiate intervention. METHODS We used an AAA C57BL/6 mouse model in which a combination of angiotensin II infusion and transforming growth factor-β neutralization results in AAA formation with incidence of aortic rupture. High-resolution, multisequence MRI was performed to characterize the temporal progression of an AAA. To allow molecular MRI of collagen, paramagnetic/fluorescent micellar nanoparticles functionalized with a collagen-binding protein (CNA-35) were intravenously administered. In vivo imaging results were corroborated with immunohistochemistry and confocal fluorescence microscopy. RESULTS High-resolution, multisequence MRI allowed the visualization of the primary fibrotic response in the aortic wall. As the aneurysm progressed, the formation of a secondary channel or dissection was detected. Further analysis revealed a dramatic increase of the aortic diameter. Injection of CNA-35 micelles resulted in a significantly higher magnetic resonance signal enhancement in the aneurysmal wall compared with nonspecific micelles. Histological studies revealed the presence of collagen in regions of magnetic resonance signal enhancement, and confocal microscopy proved the precise co-localization of CNA-35 micelles with type I collagen. In addition, in a proof-of-concept experiment, we reported the potential of CNA-35 micelles to discriminate between stable AAA lesions and aneurysms that were likely to rapidly progress or rupture. CONCLUSIONS High-resolution, multisequence MRI allowed longitudinal monitoring of AAA progression while the presence of collagen was visualized by nanoparticle-enhanced MRI.
Collapse
Affiliation(s)
- Ahmed Klink
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, 1428 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Esteban V, Méndez-Barbero N, Jiménez-Borreguero LJ, Roqué M, Novensá L, García-Redondo AB, Salaices M, Vila L, Arbonés ML, Campanero MR, Redondo JM. Regulator of calcineurin 1 mediates pathological vascular wall remodeling. ACTA ACUST UNITED AC 2011; 208:2125-39. [PMID: 21930771 PMCID: PMC3182048 DOI: 10.1084/jem.20110503] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Angiotensin-II–driven calcineurin activation and regulator of calcineurin-1 (Rcan-1) expression is required for pathological vascular remodeling in mice. Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression.
Collapse
Affiliation(s)
- Vanesa Esteban
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dual AAV/IL-10 Plus STAT3 Anti-Inflammatory Gene Delivery Lowers Atherosclerosis in LDLR KO Mice, but without Increased Benefit. Int J Vasc Med 2011; 2012:524235. [PMID: 21915378 PMCID: PMC3170890 DOI: 10.1155/2012/524235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022] Open
Abstract
Both IL-10 and STAT3 are in the same signal transduction pathway, with IL-10-bound IL10 receptor (R) acting through STAT3 for anti-inflammatory effect. To investigate possible therapeutic synergism, we delivered both full-length wild-type human (h) STAT3 and hIL-10 genes by separate adenoassociated virus type 8 (AAV8) tail vein injection into LDLR KO on HCD. Compared to control Neo gene-treated animals, individual hSTAT3 and hIL-10 delivery resulted in significant reduction in atherogenesis, as determined by larger aortic lumen size, thinner aortic wall thickness, and lower blood velocity (all statistically significant). However, dual hSTAT3/hIL-10 delivery offered no improvement in therapeutic effect. Plasma cholesterol levels in dual hSTAT3/hIL-10-treated animals were statistically higher compared to hIL-10 alone. While no advantage was seen in this case, we consider that the dual gene approach has intrinsic merit, but properly chosen partnered genes must be used.
Collapse
|
32
|
Sampson UK, Perati PR, Prins PA, Pham W, Liu Z, Harrell FE, Linton MF, Gore JC, Kon V, Fazio S. Quantitative estimates of the variability of in vivo sonographic measurements of the mouse aorta for studies of abdominal aortic aneurysms and related arterial diseases. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:773-784. [PMID: 21632991 PMCID: PMC3810347 DOI: 10.7863/jum.2011.30.6.773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVES Burgeoning interest in reducing the morbidity and mortality associated with abdominal aortic aneurysms (AAAs) has led to experimental strategies to elucidate the disease process and attain pharmacologic regression using the apolipoprotein E(-/-) (ApoE(-/-)) mouse model of angiotensin-induced AAAs and in vivo sonography. However, the variability of in vivo sonographic measurements of the mouse aorta has not been established. Thus, our purpose was to determine quantitative estimates of the variability of in vivo sonographic measurements of the mouse aorta as a guide for the design and assessment of studies focused on regression of AAAs and related arterial diseases. METHODS We used Bland-Altman, locally weighted scatterplot-smoothing regression, and resampling (bootstrapping) methods for variability analyses of multiple in vivo short- and long-axis sonographic measurements of ApoE(-/-) mouse aortas. We measured distinct aortic sites in vivo at the baseline and after angiotensin-induced AAAs and ex vivo using digital calipers. RESULTS We analyzed 236 data points from 10 male mice (14 weeks old; mean weight ± SD, 29.7 ± 1.6 g). Overall intramouse differences between short- and long-axis and in vivo and ex vivo measurements were 0.038 (95% confidence interval [CI], 0.031-0.046) and 0.085 (95% CI, 0.062-0.109) mm, respectively. Intermouse differences in short-axis measurements were 0.047 (95% CI, 0.042-0.053), 0.049 (95% CI, 0.044-0.055), and 0.039 (95% CI, 0.036-0.042) mm for infrarenal, suprarenal, and thoracic measurements, respectively; differences in long-axis measurements were 0.054 (95% CI, 0.044-0.064), 0.029 (95% CI, 0.024-0.034), and 0.046 (95% CI, 0.037-0.054) mm. Bland-Altman and locally weighted scatterplot-smoothing analyses showed excellent agreement between measures with no variation in discrepancies vis-à-vis the target measurement. CONCLUSIONS These data establish previously undefined estimates of measurement variability relevant for in vivo sonographic studies of AAA regression in a commonly studied mouse model.
