1
|
Najafi M, Najafi M, Keshtkar AA, Sedaghat M, Khalilifard AR, Larijani B, Hamidi Z. QUS characteristics in Normal Population: a Mini Review and our experience. J Diabetes Metab Disord 2022; 21:1635-1640. [PMID: 36404808 PMCID: PMC9672166 DOI: 10.1007/s40200-022-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/08/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
Abstract
Objectives Quantitative ultrasound (QUS) is a bone densitometry method that is less expensive and more portable than DXA. It is also noninvasive. QUS parameters include speed of sound (SOS), broad band ultrasound attenuation (BUA), and stiffness index (SI). This study defined normal values of QUS parameters in Iranian men and women. Methods QUS of heels measured in 258 Iranian men and women, aged 20-76 y/o. They were participants of Iranian Multicenter Osteoporosis study (IMOS), selected by randomized sampling. QUS device was an Achilles+ (GE-Lunar) device. Results Percentiles of SI (2.5%, 50%, and 97.5%) determined. We found a good agreement between the Iranian reference values and western reference (used by device) value in defining normal and osteoporotic people (κ = 0.875). Conclusion Results from this study suggest that QUS of the heel may be a good method for diagnosis of low bone mass in different regions.
Collapse
Affiliation(s)
- Maryam Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Minoo Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mojtaba Sedaghat
- Department of Community Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ali Reza Khalilifard
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zohreh Hamidi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
2
|
Webb TD, Fu F, Leung SA, Ghanouni P, Dahl JJ, Does MD, Pauly KB. Improving Transcranial Acoustic Targeting: The Limits of CT-Based Velocity Estimates and the Role of MR. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2630-2637. [PMID: 35853046 PMCID: PMC9519088 DOI: 10.1109/tuffc.2022.3192224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) enables the noninvasive treatment of the deep brain. This capacity relies on the ability to focus acoustic energy through the in-tact skull, a feat that requires accurate estimates of the acoustic velocity in individual patient skulls. In current practice, these estimates are generated using a pretreatment computed tomography (CT) scan and then registered to a magnetic resonance (MR) dataset on the day of the treatment. Treatment safety and efficacy can be improved by eliminating the need to register the CT data to the MR images and by improving the accuracy of acoustic velocity measurements. In this study, we examine the capacity of MR to supplement or replace CT as a means of estimating velocity in the skull. We find that MR can predict velocity with less but comparable accuracy to CT. We then use micro-CT imaging to better understand the limitations of Hounsfield unit (HU)-based estimates of velocity, demonstrating that the macrostructure of pores in the skull contributes to the acoustic velocity of the bone. We find evidence that detailed T2 measurements provide information about pore macrostructure similar to the information obtained with micro-CT, offering a potential clinical mechanism for improving patient-specific estimates of acoustic velocity in the human skull.
Collapse
|
3
|
Najafi M, Najafi M, Mahdavi-Mazdeh M, Maziar S, Keshtkar AA, Sedaghat M, Zare-Bidaki F, Larijani B, Hamidi Z. Quantitative Ultrasound of Phalanx in Primary and Secondary Osteoporosis: Mini-review and Practical Experience. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2022. [DOI: 10.1177/87564793211070247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Dual x-ray absorptiometry (DXA) is gold standard of bone densitometry, but quantitative ultrasound (QUS) of bone is less expensive and portable. This study was designed to assess its usefulness in secondary osteoporosis diagnosis. Materials and Methods: There were 200 secondary osteoporosis cases (rheumatoid arthritis, hemodialysis, kidney transplant patients, and levothyroxine users) and of those, their phalanx QUS results were compared with normal controls. Also, the QUS and DXA results were compared to find any correlation of these methods for diagnosing osteoporosis. Results: There was not significantly different results compared with normal controls, except for those of hemodialysis patients ( P = .00). Also, the comparison of QUS with DXA results showed no significant correlation except in hemodialysis patients, in both spinal and femoral regions ( P = .023 and .21, respectively), as well as the levothyroxine group’s spinal region ( P = .005). Conclusion: These results suggest that QUS of phalanx may be useful in screening secondary osteoporosis but for establishment of diagnosis, DXA measurements are still needed.
Collapse
Affiliation(s)
- Minoo Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Mahdavi-Mazdeh
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Maziar
- Department of Nephrology, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sedaghat
- Department of Community Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare-Bidaki
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Hamidi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Clinical Devices for Bone Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:35-53. [DOI: 10.1007/978-3-030-91979-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bochud N, Laugier P. Axial Transmission: Techniques, Devices and Clinical Results. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:55-94. [DOI: 10.1007/978-3-030-91979-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Feng T, Zhu Y, Morris R, kozloff KM, Wang X. The feasibility study of the transmission mode photoacoustic measurement of human calcaneus bone in vivo. PHOTOACOUSTICS 2021; 23:100273. [PMID: 34745881 PMCID: PMC8552339 DOI: 10.1016/j.pacs.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
The photoacoustic (PA) technique is uniquely positioned for biomedical applications primarily due to its ability to visualize optical absorption contrast in deep tissue at ultrasound resolution. In this work, via both three-dimensional (3D) numerical simulations and in vivo experiments on human subjects, we investigated the possibility of PA measurement of human calcaneus bones in vivo in a non-invasive manner, as well as its feasibility to differentiate osteoporosis patients from normal subjects. The results from the simulations and the experiments both demonstrated that, when one side of the heel is illuminated by laser with light fluence under the ANSI safety limit, the PA signal generated in the human calcaneus bone can be detected by an ultrasonic transducer at the other side of the heel (i.e. transmission mode). Quantitative power spectral analyses of the calcaneus bone PA signals were also conducted, demonstrating that the microarchitectural changes in calcaneus bone due to osteoporosis can be detected, as reflected by enhanced high frequency components in detected PA bone signal. Further statistical analysis of the experimental results from 10 osteoporosis patients and 10 healthy volunteers showed that the weighted frequency as a quantified PA spectral parameter can differentiate the two subject groups with statistical significance.
Collapse
Affiliation(s)
- Ting Feng
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | | | - Kenneth M. kozloff
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, MI 48109, USA
| |
Collapse
|
7
|
Mehany SN, Patsch JM. Imaging of pediatric bone and growth disorders: Of diagnostic workhorses and new horizons. Wien Med Wochenschr 2021; 171:102-110. [PMID: 33570693 PMCID: PMC8016808 DOI: 10.1007/s10354-021-00815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
Children and adolescents with bone and growth disorders require interdisciplinary care from various specialists including pediatric radiologists with a focus on musculoskeletal disorders. This article covers routine topics, differential diagnoses, and selected research imaging in children with osteogenesis imperfecta (OI), X‑linked hypophosphatemic rickets (XLH), achondroplasia, and other bone and growth disorders from the standpoint of a tertiary referral center.
Collapse
Affiliation(s)
- Sarah N Mehany
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna General Hospital and Medical University of Vienna, Vienna, Austria
| | - Janina M Patsch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna General Hospital and Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Peralta L, Maeztu Redin JD, Fan F, Cai X, Laugier P, Schneider J, Raum K, Grimal Q. Bulk Wave Velocities in Cortical Bone Reflect Porosity and Compression Strength. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:799-808. [PMID: 33341302 DOI: 10.1016/j.ultrasmedbio.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The goal of this study was to evaluate whether ultrasonic velocities in cortical bone can be considered as a proxy for mechanical quality of cortical bone tissue reflected by porosity and compression strength. Micro-computed tomography, compression mechanical testing and resonant ultrasound spectroscopy were used to assess, respectively, porosity, strength and velocity of bulk waves of both shear and longitudinal polarisations propagating along and perpendicular to osteons, in 92 cortical bone specimens from tibia and femur of elderly human donors. All velocities were significantly associated with strength (r = 0.65-0.83) and porosity (r = -0.64 to -0.77). Roughly, according to linear regression models, a decrease in velocity of 100 m/s corresponded to a loss of 20 MPa in strength (which is approximately 10% of the largest strength value) and to an increase in porosity of 5%. These results provide a rationale for the in vivo measurement of one or several velocities for the diagnosis of bone fragility.
