1
|
Xu L, Yao S, Ding YE, Xie M, Feng D, Sha P, Tan L, Bei F, Yao Y. Designing and optimizing AAV-mediated gene therapy for neurodegenerative diseases: from bench to bedside. J Transl Med 2024; 22:866. [PMID: 39334366 PMCID: PMC11429861 DOI: 10.1186/s12967-024-05661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as an attractive tool for gene delivery, and demonstrated tremendous promise in gene therapy and gene editing-therapeutic modalities with potential "one-and-done" treatment benefits compared to conventional drugs. Given their tropisms for the central nervous system (CNS) across various species including humans, rAAVs have been extensively investigated in both pre-clinical and clinical studies targeting neurodegenerative disease. However, major challenges remain in the application of rAAVs for CNS gene therapy, such as suboptimal vector design, low CNS transduction efficiency and specificity, and therapy-induced immunotoxicity. Therefore, continuing efforts are being made to optimize the rAAV vectors from their "core" genetic payloads to their "coat" or capsid structure. In this review, we describe current approaches for rAAV vector design tailored for transgene expression in the CNS, summarize the development of CNS-targeting AAV serotypes, and highlight recent advancements in AAV capsid engineering, aimed at generating a new generation of rAAVs with improved CNS tropism. Additionally, we discuss various administration routes for delivering rAAVs to the CNS and provide an overview of AAV-mediated gene therapies currently under investigation in clinical trials for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Xu
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yifan Evan Ding
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingqi Feng
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
3
|
Cai Y, Fan K, Lin J, Ma L, Li F. Advances in BBB on Chip and Application for Studying Reversible Opening of Blood-Brain Barrier by Sonoporation. MICROMACHINES 2022; 14:112. [PMID: 36677173 PMCID: PMC9861620 DOI: 10.3390/mi14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The complex structure of the blood-brain barrier (BBB), which blocks nearly all large biomolecules, hinders drug delivery to the brain and drug assessment, thus decelerating drug development. Conventional in vitro models of BBB cannot mimic some crucial features of BBB in vivo including a shear stress environment and the interaction between different types of cells. There is a great demand for a new in vitro platform of BBB that can be used for drug delivery studies. Compared with in vivo models, an in vitro platform has the merits of low cost, shorter test period, and simplicity of operation. Microfluidic technology and microfabrication are good tools in rebuilding the BBB in vitro. During the past decade, great efforts have been made to improve BBB penetration for drug delivery using biochemical or physical stimuli. In particular, compared with other drug delivery strategies, sonoporation is more attractive due to its minimized systemic exposure, high efficiency, controllability, and reversible manner. BBB on chips (BOC) holds great promise when combined with sonoporation. More details and mechanisms such as trans-endothelial electrical resistance (TEER) measurements and dynamic opening of tight junctions can be figured out when using sonoporation stimulating BOC, which will be of great benefit for drug development. Herein, we discuss the recent advances in BOC and sonoporation for BBB disruption with this in vitro platform.