Collapse
Affiliation(s)
- Uchechukwu K Sampson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hong H, Yang Y, Liu B, Cai W. Imaging of Abdominal Aortic Aneurysm: the present and the future. Curr Vasc Pharmacol 2011; 8:808-19. [PMID: 20180767 DOI: 10.2174/157016110793563898] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/07/2010] [Indexed: 01/02/2023]
Abstract
Abdominal Aortic Aneurysm (AAA) is a common, progressive, and potentially lethal vascular disease. A major obstacle in AAA research, as well as patient care, is the lack of technology that enables non-invasive acquisition of molecular/cellular information in the developing AAA. In this review we will briefly summarize the current techniques (e.g. ultrasound, computed tomography, and magnetic resonance imaging) for anatomical imaging of AAA. We also discuss the various functional imaging techniques that have been explored for AAA imaging. In many cases, these anatomical and functional imaging techniques are not sufficient for providing surgeons/clinicians enough information about each individual AAA (e.g. rupture risk) to optimize patient management. Recently, molecular imaging techniques (e.g. optical and radionuclide-based) have been employed to visualize the molecular alterations associated with AAA, which are discussed in this review. Lastly, we try to provide a glance into the future and point out the challenges for AAA imaging. We believe that the future of AAA imaging lies in the combination of anatomical and molecular imaging techniques, which are largely complementary rather than competitive. Ultimately, with the right molecular imaging probe, clinicians will be able to monitor AAA growth and evaluate the risk of rupture accurately, so that the life-saving surgery can be provided to the right patients at the right time. Equally important, the right imaging probe will also allow scientists/clinicians to acquire critical data during AAA development and to more accurately evaluate the efficacy of potential treatments.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI 53705-2275, USA
| | | | | | | |
Collapse
|
34
|
Assessment of elastase-induced murine abdominal aortic aneurysms: comparison of ultrasound imaging with in situ video microscopy. J Biomed Biotechnol 2011; 2011:252141. [PMID: 21331328 PMCID: PMC3038624 DOI: 10.1155/2011/252141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/01/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Aims. The aim of this study was to definitively assess the validity of noninvasive high-frequency ultrasound (US) measurements of aortic luminal diameter (ALD) in a murine model of elastase-induced abdominal aortic aneurysm in comparison with in situ video microscopy (VM).
Methods. C57BL/6 mice underwent transient perfusion of the aorta with either elastase (n = 20: Elastase group) or saline (n = 10: Sham). Unoperated mice (n = 10) were also studied. Results. ALD measurements by US had excellent linear correlation and absolute agreement with that by VM in both Control (unoperated or sham-operated mice) and elastase groups (r = 0.96, intraclass correlation coefficient (ICC) = 0.88 and r = 0.93, ICC = 0.92, resp.). Bland-Altman analysis of US compared with VM measurements in both groups indicated good agreement, however US measurements were slightly but significantly higher than VM measurements in the control group (mean bias 0.039 mm, P < .05). Linear regression analysis revealed excellent correlation between US and VM measurements in both groups. (R2 = 0.91 in Control group, R2 = 0.85 in elastase group.) The reliability of US measurements was also confirmed by ex vivo histological measurements. Conclusions. High-frequency US provides reliable ALD measurements in developing murine abdominal aortic aneurysms.
Collapse
|
35
|
Goergen CJ, Barr KN, Huynh DT, Eastham-Anderson JR, Choi G, Hedehus M, Dalman RL, Connolly AJ, Taylor CA, Tsao PS, Greve JM. In vivo quantification of murine aortic cyclic strain, motion, and curvature: implications for abdominal aortic aneurysm growth. J Magn Reson Imaging 2011; 32:847-58. [PMID: 20882615 DOI: 10.1002/jmri.22331] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To develop methods to quantify cyclic strain, motion, and curvature of the murine abdominal aorta in vivo. MATERIALS AND METHODS C57BL/6J and apoE(-/-) mice underwent three-dimensional (3D) time-of-flight MR angiography to position cardiac-gated 2D slices at four locations along the abdominal aorta where circumferential cyclic strain and lumen centroid motion were calculated. From the 3D data, a centerline through the aorta was created to quantify geometric curvature at 0.1-mm intervals. Medial elastin content was quantified with histology postmortem. The location and shape of abdominal aortic aneurysms (AAAs), created from angiotensin II infusion, were evaluated qualitatively. RESULTS Strain waveforms were similar at all locations and between groups. Centroid motion was significantly larger and more leftward above the renal vessels than below (P < 0.05). Maximum geometric curvature occurred slightly proximal to the right renal artery. Elastin content was similar around the circumference of the vessel. AAAs developed in the same location as the maximum curvature and grew in the same direction as vessel curvature and motion. CONCLUSION The methods presented provide temporally and spatially resolved data quantifying murine aortic motion and curvature in vivo. This noninvasive methodology will allow serial quantification of how these parameters influence the location and direction of AAA growth.