Collapse
Affiliation(s)
- Laura Peralta
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, Kings College London, London, United Kingdom.
| | - Juan Deyo Maeztu Redin
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Fan Fan
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France; Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiran Cai
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Pascal Laugier
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies, Charit-Universittsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charit-Universittsmedizin Berlin, Berlin, Germany
| | - Quentin Grimal
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| |
Collapse
|
9
|
Feng T, Zhu Y, Morris R, Kozloff KM, Wang X. Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study. BME FRONTIERS 2020; 2020:1081540. [PMID: 37849970 PMCID: PMC10521673 DOI: 10.34133/2020/1081540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/02/2020] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. To study the feasibility of combined functional photoacoustic (PA) and quantitative ultrasound (US) for diagnosis of osteoporosis in vivo based on the detection of chemical and microarchitecture (BMA) information in calcaneus bone. Introduction. Clinically available X-ray or US technologies for the diagnosis of osteoporosis do not report important parameters such as chemical information and BMA. With unique advantages, including good sensitivity to molecular and metabolic properties, PA bone assessment techniques hold a great potential for clinical translation. Methods. By performing multiwavelength PA measurements, the chemical information in the human calcaneus bone, including mineral, lipid, oxygenated-hemoglobin, and deoxygenated-hemoglobin, were assessed. In parallel, by performing PA spectrum analysis, the BMA as an important bone physical property was quantified. An unpaired t -test and a two-way ANOVA test were conducted to compare the outcomes from the two subject groups. Results. Multiwavelength PA measurement is capable of assessing the relative contents of several chemical components in the trabecular bone in vivo, including both minerals and organic materials such as oxygenated-hemoglobin, deoxygenated-hemoglobin, and lipid, which are relevant to metabolic activities and bone health. In addition, PA measurements of BMA show good correlations (R 2 up to 0.65) with DEXA. Both the chemical and microarchitectural measurements from PA techniques can differentiate the two subject groups. Conclusion. The results from this initial clinical study suggest that PA techniques, by providing additional chemical and microarchitecture information relevant to bone health, may lead to accurate and early diagnosis, as well as sensitive monitoring of the treatment of osteoporosis.
Collapse
Affiliation(s)
- Ting Feng
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | | | - Kenneth M. Kozloff
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, MI 48109, USA
| |
Collapse
|
10
|
Raimann A, Mehany SN, Feil P, Weber M, Pietschmann P, Boni-Mikats A, Klepochova R, Krššák M, Häusler G, Schneider J, Patsch JM, Raum K. Decreased Compressional Sound Velocity Is an Indicator for Compromised Bone Stiffness in X-Linked Hypophosphatemic Rickets (XLH). Front Endocrinol (Lausanne) 2020; 11:355. [PMID: 32582030 PMCID: PMC7296046 DOI: 10.3389/fendo.2020.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Objectives: To assess the diagnostic potential of bidirectional axial transmission (BDAT) ultrasound, and high-resolution peripheral quantitative computed tomography (HR-pQCT) in X-linked hypophosphatemia (XLH, OMIM #307800), a rare genetic disorder of phosphate metabolism caused by mutations in the PHEX gene. Methods: BDAT bone ultrasound was performed at the non-dominant distal radius (33% relative to distal head) and the central left tibia (50%) in eight XLH patients aged between 4.2 and 20.8 years and compared to twenty-nine healthy controls aged between 5.8 and 22.4 years. In eighteen controls, only radius measurements were performed. Four patients and four controls opted to participate in HR-pQCT scanning of the ultradistal radius and tibia. Results: Bone ultrasound was feasible in patients and controls as young as 4 years of age. The velocity of the first arriving signal (νFAS) in BDAT ultrasound was significantly lower in XLH patients compared to healthy controls: In the radius, mean νFAS of XLH patients and controls was 3599 ± 106 and 3866 ± 142 m/s, respectively (-6.9%; p < 0.001). In the tibia, it was 3578 ± 129 and 3762 ± 124 m/s, respectively (-4.9%; p = 0.006). HR-pQCT showed a higher trabecular thickness in the tibia of XLH patients (+16.7%; p = 0.021). Conclusions: Quantitative bone ultrasound revealed significant differences in cortical bone quality of young XLH patients as compared to controls. Regular monitoring of XLH patients by a radiation-free technology such as BDAT might provide valuable information on bone quality and contribute to the optimization of treatment. Further studies are needed to establish this affordable and time efficient method in the XLH patients.
Collapse
Affiliation(s)
- Adalbert Raimann
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sarah N. Mehany
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Patricia Feil
- Division of Pediatric Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Andrea Boni-Mikats
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Radka Klepochova
- Department of Biomedical Imaging and Image-guided Therapy, The High Field MR Centre, Vienna, Austria
| | - Martin Krššák
- Department of Biomedical Imaging and Image-guided Therapy, The High Field MR Centre, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging—MOLIMA, Vienna, Austria
| | - Gabriele Häusler
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes Schneider
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Janina M. Patsch
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- *Correspondence: Janina M. Patsch
| | - Kay Raum
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
11
|
Mohanty K, Yousefian O, Karbalaeisadegh Y, Ulrich M, Grimal Q, Muller M. Artificial neural network to estimate micro-architectural properties of cortical bone using ultrasonic attenuation: A 2-D numerical study. Comput Biol Med 2019; 114:103457. [PMID: 31600691 PMCID: PMC6817400 DOI: 10.1016/j.compbiomed.2019.103457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023]
Abstract
The goal of this study is to estimate micro-architectural parameters of cortical porosity such as pore diameter (φ), pore density (ρ) and porosity (ν) of cortical bone from ultrasound frequency dependent attenuation using an artificial neural network (ANN). First, heterogeneous structures with controlled pore diameters and pore densities (mono-disperse) were generated, to mimic simplified structure of cortical bone. Then, more realistic structures were obtained from high resolution CT scans of human cortical bone. 2-D finite-difference time-domain simulations were conducted to calculate the frequency-dependent attenuation in the 1-8 MHz range. An ANN was then trained with the ultrasonic attenuation at different frequencies as the input feature vectors while the output was set as the micro-architectural parameters (pore diameter, pore density and porosity). The ANN is composed of three fully connected dense layers with 24, 12 and 6 neurons, connected to the output layer. The dataset was trained over 6000 epochs with a batch size of 16. The trained ANN exhibits the ability to predict the micro-architectural parameters with high accuracy and low losses. ANN approaches could potentially be used as a tool to help inform physics-based modelling of ultrasound propagation in complex media such as cortical bone. This will lead to the solution of inverse-problems to retrieve bone micro-architectural parameters from ultrasound measurements for the non-invasive diagnosis and monitoring osteoporosis.
Collapse
Affiliation(s)
- Kaustav Mohanty
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, 27695, USA.
| | - Omid Yousefian
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, 27695, USA.
| | - Yasamin Karbalaeisadegh
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, 27695, USA.
| | - Micah Ulrich
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, 27695, USA.
| | - Quentin Grimal
- Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, 75006, Paris, France.
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
12
|
Mora-Macías J, Giráldez-Sánchez MÁ, López M, Domínguez J, Reina-Romo ME. Comparison of methods for assigning the material properties of the distraction callus in computational models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3227. [PMID: 31197959 DOI: 10.1002/cnm.3227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
In silico models of distraction osteogenesis and fracture healing usually assume constant mechanical properties for the new bone tissue generated. In addition, these models do not always account for the porosity of the woven bone and its evolution. In this study, finite element analyses based on computed tomography (CT) are used to predict the stiffness of the callus until 69 weeks after surgery using 15 CT images obtained at different stages of an experiment on bone transport, technique in which distraction osteogenesis is used to correct bone defects. Three different approaches were used to assign the mechanical properties to the new bone tissue. First, constant mechanical properties of the hard callus tissue and no porosity were assumed. Nevertheless, this approach did not show good correlations. Second, random variations in the elastic modulus and porosity of the woven bone were taken from previous experimental studies. Finally, the elastic properties of each element were assigned depending on gray scale in CT images. The numerically predicted callus stiffness was compared with previous in vivo measurements. It was concluded firstly that assignment depending on gray scale is the method that provides the best results and secondly that the method that considers a random distribution of porosity and elastic modulus of the callus is also suitable to predict the callus stiffness from 15 weeks after surgery. This finding provides a method for assigning the material properties of the distraction callus, which does not require CT images and may contribute to improve current in silico models.