Collapse
Affiliation(s)
- Yicong Cai
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kexin Fan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiawei Lin
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenfang Li
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| |
Collapse
|
4
|
Sharma D, Cartar H, Quiaoit K, Law N, Giles A, Czarnota GJ. Effect of Ultrasound-Stimulated Microbubbles and Hyperthermia on Tumor Vasculature of Breast Cancer Xenograft. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2659-2671. [PMID: 35142383 PMCID: PMC9790356 DOI: 10.1002/jum.15950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 05/09/2023]
Abstract
OBJECTIVE The objective of the present study was to investigate the treatment effects of ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) on breast tumor vasculature. METHODS Tumor-bearing mice with breast cancer xenografts (MDA-MB-231), were exposed to different treatment conditions consisting of control (no treatment), USMB alone, HT alone, USMB with HT exposures of 10 and 50 minutes. Quantitative 3D Doppler ultrasound and photoacoustic imaging were used to detect tumor blood flow and oxygen saturation, respectively. In addition, histopathological analysis including TUNEL staining for cell death, and CD31 staining for the vessel count, was performed to complement the results of power Doppler and photoacoustic imaging. RESULTS Results demonstrated a decrease in tumor blood flow as well as oxygenation level following 50 minutes HT treatment either alone or combined with USMB. In contrast, 10 minutes HT alone or combined with USMB had minimal effects on blood flow and tumor oxygenation level. Treatment with HT for 50 minutes caused drops in tumor oxygenation, which were not evident with USMB treatment alone. Additionally, results revealed an increase in cell death after 10 minutes HT with or without USMB and a decrease in vessel count compared to control. Unlike previous studies which demonstrated synergistic treatment effects combining USMB with other modalities such as radiation or chemotherapy, USMB and HT effects were not synergistic in the present study. CONCLUSION The results here demonstrated HT and USMB both alone or together resulted in a significant reduction in tumor blood flow, tumor oxygenation, and vessel count with observed increases in cell death response.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Radiation OncologySunnybrook Health Sciences CentreTorontoOntarioCanada
- Departments of Medical Biophysics, and Radiation OncologyUniversity of TorontoTorontoOntarioCanada
| | - Holliday Cartar
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
| | - Karina Quiaoit
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
| | - Niki Law
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Radiation OncologySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Anoja Giles
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
| | - Gregory J. Czarnota
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Radiation OncologySunnybrook Health Sciences CentreTorontoOntarioCanada
- Departments of Medical Biophysics, and Radiation OncologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Li M, Beaumont N, Ma C, Rojas J, Vu T, Harlacher M, O'Connell G, Gessner RC, Kilian H, Kasatkina L, Chen Y, Huang Q, Shen X, Lovell JF, Verkhusha VV, Czernuszewicz T, Yao J. Three-Dimensional Deep-Tissue Functional and Molecular Imaging by Integrated Photoacoustic, Ultrasound, and Angiographic Tomography (PAUSAT). IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2704-2714. [PMID: 35442884 PMCID: PMC9563100 DOI: 10.1109/tmi.2022.3168859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x -ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and acoustic angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound. PAUSAT can perform three imaging modes simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubble-enabled acoustic angiography of tissue vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are co-registered, with high spatial resolutions at large depths. Using PAUSAT, we performed proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting breast tumor expressing genetically-encoded photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.
Collapse
|
6
|
Chien CY, Xu L, Pacia CP, Yue Y, Chen H. Blood-brain barrier opening in a large animal model using closed-loop microbubble cavitation-based feedback control of focused ultrasound sonication. Sci Rep 2022; 12:16147. [PMID: 36167747 PMCID: PMC9515082 DOI: 10.1038/s41598-022-20568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound (FUS) in combination with microbubbles has been established as a promising technique for noninvasive and localized Blood-brain barrier (BBB) opening. Real-time passive cavitation detection (PCD)-based feedback control of the FUS sonication is critical to ensure effective BBB opening without causing hemorrhage. This study evaluated the performance of a closed-loop feedback controller in a porcine model. Calibration of the baseline cavitation level was performed for each targeted brain location by a FUS sonication in the presence of intravenously injected microbubbles at a low acoustic pressure without inducing BBB opening. The target cavitation level (TCL) was defined for each target based on the baseline cavitation level. FUS treatment was then performed under real-time PCD-based feedback controller to maintain the cavitation level at the TCL. After FUS treatment, contrast-enhanced MRI and ex vivo histological staining were performed to evaluate the BBB permeability and safety. Safe and effective BBB opening was achieved with the BBB opening volume increased from 3.8 ± 0.7 to 53.6 ± 23.3 mm3 as the TCL was increased from 0.25 to 1 dB. This study validated that effective and safe FUS-induced BBB opening in a large animal model can be achieved with closed-loop feedback control of the FUS sonication.