Collapse
Affiliation(s)
- Craig J Goergen
- Department of Bioengineering, Stanford University, Stanford, California 94305-5431, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Systemic human Netrin-1 gene delivery by adeno-associated virus type 8 alters leukocyte accumulation and atherogenesis in vivo. Gene Ther 2010; 18:437-44. [PMID: 21160531 DOI: 10.1038/gt.2010.155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherosclerosis is an inflammatory disorder of arteries. Atherosclerotic plaque, in its early to intermediate stages, is composed largely of lipid-engorged foam cells. These foam cells are derived from the trafficking of monocytes (Mo) into the arterial intima, attracted to the site by chemoattractants. Given that foam cells are derived from the trafficking of Mo, the use of Netrin-1, an Mo chemorepellent, may be useful in limiting Mo accumulation and subsequent plaque formation. To investigate the potential of Netrin-1 for limiting atherosclerosis, we systemically delivered its human (h) cDNA by adeno-associated virus type 8 (AAV8, single-stranded structure) delivery into low-density lipoprotein receptor knockout (LDLR-/-) mice and placed the animals on a high cholesterol diet (HCD). Compared with control neomycin resistance (Neo) gene delivery/HCD, hNetrin-1 delivery resulted in a significant reduction in plaque formation, as determined by larger aortic lumen size, thinner intima-media thickness and lower blood velocity than the Neo/HCD control (all statistically significant). Indices of monocyte/macrophage (Mo/MΦ) accumulation, CD68, integrin, alpha M (ITGAM) and egf-like module containing, mucin-like, hormone receptor-like 1 (EMR-1), were reduced in hNetrin-1/HCD-treated animal's aortas and spleens compared with Neo/HCD-treated animals. Unexpectedly, CD25 and foxp3 (regulatory T cells (Tregs)) in the aorta were strongly upregulated. This is the first time the Mo/MΦ chemorepellent approach, and specific Netrin-1 gene delivery, has been performed for the reduction of Mo/MΦ burden and atherosclerosis. In addition, Netrin-1 has never before been linked to altered Treg levels. These data strongly suggest that hNetrin-1 gene delivery can reduce Mo/MΦ accumulation, inflammation and subsequent plaque formation.
Collapse
|
37
|
AAV/hSTAT3-gene delivery lowers aortic inflammatory cell infiltration in LDLR KO mice on high cholesterol. Atherosclerosis 2010; 213:59-66. [DOI: 10.1016/j.atherosclerosis.2010.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
|
38
|
Miyama N, Dua MM, Yeung JJ, Schultz GM, Asagami T, Sho E, Sho M, Dalman RL. Hyperglycemia limits experimental aortic aneurysm progression. J Vasc Surg 2010; 52:975-83. [PMID: 20678880 DOI: 10.1016/j.jvs.2010.05.086] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 05/13/2010] [Accepted: 05/16/2010] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Diabetes mellitus (DM) is associated with reduced progression of abdominal aortic aneurysm (AAA) disease. Mechanisms responsible for this negative association remain unknown. We created AAAs in hyperglycemic mice to examine the influence of serum glucose concentration on experimental aneurysm progression. METHODS Aortic aneurysms were induced in hyperglycemic (DM) and normoglycemic models by using intra-aortic porcine pancreatic elastase (PPE) infusion in C57BL/6 mice or by systemic infusion of angiotensin II (ANG) in apolipoprotein E-deficient (ApoE(-/-)) mice, respectively. In an additional DM cohort, insulin therapy was initiated after aneurysm induction. Aneurysmal aortic enlargement progression was monitored with serial transabdominal ultrasound measurements. At sacrifice, AAA cellularity and proteolytic activity were evaluated by immunohistochemistry and substrate zymography, respectively. Influences of serum glucose levels on macrophage migration were examined in separate models of thioglycollate-induced murine peritonitis. RESULTS At 14 days after PPE infusion, AAA enlargement in hyperglycemic mice (serum glucose ≥ 300 mg/dL) was less than that in euglycemic mice (PPE-DM: 54% ± 19% vs PPE: 84% ± 24%, P < .0001). PPE-DM mice also demonstrated reduced aortic mural macrophage infiltration (145 ± 87 vs 253 ± 119 cells/cross-sectional area, P = .0325), elastolysis (% residual elastin: 20% ± 7% vs 12% ± 6%, P = .0209), and neovascularization (12 ± 8 vs 20 ± 6 vessels/high powered field, P = .0229) compared with PPE mice. Hyperglycemia limited AAA enlargement after ANG infusion in ApoE(-/-) mice (ANG-DM: 38% ± 12% vs ANG: 61% ± 37% at day 28). Peritoneal macrophage production was reduced in response to thioglycollate stimulation in hyperglycemic mice, with limited augmentation noted in response to vascular endothelial growth factor administration. Insulin therapy reduced serum glucose levels and was associated with AAA enlargement rates intermediate between euglycemic and hyperglycemic mice (PPE: 1.21 ± 0.14 mm vs PPE-DM: 1.00 ± 0.04 mm vs PPE-DM + insulin: 1.14 ± 0.05 mm). CONCLUSIONS Hyperglycemia reduces progression of experimental AAA disease; lowering of serum glucose levels with insulin treatment diminishes this protective effect. Identifying mechanisms of hyperglycemic aneurysm inhibition may accelerate development of novel clinical therapies for AAA disease.