Collapse
Affiliation(s)
- Juan Mora-Macías
- Department of Mining, Mechanical, Energy and Construction Engineering, University of Huelva, Huelva, Spain
| | - Miguel Ángel Giráldez-Sánchez
- Clinical Orthopaedics, Trauma Surgery and Rheumatology Management Unit, Virgen del Rocío Universitary Hospital, Seville, Spain
| | | | - Jaime Domínguez
- Department of Mechanical Engineering and Manufacturing, University of Seville, Seville, Spain
| | - María Esther Reina-Romo
- Department of Mechanical Engineering and Manufacturing, University of Seville, Seville, Spain
| |
Collapse
|
13
|
Minonzio JG, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K, Kolta S, Roux C, Laugier P. Ultrasound-Based Estimates of Cortical Bone Thickness and Porosity Are Associated With Nontraumatic Fractures in Postmenopausal Women: A Pilot Study. J Bone Miner Res 2019; 34:1585-1596. [PMID: 30913320 DOI: 10.1002/jbmr.3733] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 01/02/2023]
Abstract
Recent ultrasound (US) axial transmission techniques exploit the multimode waveguide response of long bones to yield estimates of cortical bone structure characteristics. This pilot cross-sectional study aimed to evaluate the performance at the one-third distal radius of a bidirectional axial transmission technique (BDAT) to discriminate between fractured and nonfractured postmenopausal women. Cortical thickness (Ct.Th) and porosity (Ct.Po) estimates were obtained for 201 postmenopausal women: 109 were nonfractured (62.6 ± 7.8 years), 92 with one or more nontraumatic fractures (68.8 ± 9.2 years), 17 with hip fractures (66.1 ± 10.3 years), 32 with vertebral fractures (72.4 ± 7.9 years), and 17 with wrist fractures (67.8 ± 9.6 years). The areal bone mineral density (aBMD) was obtained using DXA at the femur and spine. Femoral aBMD correlated weakly, but significantly with Ct.Th (R = 0.23, p < 0.001) and Ct.Po (R = -0.15, p < 0.05). Femoral aBMD and both US parameters were significantly different between the subgroup of all nontraumatic fractures combined and the control group (p < 0.05). The main findings were that (1) Ct.Po was discriminant for all nontraumatic fractures combined (OR = 1.39; area under the receiver operating characteristic curve [AUC] equal to 0.71), for vertebral (OR = 1.96; AUC = 0.84) and wrist fractures (OR = 1.80; AUC = 0.71), whereas Ct.Th was discriminant for hip fractures only (OR = 2.01; AUC = 0.72); there was a significant association (2) between increased Ct.Po and vertebral and wrist fractures when these fractures were not associated with any measured aBMD variables; (3) between increased Ct.Po and all nontraumatic fractures combined independently of aBMD neck; and (4) between decreased Ct.Th and hip fractures independently of aBMD femur. BDAT variables showed comparable performance to that of aBMD neck with all types of fractures (OR = 1.48; AUC = 0.72) and that of aBMD femur with hip fractures (OR = 2.21; AUC = 0.70). If these results are confirmed in prospective studies, cortical BDAT measurements may be considered useful for assessing fracture risk in postmenopausal women. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- J-G Minonzio
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - N Bochud
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Q Vallet
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - D Ramiandrisoa
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - A Etcheto
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - K Briot
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - S Kolta
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - C Roux
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - P Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| |
Collapse
|
14
|
Ghavami S, Denis M, Gregory A, Webb J, Bayat M, Kumar V, Fatemi M, Alizad A. Pulsed vibro-acoustic method for assessment of osteoporosis & osteopenia: A feasibility study on human subjects. J Mech Behav Biomed Mater 2019; 97:187-197. [PMID: 31125891 DOI: 10.1016/j.jmbbm.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 12/01/2022]
Abstract
In this paper we propose a new non-invasive ultrasound method, pulsed vibro-acoustic, for evaluating osteoporotic and osteopenic bone in humans. Vibro-acoustic method uses acoustic radiation force (ARF) to stimulate bone and the resulting acoustic signal can be used to characterize bone. The resulting acoustic signal is collected by a hydrophone at the skin surface. Wave velocity and numbers of intrinsic modes are used for analysis. Wave velocity is estimated using the received signal and maximum power mode of the decomposed signal is estimated using variational mode composition from different push points of ARF based on the cross-correlation method. A total of 27 adult volunteers, including healthy and those diagnosed with osteopenia and osteoporosis, were tested. Results of pulsed vibro-acoustic test on tibia of volunteers showed that healthy group could be differentiated from osteoporosis or osteopenia (p < 2 × 10-5). The results of our study support the feasibility of pulsed vibro-acoustic method for measuring mechanical properties of bone and the potential clinical utility of the proposed method for assessment of bone health.
Collapse
Affiliation(s)
- Siavash Ghavami
- Department of Radiology, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA
| | - Max Denis
- Department of Radiology, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA
| | - Adriana Gregory
- Department of Radiology, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA
| | - Jeremy Webb
- Department of Radiology, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA
| | - Mahdi Bayat
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA
| | - Viksit Kumar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic, College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
15
|
Vogl F, Friesenbichler B, Hüsken L, Kramers-de Quervain IA, Taylor WR. Can low-frequency guided waves at the tibia paired with machine learning differentiate between healthy and osteopenic/osteoporotic subjects? A pilot study. ULTRASONICS 2019; 94:109-116. [PMID: 30660337 DOI: 10.1016/j.ultras.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/04/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
PURPOSE Axial transmission quantitative acoustics (ax-QA) has shown to be a promising tool for assessing bone health and properties in a safe, inexpensive, and portable manner. This study investigated the efficacy of low-frequency ax-QA measured at the tibia, paired with a support vector machine (SVM) approach for combining multiple acoustic indicators, to diagnose osteoporosis as defined by bone mineral density. METHODS This pilot study measured 41 female subjects using ax-QA (flexural mode, 3 kHz) at the tibia and using dual X-ray absorptiometry (DXA) at the lumbar spine, femoral neck, and distal radius. For each location, a threshold classifier and SVM were trained to differentiate between healthy and non-healthy subjects based on the phase velocity at different frequencies. Receiver Operating Characteristics and area under curve values (AUC) were used to assess the classifiers' performances for various thresholds and class-weights. RESULTS The SVM outperformed the threshold classifier for all three bone locations at low false positive rates. While differentiation between healthy and non-healthy bone states was poor for the spine (AUC: 0.56 ± 0.04), good to moderate performances were observed for the radius (AUC: 0.83 ± 0.03) and hip (AUC: 0.71 ± 0.04). CONCLUSIONS Low-frequency ax-QA has demonstrated potential for complementing DXA in screening for osteoporosis at the radius and hip. Through further addition of acoustic indicators ax-QA could provide a diagnostic alternative in third-world countries, and bring bone health screening and monitoring into the hands of clinicians and general health practitioners everywhere.
Collapse
Affiliation(s)
- Florian Vogl
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
| | | | - Laura Hüsken
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
16
|
Ultrasound Radiation Force for the Assessment of Bone Fracture Healing in Children: An In Vivo Pilot Study. SENSORS 2019; 19:s19040955. [PMID: 30813465 PMCID: PMC6412657 DOI: 10.3390/s19040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 11/24/2022]
Abstract
Vibrational characteristics of bone are directly dependent on its physical properties. In this study, a vibrational method for bone evaluation is introduced. We propose a new type of quantitative vibro-acoustic method based on the acoustic radiation force of ultrasound for bone characterization in persons with fracture. Using this method, we excited the clavicle or ulna by an ultrasound radiation force pulse which induces vibrations in the bone, resulting in an acoustic wave that is measured by a hydrophone placed on the skin. The acoustic signals were used for wave velocity estimation based on a cross-correlation technique. To further separate different vibration characteristics, we adopted a variational mode decomposition technique to decompose the received signal into an ensemble of band-limited intrinsic mode functions, allowing analysis of the acoustic signals by their constitutive components. This prospective study included 15 patients: 12 with clavicle fractures and three with ulna fractures. Contralateral intact bones were used as controls. Statistical analysis demonstrated that fractured bones can be differentiated from intact ones with a detection probability of 80%. Additionally, we introduce a “healing factor” to quantify the bone healing progress which successfully tracked the progress of healing in 80% of the clavicle fractures in the study.
Collapse
|
17
|
Biver E, Pepe J, de Sire A, Chevalley T, Ferrari S. Associations between radius low-frequency axial ultrasound velocity and bone fragility in elderly men and women. Osteoporos Int 2019; 30:411-421. [PMID: 30306224 DOI: 10.1007/s00198-018-4725-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
UNLABELLED An exploratory study in elderly women and men from the Geneva Retirees Cohort indicates that low-frequency quantitative ultrasound measurement at the radius captures aBMD, bone size, and cortical tissue mineral density and might be used for screening purposes prior to DXA to evaluate fracture risk. INTRODUCTION: The contribution of distal radius bone mineral density (BMD) and cortical microstructure to fracture risk has recently been demonstrated. In this exploratory study, we investigated whether low-frequency quantitative ultrasound measurement at the distal radius may capture the peripheral determinants of bone fragility assessed with dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS Low-frequency velocity (VLF) was measured at the radius using OsCare Sono®, a portable axial transmission ultrasonometer, in 271 community-dwelling postmenopausal women and men (age 71.5 ± 1.4 years) from the Geneva Retirees Cohort. Cortical (Ct) and trabecular (Tb) volumetric (v) BMD and microstructure at the distal radius were assessed by HR-pQCT, in addition to areal (a) BMD by DXA, at the same time point. RESULTS VLF was highly correlated with aBMD at the distal third radius (r = 0.72, p < 0.001). For microstructure parameters, the highest correlation was observed with cortical area (r = 0.59, p < 0.001). VLF also captured bone geometry (total area) and cortical tissue mineral density independently of aBMD. In models adjusted for age and sex, VLF was significantly associated with prevalent low-trauma fractures [OR 95%CI for one SD decrease of VLF 1.50 (1.05, 2.14), p = 0.024], with discrimination performance comparable to femoral neck or distal radius aBMD. CONCLUSION Measurement of VLF at the radius captures aBMD, bone size, and cortical tissue mineral density and might be used for screening purposes prior to DXA to evaluate fracture risk.
Collapse
Affiliation(s)
- E Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.
| | - J Pepe
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
- Department of Internal Medicine and Medical Disciplines, "Sapienza" University of Rome, Rome, Italy
| | - A de Sire
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - T Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - S Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| |
Collapse
|
18
|
Grimal Q, Laugier P. Quantitative Ultrasound Assessment of Cortical Bone Properties Beyond Bone Mineral Density. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Minonzio JG, Bochud N, Vallet Q, Bala Y, Ramiandrisoa D, Follet H, Mitton D, Laugier P. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone 2018; 116:111-119. [PMID: 30056165 DOI: 10.1016/j.bone.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
Several studies showed the ability of the cortex of long bones such as the radius and tibia to guide mechanical waves. Such experimental evidence has given rise to the emergence of a category of quantitative ultrasound techniques, referred to as the axial transmission, specifically developed to measure the propagation of ultrasound guided waves in the cortical shell along the axis of long bones. An ultrasound axial transmission technique, with an automated approach to quantify cortical thickness and porosity is described. The guided modes propagating in the cortex are recorded with a 1-MHz custom made linear transducer array. Measurement of the dispersion curves is achieved using a two-dimensional spatio-temporal Fourier transform combined with singular value decomposition. Automatic parameters identification is obtained through the solution of an inverse problem in which the dispersion curves are predicted with a two-dimensional transverse isotropic free plate model. Thirty-one radii and fifteen tibiae harvested from human cadavers underwent axial transmission measurements. Estimates of cortical thickness and porosity were obtained on 40 samples out of 46. The reproducibility, given by the root mean square error of the standard deviation of estimates, was 0.11 mm for thickness and 1.9% for porosity. To assess accuracy, site-matched micro-computed tomography images of the bone specimens imaged at 9 μm voxel size served as the gold standard. Agreement between micro-computed tomography and axial transmission for quantification of thickness and porosity at the radius and tibia ranged from R2=0.63 for porosity (root mean square error RMSE=1.8%) to 0.89 for thickness (RMSE=0.3 mm). Despite an overall good agreement for porosity, the method performs less well for porosities lower than 10%. The heterogeneity and general complexity of cortical bone structure, which are not fully accounted for by our model, are suspected to weaken the model approximation. This study presents the first validation study for assessing cortical thickness and porosity using the axial transmission technique. The automatic signal processing minimizes operator-dependent errors for parameters determination. Recovering the waveguide characteristics, that is to say cortical thickness and porosity, could provide reliable information about skeletal status and future fracture risk.
Collapse
Affiliation(s)
- J-G Minonzio
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - N Bochud
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France.
| | - Q Vallet
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - Y Bala
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Ramiandrisoa
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - H Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR T9406, Lyon F-69622, France
| | - P Laugier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| |
Collapse
|
20
|
Bai L, Xu K, Li D, Ta D, Le LH, Wang W. Fatigue evaluation of long cortical bone using ultrasonic guided waves. J Biomech 2018; 77:83-90. [PMID: 29961583 DOI: 10.1016/j.jbiomech.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Bone fatigue fracture is a progressive disease due to stress concentration. This study aims to evaluate the long bone fatigue damage using the ultrasonic guided waves. Two-dimensional finite-difference time-domain method was employed to simulate the ultrasonic guided wave propagation in the long bone under different elastic modulus. The experiment was conducted on a 3.8 mm-thick bovine bone plate. The phase velocities of two fundamental guided modes, A1 and S1, were measured by using the axial transmission technique. Simulation shows that the phase velocities of guided modes A1 and S1 decrease with the increasing of the fatigue damage. After 20,000 cycles of fatigue loading on the bone plate, the average phase velocities of A1 and S1 modes were 6.6% and 5.3% respectively, lower than those of the intact bone. The study suggests that ultrasonic guided waves can be potentially used to evaluate the fatigue damage in long bones.
Collapse
Affiliation(s)
- Liang Bai
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Kailiang Xu
- Institut Langevin, ESPCI Paris, CNRS UMR 7587, INSERM U979, 17 Rue Moreau, 75012 Paris, France.
| | - Dan Li
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Weiqi Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Denis M, Wan L, Fatemi M, Alizad A. Ultrasound Characterization of Bone Demineralization Using a Support Vector Machine. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:714-725. [PMID: 29284556 PMCID: PMC5801199 DOI: 10.1016/j.ultrasmedbio.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
We propose an ultrasound-guided remote measurement technique, utilizing an acoustic radiation force beam as our excitation source and a receiving hydrophone, to assess non-invasively a bone's mechanical properties. Features, such as velocity, were extracted from the acoustic pressure received from the bone surface. The typical velocity of an intact bone (3540 m/s) was higher in comparison to that of a demineralized bone (2231 m/s). According to the receiver operating characteristic curve, the optimal velocity cutoff value of ≥3096 m/s yields 80% sensitivity and 82.61% specificity between intact and demineralized bone. Utilizing a support vector machine, the hours of bone demineralization were successfully classified with maximum accuracy >80% using 18% training data. The results indicate the potential application of our proposed technique and support vector machine for monitoring bone mechanical properties.
Collapse
Affiliation(s)
- Max Denis
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Leighton Wan
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Beattie A, Cournane S, Finucane C, Walsh JB, Stassen LFA. Quantitative Ultrasound of the Mandible as a Novel Screening Approach for Osteoporosis. J Clin Densitom 2018; 21:110-118. [PMID: 28943183 DOI: 10.1016/j.jocd.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 11/22/2022]
Abstract
This study used an axial transmission quantitative ultrasound (QUS) device to assess mandibular bone strength. The aim of the study was first to establish the precision and repeatability of the axial transmission QUS measurement for a range of mandibular anatomic sites, and second to investigate the ability of the modality to differentiate between osteoporotic subjects and a control group. Three groups of adult Caucasian women were recruited: (1) healthy premenopausal women (n = 26), (2) healthy postmenopausal women (n = 48), and (3) women with osteoporosis (n = 53). Subjects were excluded from groups 1 and 2 if they had any pre-existing bone conditions. Speed of sound (SOS) measurements were taken from the mandible using an OmniSense multisite QUS device. Group 3 had dual-energy X-ray absorptiometry scans of the lumbar spine and femur. The most suitable site on the mandible was determined by repeat SOS measurements in 10 healthy premenopausal subjects, at 5 different sites. The parasymphysis site had the lowest root mean squared coefficient of variation at 0.74%, and was chosen as the most suitable site for mandibular SOS measurements. Group 1 and group 2 had significantly higher mean SOS measurements than the osteoporotic subjects (group 3), with means of 3683 m/s (210), 3514 m/s (221), and 3312 m/s (264), respectively. A 1-way analysis of variance confirmed a statistically significant difference between mean SOS measurements from the 3 groups (p < 0.0001). Axial transmission QUS of the mandible can differentiate between subjects with osteoporosis and a healthy control group, and shows potential for use as a screening tool for osteoporosis.
Collapse
Affiliation(s)
- Anna Beattie
- Dept of Oral and Maxillofacial Surgery, Dublin Dental University Hospital, Lincoln Place, Dublin 2, Ireland.
| | - Seán Cournane
- Medical Physics and Bioengineering Dept, St James's Hospital, James's St, Dublin 8, Ireland
| | - Ciarán Finucane
- Mercer's Institute for Research on Ageing, St James's Hospital, Dublin 8, Ireland
| | - J Bernard Walsh
- Mercer's Institute for Successful Ageing, St James's Hospital, Dublin 8, Ireland; Dept of Medical Gerontology, Trinity College Dublin, Ireland
| | - Leo F A Stassen
- Dept of Oral and Maxillofacial Surgery, St James's Hospital, Dublin 8, Ireland; Department of Oral and Maxillofacial Surgery, Dublin Dental University Hospital, Lincoln Place, Dublin 2, Ireland
| |
Collapse
|
23
|
Vogl F, Bernet B, Bolognesi D, Taylor WR. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study. PLoS One 2017; 12:e0182617. [PMID: 28880868 PMCID: PMC5589096 DOI: 10.1371/journal.pone.0182617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. MATERIALS AND METHODS 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. RESULTS A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2-5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter. CONCLUSIONS This work has shown the capability of low-frequency quantitative acoustics to reflect changes in porosity and individual pore characteristics and demonstrated that additive manufacturing is an appropriate method that allows the influence of individual bone properties on the wave propagation to be systematically assessed. The results of this work opens perspectives for the efficient development of a multi-frequency, multi-mode approach to screen, diagnose, and monitor bone pathologies in individuals.