Collapse
Affiliation(s)
- Noriyuki Miyama
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, Calif, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dua MM, Miyama N, Azuma J, Schultz GM, Sho M, Morser J, Dalman RL. Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery 2010; 148:429-35. [PMID: 20561659 DOI: 10.1016/j.surg.2010.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Extracellular matrix degradation is a sentinel pathologic feature of abdominal aortic aneurysm (AAA) disease. Diabetes mellitus, a negative risk factor for AAA, may impair aneurysm progression through its influence on the fibrinolytic system. We hypothesize that hyperglycemia limits AAA progression through effects on endogenous plasminogen activator inhibitor-1 (PAI-1) levels and subsequent reductions in plasmin generation. METHODS Experimental AAAs were induced in diabetic and control mice via the intra-aortic elastase infusion method. Serial transabdominal high-frequency ultrasound examinations were performed to monitor aortic diameter following elastase infusion. Circulating PAI-1 and plasmin alpha2-antiplasmin (PAP) complex concentrations were determined by ELISA and local expression of PAI-1 levels was examined by RT-PCR and immunohistochemistry. RESULTS Hyperglycemia was associated with reduced AAA diameter, increased plasma PAI-1 concentration and reduced plasmin generation. Aneurysmal aortic PAI-1 gene expression increased in parallel with plasma concentration, with peak expression occurring early after aneurysm initiation. CONCLUSION Hyperglycemia increases PAI-1 expression and attenuates AAA diameter in experimental AAA disease. These results emphasize the role of the fibrinolytic pathway in AAA pathophysiology, and suggest a candidate mechanism for hyperglycemic inhibition of AAA disease.
Collapse
Affiliation(s)
- Monica M Dua
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Schultz G, Tedesco MM, Sho E, Nishimura T, Sharif S, Du X, Myles T, Morser J, Dalman RL, Leung LLK. Enhanced abdominal aortic aneurysm formation in thrombin-activatable procarboxypeptidase B-deficient mice. Arterioscler Thromb Vasc Biol 2010; 30:1363-70. [PMID: 20431069 DOI: 10.1161/atvbaha.109.202259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine whether procarboxypeptidase B (pCPB)(-/-) mice are susceptible to accelerated abdominal aortic aneurysm (AAA) development secondary to unregulated OPN-mediated mural inflammation in the absence of CPB inhibition. METHODS AND RESULTS Thrombin/thrombomodulin cleaves thrombin-activatable pCPB or thrombin-activatable fibrinolysis inhibitor, activating CPB, which inhibits the generation of plasmin and inactivates proinflammatory mediators (complement C5a and thrombin-cleaved osteopontin [OPN]). Apolipoprotein E(-/-)OPN(-/-) mice are protected from experimental AAA formation. Murine AAAs were created via intra-aortic porcine pancreatic elastase (PPE) infusion. Increased mortality secondary to AAA rupture was observed in pCPB(-/-) mice at the standard PPE dose. At reduced doses of PPE, pCPB(-/-) mice developed larger AAAs than wild-type controls (1.01+/-0.27 versus 0.68+/-0.05 mm; P=0.02 [mean+/-SD]). C5(-/-) and OPN(-/-) mice were not protected against AAA development. Treatment with tranexamic acid inhibited plasmin generation and abrogated enhanced AAA progression in pCPB(-/-) mice. CONCLUSIONS This study establishes the role of CPB in experimental AAA disease, indicating that CPB has a broad anti-inflammatory role in vivo. Enhanced AAA formation in the PPE model is the result of increased plasmin generation, not unregulated C5a- or OPN-mediated mural inflammation.
Collapse
Affiliation(s)
- Geoffrey Schultz
- Department of Vascular Surgery, Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
In vivo assessment of the effects of ginsenoside Rb1 on intimal hyperplasia in ApoE knockout mice. J Surg Res 2010; 162:26-32. [PMID: 20421114 DOI: 10.1016/j.jss.2010.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/05/2010] [Accepted: 01/14/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study investigated the effects of ginsenoside Rb1 (Rb1) on injury-induced intimal hyperplasia in ApoE knock out (ApoE -/-) mice. We also examined the value of an ultrasound micro-image system in dynamic monitoring of lumen diameter and flow velocity. METHODS After guide wire injury of the distal left common carotid artery (CCA), ApoE-/- mice were treated with intraperitoneal infusion of normal saline (NS), homocysteine (Hcy), ginsenoside Rb1 (Rb1), or Hcy+Rb1 for 4 wk. Bilateral CCA luminal diameters and flow velocities were measured with an ultrasound micro-image system before surgery and weekly afterwards. Following the final ultrasound, CCAs were harvested and analyzed for intima-medium thickness ratios. RESULTS Progressive reduction in luminal diameters and increase in flow velocity of the injured left distal CCA segment were observed using ultrasound micro-imaging system in all groups compared with the relatively stable left proximal CCA and right CCA. The NS and Hcy groups had significantly higher degree of diameter reduction compared with the Rb1 and Rb1+Hcy groups. The ultrasound findings were consistent with histology analyses at 4 wk post-op. CONCLUSIONS The study suggested that Rb1 attenuated the effects of Hcy on injured carotid arteries of ApoE -/- mice. The study also showed that ultrasound micro-image system was a reliable tool in monitoring luminal reduction after injury in a murine model. This study establishes a fundamental step of in vivo monitoring of the therapeutic effects of agents in a murine model without sacrificing the animals.