Collapse
Affiliation(s)
- Florian Vogl
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
24
|
Kozhevnikov E, Hou X, Qiao S, Zhao Y, Li C, Tian W. Electrical impedance spectroscopy - a potential method for the study and monitoring of a bone critical-size defect healing process treated with bone tissue engineering and regenerative medicine approaches. J Mater Chem B 2016; 4:2757-2767. [PMID: 32263340 DOI: 10.1039/c5tb02707a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of strategies of bone tissue engineering and regenerative medicine has been drawing considerable attention to treat bone critical-size defects (CSDs). Notably, new strategies and/or treatment approaches always require appropriate tools to track the healing process so as to evaluate their success. In this paper, we present the development of a novel approach for the non-invasive, yet real-time, monitoring and assessment of bone CSDs treated with biomaterials and biomedical approaches. For this, we employed the technique of electrical impedance spectroscopy (EIS) to quantitatively monitor and assess the changes in electrical impedance, and thus the regeneration process. In our in vitro tests, we examined the biochemical changes of the fracture area and investigated the influence of collagen and hydroxyapatite on the changes in electrical impedance by EIS, thus inferring the changes in bone regeneration and structure. Based on this success, we further demonstrated, in real time, the process of regeneration of the traumatic area in an in vivo rabbit model. Our electrical-impedance data of the experiment groups, i.e., the ones treated with natural coral and bone morphogenetic protein-2 (BMP-2), revealed that each group has its unique impedance graph characteristics, which are directly associated with the degree of regeneration. For comparison, we also employed radiography, gross anatomy, and histological analyses in examination. Our results illustrate that EIS holds considerable potential as a non-invasive tool for monitoring, in real time, the healing of bone CSDs by allowing for quantitatively characterizing the changes of both hydroxyapatite and collagen.
Collapse
Affiliation(s)
- Evgeny Kozhevnikov
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | | | | | | | | | | |
Collapse
|
25
|
Wang D, Zhong H, Zhai Y, Hu H, Jin B, Wan M. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:561-573. [PMID: 26617242 DOI: 10.1016/j.ultrasmedbio.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/21/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles.
Collapse
Affiliation(s)
- Diya Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Hui Zhong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yu Zhai
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Hong Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Bowen Jin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| |
Collapse
|
26
|
Mora-Macías J, Reina-Romo E, Domínguez J. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo. Med Eng Phys 2015; 37:969-78. [DOI: 10.1016/j.medengphy.2015.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 07/01/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
27
|
Rohrbach D, Grimal Q, Varga P, Peyrin F, Langer M, Laugier P, Raum K. Distribution of mesoscale elastic properties and mass density in the human femoral shaft. Connect Tissue Res 2015; 56:120-32. [PMID: 25738522 DOI: 10.3109/03008207.2015.1013627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cortical bone properties are determined by tissue composition and structure at several hierarchical length scales. In this study, the spatial distribution of micro- and mesoscale elastic properties within a human femoral shaft has been investigated. Microscale tissue degree of mineralization (DMB), cortical vascular porosity Ct.Po and the average transverse isotropic stiffness tensor C(Micro) of cylindrical-shaped samples (diameter: 4.4 mm, N = 56) were obtained from cortical regions between 20 and 85% of the total femur length and around the periphery (anterior, medial, posterior and lateral quadrants) by means of synchrotron radiation µCT (SRµCT) and 50-MHz scanning acoustic microscopy (SAM). Within each cylinder, the volumetric bone mineral density (vBMD) and the mesoscale stiffness tensor C(Meso) were derived using a numerical homogenization approach. Moreover, microelastic maps of the axial elastic coefficient c33 measured by SAM at distinct cross-sectional locations along the femur were used to construct a 3-D multiscale elastic model of the femoral shaft. Variations of vBMD (6.1%) were much lower than the variations of mesoscale elastic coefficients (11.1-21.3%). The variation of DMB was only a minor predictor for variations of the mesoscale elastic properties (0.05 ≤ R(2) ≤ 0.34). Instead, variations of the mesoscale elastic properties could be explained by variations of cortical porosity and microscale elastic properties. These data were suitable inputs for numerical evaluations and may help to unravel the relations between structure and composition on the elastic function in cortical bone.
Collapse
Affiliation(s)
- Daniel Rohrbach
- Julius-Wolff-Institute & Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin , Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Mora-Macías J, Reina-Romo E, Morgaz J, Domínguez J. In Vivo Gait Analysis During Bone Transport. Ann Biomed Eng 2015; 43:2090-100. [DOI: 10.1007/s10439-015-1262-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
|
29
|
Malo MKH, Töyräs J, Karjalainen JP, Isaksson H, Riekkinen O, Jurvelin JS. Ultrasound backscatter measurements of intact human proximal femurs--relationships of ultrasound parameters with tissue structure and mineral density. Bone 2014; 64:240-5. [PMID: 24769331 DOI: 10.1016/j.bone.2014.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Ultrasound reflection and backscatter parameters are related to the mechanical and structural properties of bone in vitro. However, the potential of ultrasound reflection and backscatter measurements has not been tested with intact human proximal femurs ex vivo. We hypothesize that ultrasound backscatter can be measured from intact femurs and that the measured backscattered signal is associated with cadaver age, bone mineral density (BMD) and trabecular bone microstructure. In this study, human femoral bones of 16 male cadavers (47.0±16.1 years, range: 21-77 years) were investigated using pulse-echo ultrasound measurements at the femoral neck in the antero-posterior direction and at the trochanter major in the anteroposterior and lateromedial directions. Recently introduced ultrasound backscatter parameters, independent of cortical thickness, e.g., time slope of apparent integrated backscatter (TSAB) and mean of the backscatter difference technique (MBD) were obtained and compared with the structural properties of trabecular bone samples, extracted from the locations of ultrasound measurements. Moreover, more conventional backscatter parameters, e.g., apparent integrated backscatter (AIB) and frequency slope of apparent integrated backscatter (FSAB) were analyzed. Bone mineral density of the intact femurs was evaluated using dual energy X-ray absorptiometry (DXA). AIB and MDB measured from the femoral neck correlated significantly (p<0.01) with the neck BMD (R2=0.44 and 0.45), cadaver age (R2=0.61 and 0.41) and several structural parameters, e.g., bone volume fraction (R2=0.33 and 0.39, p<0.05 and p<0.01), respectively. To conclude, ultrasound backscatter parameters, measured from intact proximal femurs, are significantly related (p<0.05) to structural properties and mineral density of trabecular bone.
Collapse
Affiliation(s)
- M K H Malo
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, FI-70029, Kuopio, Finland.
| | - J Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, FI-70029, Kuopio, Finland
| | - J P Karjalainen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - H Isaksson
- Department of Biomedical Engineering, Department of Orthopaedics, Lund University, POB 118, SE-22100, Lund, Sweden
| | - O Riekkinen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - J S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
30
|
Zhang Z, Liu D, Deng M, Ta D, Wang W. Experimental observation of cumulative second-harmonic generation of lamb waves propagating in long bones. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1660-1670. [PMID: 24726796 DOI: 10.1016/j.ultrasmedbio.2014.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
The experimental observation of cumulative second-harmonic generation of fundamental Lamb waves in long bones is reported. Based on the modal expansion approach to waveguide excitation and the dispersion characteristics of Lamb waves in long bones, the mechanism underlying the generation and accumulation of second harmonics by propagation of the fundamental Lamb waves was investigated. An experimental setup was established to detect the second-harmonic signals of Lamb wave propagation in long bones in vitro. Through analysis of the group velocities of the received signals, the appropriate fundamental Lamb wave modes and the duration of the second-harmonic signals could be identified. The integrated amplitude of the time-domain second-harmonic signal was introduced and used to characterize the efficiency of second-harmonic generation by fundamental Lamb wave propagation. The results indicate that the second-harmonic signal generated by fundamental Lamb waves propagating in long bones can be observed clearly, and the effect was cumulative with propagation distance when the fundamental Lamb wave mode and the double-frequency Lamb wave mode had the same phase velocities. The present results may be important in the development of a new method to evaluate the status of long bones using the cumulative second harmonic of ultrasonic Lamb waves.
Collapse
Affiliation(s)
- Zhenggang Zhang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Dan Liu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Mingxi Deng
- Department of Physics, Logistics Engineering University, Chongqing, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China.
| | - Weiqi Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Abstract
Bone quality is determined by a variety of compositional, micro- and ultrastructural properties of the mineralized tissue matrix. In contrast to X-ray-based methods, the interaction of acoustic waves with bone tissue carries information about elastic and structural properties of the tissue. Quantitative ultrasound (QUS) methods represent powerful alternatives to ionizing x-ray based assessment of fracture risk. New in vivo applicable methods permit measurements of fracture-relevant properties, [eg, cortical thickness and stiffness at fragile anatomic regions (eg, the distal radius and the proximal femur)]. Experimentally, resonance ultrasound spectroscopy and acoustic microscopy can be used to assess the mesoscale stiffness tensor and elastic maps of the tissue matrix at microscale resolution, respectively. QUS methods, thus, currently represent the most promising approach for noninvasive assessment of components of fragility beyond bone mass and bone microstructure providing prospects for improved assessment of fracture risk.