Collapse
|
42
|
Pharmacological inhibition of BLT1 diminishes early abdominal aneurysm formation. Atherosclerosis 2009; 210:107-13. [PMID: 20035940 DOI: 10.1016/j.atherosclerosis.2009.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/26/2009] [Accepted: 11/21/2009] [Indexed: 11/23/2022]
Abstract
Leukotriene B(4) (LTB(4)) is a pro-inflammatory lipid mediator generated by the enzymes 5-lipoxygenase (5-LO) and LTA(4)-hydrolase. LTB(4) signals primarily through its G protein-coupled receptor BLT1, which is highly expressed on specific leukocyte subsets. Recent genetic studies in humans as well as knockout studies in mice have implicated the leukotriene synthesis pathway in several vascular pathologies. Here we tested the hypothesis that pharmacological inhibition of BLT1 diminishes abdominal aortic aneurysm (AAA) formation, a major complication associated with atherosclerotic vascular disease. Chow-fed Apoe(-/-) mice were treated with a 4-week infusion of Angiotensin II (AngII, 1000 ng/(kg min)) beginning at 10 weeks of age, in a well-established murine AAA model. Administration of the selective BLT1 antagonist CP-105,696 beginning simultaneously with AngII infusion reduced the incidence of AAA formation from 82% to 40% (p<0.05). There was a concordant reduction in maximal aortic diameter from 2.35 mm to 1.56 mm (p<0.05). While administration of the antagonist on day 14 after the onset of AngII infusion diminished lesional macrophage accumulation, it did not significantly alter the size of AAA by day 42. Thus, pharmacological inhibition of BLT1 may ultimately hold clinical promise, but early intervention may be critical.
Collapse
|
43
|
Tedesco MM, Terashima M, Blankenberg FG, Levashova Z, Spin JM, Backer MV, Backer JM, Sho M, Sho E, McConnell MV, Dalman RL. Analysis of in situ and ex vivo vascular endothelial growth factor receptor expression during experimental aortic aneurysm progression. Arterioscler Thromb Vasc Biol 2009; 29:1452-7. [PMID: 19574559 DOI: 10.1161/atvbaha.109.187757] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mural inflammation and neovascularization are characteristic pathological features of abdominal aortic aneurysm (AAA) disease. Vascular endothelial growth factor receptor (VEGFR) expression may also mediate AAA growth and rupture. We examined VEGFR expression as a function of AAA disease progression in the Apolipoprotein E-deficient (Apo E(-/-)) murine AAA model. METHODS AND RESULTS Apo E(-/-) mice maintained on a high-fat diet underwent continuous infusion with angiotensin II at 1000 ng/kg/min (Ang II) or vehicle (Control) via subcutaneous osmotic pump. Serial transabdominal ultrasound measurements of abdominal aortic diameter were recorded (n=16 mice, 3 to 4 time points per mouse) for up to 28 days. Near-infrared receptor fluorescent (NIRF) imaging was performed on Ang II mice (n=9) and Controls (n=5) with scVEGF/Cy, a single-chain VEGF homo-dimer labeled with Cy 5.5 fluorescent tracer (7 to 18 microg/mouse IV). NIRF with inactivated single chain VEGF/Cy tracer (scVEGF/In, 18 microg/mouse IV) was performed on 2 additional Ang II mice to control for nonreceptor-mediated tracer binding and uptake. After image acquisition and sacrifice, aortae were harvested for analysis. An additional AAA mouse cohort received either an oral angiogenesis inhibitor or suitable negative or positive controls to clarify the significance of angiogenesis in experimental aneurysm progression. Aneurysms developed in the suprarenal aortic segment of all Ang II mice. Significantly greater fluorescent signal was obtained from aneurysmal aorta as compared to remote, uninvolved aortic segments in Ang II scVEGF/Cy mice or AAA in scVEGF/In mice or suprarenal aortic segments in Control mice. Signal intensity increased in a diameter-dependent fashion in aneurysmal segments. Immunostaining confirmed mural VEGFR-2 expression in medial smooth muscle cells. Treatment with an angiogenesis inhibitor attenuated AAA formation while decreasing mural macrophage infiltration and CD-31(+) cell density. CONCLUSIONS Mural VEGFR expression, as determined by scVEGF/Cy fluorescent imaging and VEGFR-2 immunostaining, increases in experimental AAAs in a diameter-dependent fashion. Angiogenesis inhibition limits AAA progression. Clinical VEGFR expression imaging strategies, if feasible, may improve real-time monitoring of AAA disease progression and response to suppressive strategies.
Collapse
Affiliation(s)
- Maureen M Tedesco
- Division of Vascular Surgery, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gavish L, Rubinstein C, Bulut A, Berlatzky Y, Beeri R, Gilon D, Gavish L, Harlev M, Reissman P, Gertz SD. Low-level laser irradiation inhibits abdominal aortic aneurysm progression in apolipoprotein E-deficient mice. Cardiovasc Res 2009; 83:785-92. [PMID: 19443426 DOI: 10.1093/cvr/cvp149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Increased early detection of abdominal aortic aneurysm (AAA) and the severe complications of its current treatment have emphasized the need for alternative therapeutic strategies that target pathogenetic mechanisms of progression and rupture. Recent in vitro studies from our laboratory have shown that low-level laser irradiation (LLLI) (780 nm) modifies cellular processes fundamental to aneurysm progression. The present study was designed to determine whether LLLI retards the progression of suprarenal AAA in vivo. METHODS AND RESULTS High-frequency ultrasonography (0.01 mm resolution) was used to quantify the effect of LLLI on aneurysmatic aortic dilatation from baseline to 4 weeks after subcutaneous infusion of angiotensin II by osmotic minipumps in the apolipoprotein E-deficient mouse. At 4 weeks, seven of 15 non-irradiated, but none of the 13 LLLI, mice had aneurysmal dilatation in the suprarenal aneurysm-prone segments that had progressed to >or=50% increase in maximal cross-sectional diameter (CSD) over baseline (P = 0.005 by Fisher's exact test). The mean CSD of the suprarenal segments (normalized individually to inter-renal control segments) was also significantly lower in irradiated animals (LLLI vs. non-irradiated: 1.32 +/- 0.14 vs. 1.82 +/- 0.39, P = 0.0002 by unpaired, two-tailed t-test) with a 94% reduction in CSD at 4 weeks compared with baseline. M-mode ultrasound data showed that reduced radial wall velocity seen in non-treated was significantly attenuated in the LLLI mice, suggesting a substantial effect on arterial wall elasticity. CONCLUSION These in vivo studies, together with previous in vitro studies from this laboratory, appear to provide strong evidence in support of a role for LLLI in the attenuation of aneurysm progression. Further studies in large animals would appear to be the next step towards testing the applicability of this technology to the human interventional setting.
Collapse
Affiliation(s)
- Lilach Gavish
- Department of Anatomy, The Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luo J, Fujikura K, Tyrie LS, Tilson MD, Konofagou EE. Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:477-486. [PMID: 19272985 DOI: 10.1109/tmi.2008.928179] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The abdominal aortic aneurysm (AAA) is a common vascular disease. The current clinical criterion for treating AAAs is an increased diameter above a critical value. However, the maximum diameter does not correlate well with aortic rupture, the main cause of death from AAA disease. AAA disease leads to changes in the aortic wall mechanical properties. The pulse-wave velocity (PWV) may indicate such a change. Because of limitations in temporal and spatial resolution, the widely used foot-to-foot method measures the global, instead of regional, PWV between two points at a certain distance in the circulation. However, mechanical properties are nonuniform along the normal and pathological (e.g., the AAA and atherosclerosis) arteries; thus, such changes are typically regional. Pulse-wave imaging (PWI) has been developed by our group to map the pulse-wave propagation along the abdominal aorta in mice in vivo. By using a retrospective electrocardiogram (ECG) gating technique, the radio-frequency (RF) signals over one cardiac cycle were obtained in murine aortas at the extremely high frame rate of 8 kHz and with a field-of-view (FOV) of 12 x 12 mm(2). The velocities of the aortic wall were estimated using an RF-based speckle tracking method. An Angiotensin II (AngII) infusion-based AAA model was used to simulate the human AAA case. Sequences of wall velocity images can noninvasively and quantitatively map the propagation of the pulse wave along the aortic wall. In the normal and sham aortas, the propagation of the pulse wave was relatively uniform along the wall, while in the AngII-treated aortas, the propagation was shown to be nonuniform. There was no significant difference ( p > 0.05) in the PWV between sham (4.67 +/- 1.15 m/s, n=5) and AngII-treated (4.34 +/- 1.48 m/s, n=17) aortas. The correlation coefficient of the linear regression was significantly higher ( p < 0.005) in the sham aortas (0.89 +/- 0.03, n=5 ) than in the AngII-treated ones (0.61 +/- 0.15, n=17). The wall velocities induced by the pulse wave were lower and the pulse wave moved nonuniformly along the AngII-treated aorta ( p < 0.005), with the lowest velocities at the aneurysmal regions. The discrepancy in the regional wall velocity and the nonuniform pulse-wave propagation along the AngII-treated aorta indicated the inhomogeneities in the aortic wall properties, and the reduced wall velocities indicated stiffening of the aneurysmal wall. This novel technique may thus constitute an early detection tool of vascular degeneration as well as serve as a suitable predictor of AAA rupture, complementary to the current clinical screening practice.