Collapse
Affiliation(s)
- Kay Raum
- Julius Wolff Institute & Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
32
|
Grimal Q, Rohrbach D, Grondin J, Barkmann R, Glüer CC, Raum K, Laugier P. Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1015-1026. [PMID: 24486239 DOI: 10.1016/j.ultrasmedbio.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 06/03/2023]
Abstract
Quantitative ultrasound assessment of the cortical compartment of the femur neck (FN) is investigated with the goal of achieving enhanced fracture risk prediction. Measurements at the FN are influenced by bone size, shape and material properties. The work described here was aimed at determining which FN material properties have a significant impact on ultrasound propagation around 0.5 MHz and assessing the relevancy of different models. A methodology for the modeling of ultrasound propagation in the FN, with a focus on the modeling of bone elastic properties based on scanning acoustic microscopy data, is introduced. It is found that the first-arriving ultrasound signal measured in through-transmission at the FN is not influenced by trabecular bone properties or by the heterogeneities of the cortical bone mineralized matrix. In contrast, the signal is sensitive to variations in cortical porosity, which can, to a certain extent, be accounted for by effective properties calculated with the Mori-Tanaka method.
Collapse
Affiliation(s)
- Quentin Grimal
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France.
| | - Daniel Rohrbach
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julien Grondin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Claus-C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Kay Raum
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Laugier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| |
Collapse
|
33
|
Moilanen P, Zhao Z, Karppinen P, Karppinen T, Kilappa V, Pirhonen J, Myllylä R, Haeggström E, Timonen J. Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:521-31. [PMID: 24361218 DOI: 10.1016/j.ultrasmedbio.2013.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 05/05/2023]
Abstract
Photo-acoustic (PA) imaging was combined with skeletal quantitative ultrasound (QUS) for assessment of human long bones. This approach permitted low-frequency excitation and detection of ultrasound so as to efficiently receive the thickness-sensitive fundamental flexural guided wave (FFGW) through a coating of soft tissue. The method was tested on seven axisymmetric bone phantoms, whose 1- to 5-mm wall thickness and 16-mm diameter mimicked those of the human radius. Phantoms were made of a composite material and coated with a 2.5- to 7.5-mm layer of soft material that mimicked soft tissue. Ultrasound was excited with a pulsed Nd:YAG laser at 1064-nm wavelength and received on the same side of the coated phantom with a heterodyne interferometer. The FFGW was detected at 30-kHz frequency. Fitting the FFGW phase velocity by the FLC(1,1) tube mode provided an accurate (9.5 ± 4.0%) wall thickness estimate. Ultrasonic in vivo characterization of cortical bone thickness may thus become possible.
Collapse
Affiliation(s)
- Petro Moilanen
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
| | - Zuomin Zhao
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland; Department of Electrical Engineering, University of Oulu, Oulu, Finland
| | - Pasi Karppinen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Karppinen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vantte Kilappa
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - Jalmari Pirhonen
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - Risto Myllylä
- Department of Electrical Engineering, University of Oulu, Oulu, Finland
| | | | - Jussi Timonen
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
34
|
Rohde K, Rohrbach D, Glüer CC, Laugier P, Grimal Q, Raum K, Barkmann R. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:302-313. [PMID: 24474136 DOI: 10.1109/tuffc.2014.6722615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The femoral neck is a common fracture site in elderly people. The cortical shell is thought to be the major contributor to the mechanical competence of the femoral neck, but its microstructural parameters are not sufficiently accessible under in vivo conditions with current X-ray-based methods. To systematically investigate the influences of pore size, porosity, and thickness of the femoral neck cortex on the propagation of ultrasound, we developed 96 different bone models (combining 6 different pore sizes with 4 different porosities and 4 different thicknesses) and simulated the ultrasound propagation using a finite-difference time-domain algorithm. The simulated single-element emitter and receiver array consisting of 16 elements (8 inferior and 8 superior) were placed at anterior and posterior sides of the bone, respectively (transverse transmission). From each simulation, we analyzed the waveform collected by each of the inferior receiver elements for the one with the shortest time of flight. The first arriving signal of this waveform, which is associated with the wave traveling through the cortical shell, was then evaluated for its three different waveform characteristics (TOF: time point of the first point of inflection of the received signal, Δt: difference between the time point at which the signal first crosses the zero baseline and TOF, and A: amplitude of the first extreme of the first arriving signal). From the analyses of these waveform characteristics, we were able to develop multivariate models to predict pore size, porosity, and cortical thickness, corresponding to the 96 different bone models, with remaining errors in the range of 50 μm for pore size, 1.5% for porosity, and 0.17 mm for cortical thickness.
Collapse
|
35
|
Rohrbach D, Preininger B, Hesse B, Gerigk H, Perka C, Raum K. The early phases of bone healing can be differentiated in a rat osteotomy model by focused transverse-transmission ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1642-1653. [PMID: 23830097 DOI: 10.1016/j.ultrasmedbio.2013.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Here we describe the use of a 5-MHz focused transmission system to image the bone repair region and to distinguish the early healing phases in a rat osteotomy (OT) model. Twelve-month-old female rats underwent a 2-mm OT. After 6 wk of consolidation, 2-D projection images of time-of-flight, speed of sound, and ultrasound attenuation were measured in vitro. The tissue types in the OT gap region were assessed by site-matched histology sections and micro-computed tomography (μCT). In the cases investigated, OT gap regions containing fibrous tissue (group A) were found to have similar properties compared with adjacent muscle tissue, whereas regions filled with cartilage and mineralized callus tissues (group B) differed significantly. Analysis of variance revealed that the healing group had a stronger effect on acoustic parameters (F < 35) than on μCT-based parameters (F < 22). This pilot study reports the feasibility of transverse transmission quantitative ultrasound in assessment of the onset of cartilage formation during callus formation.
Collapse
Affiliation(s)
- Daniel Rohrbach
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Kilappa V, Xu K, Moilanen P, Heikkola E, Ta D, Timonen J. Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1223-1232. [PMID: 23643059 DOI: 10.1016/j.ultrasmedbio.2013.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/09/2013] [Accepted: 02/03/2013] [Indexed: 06/02/2023]
Abstract
The fundamental flexural guided wave (FFGW), as modeled, for example, by the A0 Lamb mode, is a clinically useful indicator of cortical bone thickness. In the work described in this article, we tested so-called multiridge-based analysis, based on the crazy climber algorithm and short-time Fourier transform, for assessment of the FFGW component recorded by a clinical array transducer featuring a limited number of elements. Methods included numerical finite-element simulations and experiments in bone phantoms and human radius specimens (n = 41). The proposed approach enabled extraction of the FFGW component and determination of its group velocity. This group velocity was in good agreement with theoretical predictions and possessed reasonable sensitivity to cortical width (r(2) = 0.51, p < 0.001) in the in vitro experiments. It is expected that the proposed approach enables related clinical application. Further work is still needed to analyze in more detail the challenges related to the impact of the overlying soft tissue.
Collapse
Affiliation(s)
- Vantte Kilappa
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Jilka RL. The relevance of mouse models for investigating age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 2013; 68:1209-17. [PMID: 23689830 DOI: 10.1093/gerona/glt046] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized.
Collapse
Affiliation(s)
- Robert L Jilka
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, 4301W. Markham, Slot 587, Little Rock, AR 72205.
| |
Collapse
|
38
|
Malo MKH, Rohrbach D, Isaksson H, Töyräs J, Jurvelin JS, Tamminen IS, Kröger H, Raum K. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 2013; 53:451-8. [PMID: 23334084 DOI: 10.1016/j.bone.2013.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
Abstract
Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Tr<c33Ct), location (c33(Ct.Ps)=37.7GPa>c33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in elastic coefficients were detected between femoral neck and shaft as well as between the quadrants of the cross-sections of neck and shaft. Moreover, an age-related increase in cortical porosity and a stiffening of the bone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics.