Collapse
Affiliation(s)
- Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
46
|
Soldan M, Schanaider A, Madi K, Zaltman C, Machado JC. In vitro ultrasound biomicroscopic imaging of colitis in rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2009; 28:463-469. [PMID: 19321674 DOI: 10.7863/jum.2009.28.4.463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The purpose of this study was to show the feasibility of 50-MHz ultrasound biomicroscopy (UBM) to image the rat colon. METHODS B-mode images were obtained from ex vivo colon samples (n = 4) collected from Rattus norvegicus (Berkenhout, 1769) rats, with 2,4,6-trinitrobenzene sulfonic acid-induced colitis in 3 of them. Left colon rectangular fragments (5 x 5 mm) were obtained after necropsy, and UBM images were acquired with the samples immersed in saline at 37 degrees C. All layers of the normal intestinal wall were analyzed according to their thickness and the presence of uneven bowel mucosa (ulcers). The folds and layers detected by UBM were correlated with histopathologic analysis. RESULTS The 4 layers of the normal colon were identified on the UBM images: the mucosa (hyperechoic), muscularis mucosae (hypoechoic), submucosa (hyperechoic), and muscularis externa (hypoechoic). On 2 UBM images, superficial ulcers were detected, approximately 0.5 mm in size, with intestinal involvement limited to the mucosa. The histopathologic analysis verified enlargement of submucosa layers due to an edema associated with sub-mucosa leukocyte infiltration. On 1 UBM image, it was possible to detect a deep ulcer, which was confirmed by the light microscopic analysis. CONCLUSIONS An ultrasound imaging system was scaled and optimized to visualize the rat colon. Ultrasound biomicroscopy provided axial and lateral resolutions close to 25 and 45 mum, respectively, and adequate penetration depth to visualize the whole thickness of an inflamed colon. The system identified the colon layers and was able to detect mural changes and superficial ulcers on the order of 500 mum.
Collapse
Affiliation(s)
- Mônica Soldan
- Division of Gastroenterology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
47
|
Leeper NJ, Tedesco MM, Kojima Y, Schultz GM, Kundu RK, Ashley EA, Tsao PS, Dalman RL, Quertermous T. Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol 2009; 296:H1329-35. [PMID: 19304942 DOI: 10.1152/ajpheart.01341.2008] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Apelin is a potent inodilator with recently described antiatherogenic properties. We hypothesized that apelin might also attenuate abdominal aortic aneurysm (AAA) formation by limiting disease-related vascular wall inflammation. C57BL/6 mice implanted with osmotic pumps filled with apelin or saline were treated with pancreatic elastase to create infrarenal AAAs. Mice were euthanized for aortic PCR analysis or followed ultrasonographically and then euthanized for histological analysis. The cellular expression of inflammatory cytokines and chemokines in response to apelin was also assessed in cultured macrophages, smooth muscle cells, and fibroblasts. Apelin treatment resulted in diminished AAA formation, with a 47% reduction in maximal cross-sectional area (0.74 vs. 1.39 mm(2), P < 0.03) and a 57% reduction in macrophage infiltrate (113 vs. 261.3 cells/high-power field, P < 0.0001) relative to the saline-treated group. Apelin infusion was also associated with significantly reduced aortic macrophage colony-stimulating factor expression and decreased monocyte chemattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, interleukin (IL)-6, and tumor necrosis factor (TNF)-alpha mean mRNA levels. Apelin stimulation of cultured macrophages significantly reduced MCP-1 and TNF-alpha mRNA levels relative to baseline (2.03- and 1.89-fold reduction, P < 0.03, respectively) but did not affect intimal adhesion molecule expression or medial or adventitial cell cytokine production. Apelin significantly reduces aneurysm formation in the elastase model of human AAA disease. The mechanism appears to be decreased macrophage burden, perhaps related to an apelin-mediated decrease in proinflammatory cytokine and chemokine activation.
Collapse
Affiliation(s)
- Nicholas J Leeper
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Univ., 300 Pasteur Dr., Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Turner GH, Olzinski AR, Bernard RE, Aravindhan K, Karr HW, Mirabile RC, Willette RN, Gough PJ, Jucker BM. In Vivo Serial Assessment of Aortic Aneurysm Formation in Apolipoprotein E–Deficient Mice via MRI. Circ Cardiovasc Imaging 2008; 1:220-6. [DOI: 10.1161/circimaging.108.787358] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Hyperlipidimic mice administered angiotensin II have been used for the study of abdominal aortic aneurysms (AAAs). The purpose of this study was to examine the use of MRI for studying AAA development and for examining the effects of pharmacological intervention on AAA development in the apolipoprotein E–deficient mouse.
Methods and Results—
Suprarenal aortic aneurysms were generated in apolipoprotein E–deficient mice administered angiotensin II (1000 ng/kg per min) for up to 28 days. In vivo MRI was performed serially (once weekly) to assess AAA development and rupture. Comparison of AAA size as measured by in vivo and ex vivo MRI resulted in excellent agreement (
r
=0.96,
P
<0.0001). In addition, MRI correlated with histology-derived AAA area assessment (in vivo versus histology:
r
=0.84,
P
<0.0001; ex vivo versus histology:
r
=0.89,
P
<0.0001). In a separate study, angiotensin II–administered apolipoprotein E–deficient mice were treated with doxycycline (broad-based matrix metalloproteinase inhibitor; 30 mg/kg per day for 28 days). MRI was able to noninvasively assess a reduced rate of AAA development (46% versus 71%,
P
<0.05), a decreased AAA area (2.56 versus 4.02 mm
2
,
P
<0.01), and decreased incidence of rupture (43% versus 100%) in treated versus control animals. Inhibition of aorta matrix metalloproteinase 2/9 activity was observed in the treated animals.