Collapse
Affiliation(s)
- M K H Malo
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Moilanen P, Määttä M, Kilappa V, Xu L, Nicholson PHF, Alén M, Timonen J, Jämsä T, Cheng S. Discrimination of fractures by low-frequency axial transmission ultrasound in postmenopausal females. Osteoporos Int 2013; 24:723-30. [PMID: 22638711 DOI: 10.1007/s00198-012-2022-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
SUMMARY In this cross-sectional study, 95 postmenopausal women, with and without fracture history, were measured by low-frequency axial transmission ultrasound. The measured ultrasound velocity discriminated the fractured subjects from the nonfractured ones equally or better than peripheral quantitative computed tomography (pQCT) and dual energy x-ray absorptiometry (DXA). These results suggest that low-frequency ultrasound is suitable for bone fragility assessment. INTRODUCTION Quantitative low-frequency axial transmission ultrasound is a promising modality for assessing mineral density and geometrical properties of long bones such as radius and tibia. The aim of the current study was to evaluate the ability of low-frequency axial transmission ultrasound to discriminate fractures retrospectively in postmenopausal women. METHODS A cross-sectional study involved 95 female subjects aged 45-88 years, whose fracture information was gathered retrospectively. The fracture group was defined as subjects with one or more low-/moderate-energy fractures. The radius and tibial shaft were measured with a custom-made ultrasonometer to assess the velocity of the low-frequency first-arriving signal (V (LF)). Site-matched pQCT was used to measure volumetric cortical and subcortical bone mineral density (sBMD), and cortical thickness (CTh). Areal BMD (aBMD) was measured using DXA for the whole body (WB), lumbar spine, and hip. RESULTS The majority (19/32; 59 %) of the fractures were in the upper limb. V (LF) in the radius, but not in the tibia, discriminated fractures with an age- and BMI-adjusted odds ratio (OR) of 2.06 (95 % CI 1.21-3.50, p < 0.01). In the radius, CTh and cortical BMD (CBMD) significantly discriminated fractures, as did the total, cortical, and sBMD in the tibia (adjusted OR 1.35-2.15, p < 0.05). Sensitivity and specificity were similar among all the measurements (area under the receiver operating characteristic curve 0.74-0.81, p < 0.001). CONCLUSIONS Low-frequency axial transmission ultrasound in the radius was able to discriminate fractured subjects from the nonfractured ones. This suggests that low-frequency axial transmission ultrasound has the potential to assess bone fragility in postmenopausal women.
Collapse
Affiliation(s)
- P Moilanen
- Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, Laugier P, Raum K. Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech 2012; 45:2264-70. [DOI: 10.1016/j.jbiomech.2012.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
41
|
Grondin J, Grimal Q, Yamamoto K, Matsukawa M, Saïed A, Laugier P. Relative contributions of porosity and mineralized matrix properties to the bulk axial ultrasonic wave velocity in human cortical bone. ULTRASONICS 2012; 52:467-471. [PMID: 22182403 DOI: 10.1016/j.ultras.2011.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/17/2011] [Accepted: 11/27/2011] [Indexed: 05/31/2023]
Abstract
Velocity of ultrasound waves has proved to be a useful indicator of bone biomechanical competence. A detailed understanding of the dependence of ultrasound parameters such as velocity on bone characteristics is a key to the development of bone quantitative ultrasound (QUS). The objective of this study is to investigate the relative contributions of porosity and mineralized matrix properties to the bulk compressional wave velocity (BCV) along the long bone axis. Cross-sectional slabs from the diaphysis of four human femurs were included in the study. Seven regions of interest (ROIs) were selected in each slab. BCV was measured in through-transmission at 5 MHz. Impedance of the mineralized matrix (Z(m)) and porosity (Por) were obtained from 50 MHz scanning acoustic microscopy. Por and Z(m) had comparable effects on BCV along the bone axis (R=-0.57 and R=0.72, respectively).
Collapse
Affiliation(s)
- Julien Grondin
- UPMC Univ Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
42
|
Spiesz EM, Roschger P, Zysset PK. Influence of mineralization and microporosity on tissue elasticity: experimental and numerical investigation on mineralized turkey leg tendons. Calcif Tissue Int 2012; 90:319-29. [PMID: 22395487 DOI: 10.1007/s00223-012-9578-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 01/05/2012] [Indexed: 10/28/2022]
Abstract
A combined experimental and numerical study correlating indentation stiffness with mineralization and microporosity was performed on mineralized turkey leg tendon. Two distinct tissue morphologies were distinguished by quantitative backscattered electron imaging and called "circumferential" and "interstitial" zones. These two zones showed different tissue organization, microporosity, and mineralization. Stiffness, measured by microindentation, was also different in the two zones. The mean field method of modeling of mineralized collagen fibers was employed to explain the differences.
Collapse
Affiliation(s)
- Ewa M Spiesz
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria.
| | | | | |
Collapse
|
43
|
Yamamoto K, Nakatsuji T, Yaoi Y, Yamato Y, Yanagitani T, Matsukawa M, Yamazaki K, Matsuyama Y. Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone. ULTRASONICS 2012; 52:377-386. [PMID: 22014464 DOI: 10.1016/j.ultras.2011.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 09/03/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
Quantitative ultrasound (QUS) is now widely used for evaluating bone in vivo, because obtained ultrasonic wave properties directly reflect the visco-elasticity. Bone tissue is composed of minerals like hydroxyapatite (HAp) and a collagen matrix. HAp crystallites orientation is thus one parameter of bone elasticity. In this study, we experimentally investigated the anisotropy of ultrasonic wave velocity and the HAp crystallites orientation in the axial-radial and axial-tangential planes in detail, using cylindrical specimens obtained from the cortical bone of three bovine femurs. Longitudinal bulk wave propagation was investigated by using a conventional ultrasonic pulse system. We used the one cycle of sinusoidal pulse which was emitted from wide band transmitter. The nominal frequency of the pulse was 1MHz. First, we investigated the anisotropy of longitudinal wave velocity, measuring the anisotropy of velocity in two planes using cylindrical specimens obtained from identical bone areas. The wave velocity changed due to the rotation angle, showing the maximum value in the direction a little off the bone axis. Moreover, X-ray pole figure measurements also indicated that there were small tilts in the HAp crystallites orientation from the bone axis. The tilt angles were similar to those of the highest velocity direction. There were good correlations between velocity and HAp crystallites orientation obtained in different directions. However, a comparatively low correlation was found in posterior bone areas, which shows the stronger effects of bone microstructure. In the radial-tangential plane, where the HAp crystallites hardly ever align, weak anisotropy of velocity was found which seemed to depend on the bone microstructure.
Collapse
Affiliation(s)
- Kazufumi Yamamoto
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tatarinov A, Sarvazyan A, Beller G, Felsenberg D. Comparative examination of human proximal tibiae in vitro by ultrasonic guided waves and pQCT. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1791-1801. [PMID: 21924819 DOI: 10.1016/j.ultrasmedbio.2011.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 04/12/2011] [Accepted: 04/26/2011] [Indexed: 05/31/2023]
Abstract
The velocity of ultrasonic guided waves in long bones is dependent upon two determinants of bone strength: the cortical thickness and the material properties. In this study, six human proximal tibiae in vitro were examined to test the efficacy of an ultrasonic method based on guided waves. Peripheral quantitative computed tomography (pQCT) was used as the comparative reference modality. The guided wave velocity (c(F)) was derived from two-dimensional (2-D) spatial-temporal waveform profiles formed by multiple ultrasonic signals acquired along the bones at 100 kHz frequency and passed wavelet processing. The ultrasonic profiles from the examined bones were ranged according to pQCT measurements of cortical thickness (CTh), and cortical bone mineral density (CBMD). Strong correlations between c(F) and CTh (r(S) = 0.83, p < 0.0001) and CBMD (r(S) = 0.88, p < 0.0001) resulted. The study confirmed a potential for guided waves to assess atrophic changes of the proximal tibia.
Collapse
|
45
|
Granke M, Grimal Q, Saïed A, Nauleau P, Peyrin F, Laugier P. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 2011; 49:1020-6. [PMID: 21855669 DOI: 10.1016/j.bone.2011.08.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/16/2011] [Accepted: 08/01/2011] [Indexed: 11/20/2022]
Abstract
At the mesoscale (i.e. over a few millimeters), cortical bone can be described as two-phase composite material consisting of pores and a dense mineralized matrix. The cortical porosity is known to influence the mesoscopic elasticity. Our objective was to determine whether the variations of porosity are sufficient to predict the variations of bone mesoscopic anisotropic elasticity or if change in bone matrix elasticity is an important factor to consider. We measured 21 cortical bone specimens prepared from the mid-diaphysis of 10 women donors (aged from 66 to 98 years). A 50-MHz scanning acoustic microscope (SAM) was used to evaluate the bone matrix elasticity (reflected in impedance values) and porosity. Porosity evaluation with SAM was validated against Synchrotron Radiation μCT measurements. A standard contact ultrasonic method was applied to determine the mesoscopic elastic coefficients. Only matrix impedance in the direction of the bone axis correlated to mesoscale elasticity (adjusted R(2)=[0.16-0.25], p<0.05). The mesoscopic elasticity was found to be highly correlated to the cortical porosity (adj-R(2)=[0.72-0.84], p<10(-5)). Multivariate analysis including both matrix impedance and porosity did not provide a better statistical model of mesoscopic elasticity variations. Our results indicate that, for the elderly population, the elastic properties of the mineralized matrix do not undergo large variations among different samples, as reflected in the low coefficients of variation of matrix impedance (less than 6%). This work suggests that change in the intracortical porosity accounts for most of the variations of mesoscopic elasticity, at least when the analyzed porosity range is large (3-27% in this study). The trend in the variation of mesoscale elasticity with porosity is consistent with the predictions of a micromechanical model consisting of an anisotropic matrix pervaded by cylindrical pores.
Collapse
Affiliation(s)
- Mathilde Granke
- UPMC Univ Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
46
|
Kilappa V, Moilanen P, Xu L, Nicholson PHF, Timonen J, Cheng S. Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women. Osteoporos Int 2011; 22:1103-13. [PMID: 20577874 DOI: 10.1007/s00198-010-1273-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 04/08/2010] [Indexed: 01/28/2023]
Abstract
UNLABELLED Axial transmission velocity of a low-frequency first arriving signal (V (LF)) was assessed in the radius and tibia of 254 females, and compared to site-matched pQCT measurements. V (LF) best correlated with cortical BMD, but significantly also with subcortical BMD and cortical thickness. Correlations were strongest for the radius in postmenopausal females. INTRODUCTION Ultrasonic low-frequency (LF; 0.2-0.4 MHz) axial transmission, based on the first arriving signal (FAS), provides enhanced sensitivity to thickness and endosteal properties of cortical wall of the radius and tibia compared to using higher frequencies (e.g., 1 MHz). This improved sensitivity of the LF approach has not yet been clearly confirmed by an in vivo study on adult subjects. The aims of the present study were to evaluate the extent to which LF measurements reflect cortical thickness and bone mineral density, and to assess whether an individual LF measurement can provide a useful estimate for these bone properties. METHODS Velocity of the LF FAS (V (LF)) was assessed in the radius and tibia shaft by a new ultrasonometer (CV(RMS) = 0.5%) in a cross-sectional study involving 159 premenopausal (20-58 years) and 95 postmenopausal females (45-88 years). Site-matched volumetric total bone mineral density (BMD), cortical bone mineral density (CBMD), subcortical bone mineral density (ScBMD) and cortical thickness (CTh) were assessed using pQCT. RESULTS For the postmenopausal females, V (LF) correlated best with CBMD in the radius (R = 0.850, p < 0.001), but significantly also with ScBMD and CTh (R = 0.759 and R = 0.761, respectively; p < 0.001). Similar trends but weaker correlations were observed for the tibia and for the premenopausal women. CONCLUSIONS The LF assessment, with an optimal excitation frequency, thus provided good prediction of both cortical thickness and subcortical bone material properties. These results suggest that the LF approach does indeed have enhanced sensitivity for detecting osteoporotic changes that occur deep in the endosteal bone.
Collapse
Affiliation(s)
- V Kilappa
- Department of Physics, University of Jyväskylä, PO BOX 35 (YFL), 40014 Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
47
|
Haïat G, Naili S, Ba Vu M, Desceliers C, Soize C. Equivalent contributing depth investigated by a lateral wave with axial transmission in viscoelastic cortical bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:EL114-EL120. [PMID: 21476617 DOI: 10.1121/1.3554719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cortical bone is a viscoelastic heterogeneous medium which may be assessed with axial transmission. This work aims at evaluating the average depth investigated by the lateral wave for radial variations of material properties in relatively thick cortical bone. The equivalent contributing depth (ECD) is derived from the finite element simulation results for spatial variations of a viscoelastic coefficient (η(11)) and of porosity. A value of ECD equal to around 1.6 mm is obtained for a spatial variation of η(11). The method fails to predict accurate values of the ECD for a spatial variation of porosity, because all parameters vary simultaneously.
Collapse
Affiliation(s)
- Guillaume Haïat
- CNRS, Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 94010 Créteil Cedex, France.
| | | | | | | | | |
Collapse
|
48
|
Preininger B, Checa S, Molnar FL, Fratzl P, Duda GN, Raum K. Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:474-483. [PMID: 21256668 DOI: 10.1016/j.ultrasmedbio.2010.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
The course of bone healing in animal models is conventionally monitored by morphologic approaches, which do not allow the determination of the material properties of the tissues involved. Mechanical characterization techniques are either dedicated to the macroscopic evaluation of the entire organ or to the microscopic evaluation of the tissue matrix. The latter provides insight to regionally specific alterations at the tissue level in the course of healing. In this study, quantitative scanning acoustic microscopy was used at 50 MHz to investigate microstructural and elastic alterations of mineralized callus and cortical tissue after transverse osteotomy in sheep tibiae. Analyses were performed after 2, 3, 6 and 9 weeks of consolidation with stabilization by either a rigid or a semi-rigid external fixator. Increased stiffness and decreased porosity were observed in the callus tissue over the course of the healing process, which was dependent on the fixator type. In the adjacent cortical tissue, stiffness decreased during the first 3 weeks. Cortical porosity increased over time but the time-dependence was different between the two fixator types. The changes of stiffness of cortical and callus tissues were measured with respect to the distance to the periosteal cortex-callus boundary. Stiffness of cortex and callus tissue smoothly decreased as a function of the distance from the inner cortical region. The data obtained in this study can help to understand the processes involved in tissue maturation during endogenous bone healing.
Collapse
Affiliation(s)
- Bernd Preininger
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Bone status of children with hemophilia A assessed with quantitative ultrasound sonography (QUS) and dual energy X-ray absorptiometry (DXA). J Pediatr Hematol Oncol 2010; 32:e259-63. [PMID: 20736845 DOI: 10.1097/mph.0b013e3181e8cd40] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies report reduced bone mineral density (BMD) even among young adults and children with hemophilia. Our aim was to assess bone status in children and adolescents with hemophilia with 2 methods: Quantitative UltraSonography (QUS) and Dual energy x-ray Absorptiometry (DXA), and consequently to investigate the degree of correlation between them. Twenty-seven patients (17 with severe hemophilia; residual factor activity <1% and 10 with moderate hemophilia) participated in the study. Mean age was 12.28±4.48 y (range: 4.94 to 18.00 y). All patients were evaluated with QUS at radius and at tibia and had DXA scan at lumbar spine. Anthropometric parameters were measured using standard techniques and joint evaluation was carried out using the Hemophilia Joint Health Score (HJHS). Only 2 out of 27 patients (7.5%) had BMD Z-scores <-2, whereas another 4 patients (15%) had BMD Z-scores between -1 and -2. QUS values in both radius and tibia were generally within the normal limits as only 1 patient had radius and another 1 had tibia QUS Z-score <-2. HJH scores were significantly although negatively correlated to Z-scores of tibia QUS (r=-0.455, P=0.034). No correlations were observed between lumbar BMD and radius or tibia QUS and no agreement was recorded between QUS and DXA in identifying patients at risk for osteoporosis (k=0.262). In conclusion, our study showed that only a small number of children and young adults with hemophilia have impaired bone properties as assessed both by DXA and QUS; no correlation was observed between these 2 methods.
Collapse
|
50
|
Barkmann R, Dencks S, Laugier P, Padilla F, Brixen K, Ryg J, Seekamp A, Mahlke L, Bremer A, Heller M, Glüer CC. Femur ultrasound (FemUS)--first clinical results on hip fracture discrimination and estimation of femoral BMD. Osteoporos Int 2010; 21:969-76. [PMID: 19693640 DOI: 10.1007/s00198-009-1037-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022]
Abstract
SUMMARY A quantitative ultrasound (QUS) device for measurements at the proximal femur was developed and tested in vivo (Femur Ultrasound Scanner, FemUS). Hip fracture discrimination was as good as for DXA, and a high correlation with hip BMD was achieved. Our results show promise for enhanced QUS-based assessment of osteoporosis. INTRODUCTION Dual X-ray absorptiometry (DXA) at the femur is the best predictor of hip fractures, better than DXA measurements at other sites. Calcaneal quantitative ultrasound (QUS) can be used to estimate the general osteoporotic fracture risk, but no femoral QUS measurement has been introduced yet. We developed a QUS scanner for measurements at the femur (Femur Ultrasound Scanner, FemUS) and tested its in vivo performance. METHODS Using the FemUS device, we obtained femoral QUS and DXA on 32 women with recent hip fractures and 30 controls. Fracture discrimination and the correlation with femur bone mineral density (BMD) were assessed. RESULTS Hip fracture discrimination using the FemUS device was at least as good as with hip DXA and calcaneal QUS. Significant correlations with total hip bone mineral density were found with a correlation coefficient R (2) up to 0.72 and a residual error of about one half of a T-score in BMD. CONCLUSIONS QUS measurements at the proximal femur are feasible and show a good performance for hip fracture discrimination. Given the promising results, this laboratory prototype should be reengineered to a clinical applicable instrument. Our results show promise for further enhancement of QUS-based assessment of osteoporosis.
Collapse
Affiliation(s)
- R Barkmann
- Arbeitsgruppe Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Str 3, Haus 23, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|