Conclusions—
These results demonstrate the use of MRI to noninvasively and temporally assess AAA development on pharmacological intervention in this preclinical cardiovascular disease model.
Collapse
Affiliation(s)
- Gregory H. Turner
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Alan R. Olzinski
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Roberta E. Bernard
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Karpagam Aravindhan
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Heather W. Karr
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Rosanna C. Mirabile
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Robert N. Willette
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Peter J. Gough
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| | - Beat M. Jucker
- From the Cardiovascular and Urogenital Center of Excellence for Drug Discovery (G.H.T., A.R.O., R.E.B., K.A., H.W.K., R.N.W., P.J.G., B.M.J.), and Safety Assessment (R.C.M.), GlaxoSmithKline, King of Prussia, Pa
| |
Collapse
|
49
|
Noninvasive real-time imaging of intima thickness after rat carotid artery balloon injury using ultrasound biomicroscopy. Atherosclerosis 2008; 199:310-6. [PMID: 18190918 DOI: 10.1016/j.atherosclerosis.2007.11.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/24/2007] [Accepted: 11/26/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVES High frequency ultrasound imaging for small animal research (ultrasound biomicroscopy, UBM) has recently become available. Here, we evaluated the possibility to determine intima thickness in the rat carotid artery after balloon injury and to monitor intimal hyperplasia formation by UBM during pharmacological treatment. METHODS Balloon injury of the left carotid artery was performed on Sprague-Dawley rats. Carotid arteries of all animals were examined by Vevo 770 UBM (VisualSonics Inc.) using 55 MHz probe at day 1, 7, 14 and 21 after the injury. Whole vessel wall, intima and media thicknesses as well as lumen diameter were measured at different levels. Histomorphometric analyses were performed on day 14 and 21. A group of animals were treated with picropodophyllin, an insulin-like growth factor-1 receptor inhibitor. RESULTS Ex-vivo comparison of UBM and histology demonstrated an excellent correspondence of intimal tears, and the internal and external elastic membranes could be identified. We found also an agreement (Bland-Altman test) between histological measurements and UBM delineations of the rat carotid artery wall layers, with a significant correlation for intima-media thickness (r=0.97; p<0.0001) and intima measurements. We were able to follow changes in the vessel wall structure and vessel diameter as a response to balloon injury in real time. Furthermore, the therapeutic effect of picropodophyllin could be assessed using UBM. CONCLUSIONS UBM provides a reliable noninvasive, in-vivo visualization of rat vasculature. It allows us to perform longitudinal studies of intimal thickness progression and regression as well as lumen changes in individual animals.
Collapse
|
50
|
Goldberg A, Pakkiri P, Dai E, Lucas A, Fenster A. Measurements of aneurysm morphology determined by 3-d micro-ultrasound imaging as potential quantitative biomarkers in a mouse aneurysm model. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1552-60. [PMID: 17602826 DOI: 10.1016/j.ultrasmedbio.2007.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 02/18/2007] [Accepted: 04/10/2007] [Indexed: 05/16/2023]
Abstract
Aneurysms remain a significant medical problem and our current understanding of aneurysm formation and developmental stages remains incomplete. Noninvasive 3-D micro-ultrasound (3-D micro-US) imaging technologies designed for noninvasive evaluation of small laboratory animals diminish risks associated with invasive examination and provide in-situ (live) analysis of vascular morphological changes, which enables quantitative measurements of live biological specimens. We demonstrate here that aneurysm morphology can be quantified using 3-D micro-US, and we validate this methodology through comparison of geometric measures with those obtained from 3-D serial histologic records in a mouse model of accelerated aneurysm formation. Aneurysms were induced in Balb/C mice after C57Bl/6 mouse aortic transplant with injections of a pro-inflammatory viral serpin with a mutated reactive site. Aortic transplant segments were imaged 28 days after transplant using 3-D micro-US. Upon sacrifice, the aortas were excised and histology sections (5-microm thick) were digitized, co-registered using mutual information and stacked to form 3-D images. Surfaces of the mouse aorta and aneurysm were manually segmented from the 3-D micro-US and histology images. Comparisons with 3-D histology images demonstrated that 3-D micro-US allowed in-vivo analysis of aneurysm morphology, including total aneurysm area, plaque growth and lumen size. Linear regression of 3-D US-derived aneurysm and plaque volumes vs. 3-D histology-derived volumes resulted in slopes of 1.30 (R(2) = 0.96) and 1.20 (R(2) = 0.98), respectively, demonstrating that 3-D micro-US measurements can be used to track aneurysm growth in a mouse aortic transplant model.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/pathology
- Aorta, Abdominal/transplantation
- Aortic Aneurysm/diagnostic imaging
- Aortic Aneurysm/pathology
- Atherosclerosis/diagnostic imaging
- Atherosclerosis/pathology
- Imaging, Three-Dimensional
- Membrane Proteins/genetics
- Membrane Proteins/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Animal
- Mutation
- Plasminogen Activator Inhibitor 1/genetics
- Staining and Labeling
- Transplantation, Homologous
- Ultrasonography, Doppler
Collapse
|