Collapse
Affiliation(s)
- Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave., Saint Louis, MO, 63108, USA.
| |
Collapse
|
7
|
Hsu YH, Lee WC, Chu SS, Chao ME, Wu KS, Liu RS, Wong TT. Influence of Acoustic Parameters and Sonication Schemes on Transcranial Blood–Brain Barrier Disruption Induced by Pulsed Weakly Focused Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14061207. [PMID: 35745780 PMCID: PMC9227051 DOI: 10.3390/pharmaceutics14061207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
Pulsed ultrasound combined with microbubbles use can disrupt the blood–brain barrier (BBB) temporarily; this technique opens a temporal window to deliver large therapeutic molecules into brain tissue. There are published studies to discuss the efficacy and safety of the different ultrasound parameters, microbubble dosages and sizes, and sonication schemes on BBB disruption, but optimal the paradigm is still under investigation. Our study is aimed to investigate how different sonication parameters, time, and microbubble dose can affect BBB disruption, the dynamics of BBB disruption, and the efficacy of different sonication schemes on BBB disruption. Method: We used pulsed weakly focused ultrasound to open the BBB of C57/B6 mice. Evans blue dye (EBD) was used to determine the degree of BBB disruption. With a given acoustic pressure of 0.56 MPa and pulse repetitive frequency of 1 Hz, burst lengths of 10 ms to 50 ms, microbubbles of 100 μL/kg to 300 μL/kg, and sonication times of 60 s to 150 s were used to open the BBB for parameter study. Brain EBD accumulation was measured at 1, 4, and 24 h after sonication for the time–response relationship study; EBD of 100 mg/kg to 200 mg/kg was administered for the dose–response relationship study; EBD injection 0 to 6 h after sonication was performed for the BBB disruption dynamic study; brain EBD accumulation induced by one sonication and two sonications was investigated to study the effectiveness on BBB disruption; and a histology study was performed for brain tissue damage evaluation. Results: Pulsed weakly focused ultrasound opens the BBB extensively. Longer burst lengths and a larger microbubble dose result in a higher degree of BBB disruption; a sonication time longer than 60 s did not increase BBB disruption; brain EBD accumulation peaks 1 h after sonication and remains 81% of the peak level 24 h after sonication; the EBD dose administered correlates with brain EBD accumulation; BBB disruption decreases as time goes on after sonication and lasts for 6 h at least; and brain EBD accumulation induced by two sonication increases 74.8% of that induced by one sonication. There was limited adverse effects associated with sonication, including petechial hemorrhages and mild neuronal degeneration. Conclusions: BBB can be opened extensively and reversibly by pulsed weakly focused ultrasound with limited brain tissue damage. Since EBD combines with albumin in plasma to form a conjugate of 83 kDa, these results may simulate ultrasound-induced brain delivery of therapeutic molecules of this size scale. The result of our study may contribute to finding the optimal paradigm of focused ultrasound-induced BBB disruption.
Collapse
Affiliation(s)
- Yu-Hone Hsu
- Division of Neurosurgery, Kaohsiung Veterans General Hospital, Zuoying, Kaohsiung 813, Taiwan;
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Wei-Chung Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (S.-S.C.); (M.-E.C.); (K.-S.W.)
| | - Shing-Shung Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (S.-S.C.); (M.-E.C.); (K.-S.W.)
| | - Meng-En Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (S.-S.C.); (M.-E.C.); (K.-S.W.)
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (S.-S.C.); (M.-E.C.); (K.-S.W.)
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Correspondence: or (R.-S.L.); (T.-T.W.)
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (S.-S.C.); (M.-E.C.); (K.-S.W.)
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: or (R.-S.L.); (T.-T.W.)
| |
Collapse
|
8
|
Chien CY, Yang Y, Gong Y, Yue Y, Chen H. Blood-Brain Barrier Opening by Individualized Closed-Loop Feedback Control of Focused Ultrasound. BME FRONTIERS 2022; 2022:9867230. [PMID: 37850162 PMCID: PMC10521637 DOI: 10.34133/2022/9867230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/01/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. To develop an approach for individualized closed-loop feedback control of microbubble cavitation to achieve safe and effective focused ultrasound in combination with microbubble-induced blood-brain barrier opening (FUS-BBBO). Introduction. FUS-BBBO is a promising strategy for noninvasive and localized brain drug delivery with a growing number of clinical studies currently ongoing. Real-time cavitation monitoring and feedback control are critical to achieving safe and effective FUS-BBBO. However, feedback control algorithms used in the past were either open-loop or without consideration of baseline cavitation level difference among subjects. Methods. This study performed feedback-controlled FUS-BBBO by defining the target cavitation level based on the baseline stable cavitation level of an individual subject with "dummy" FUS sonication. The dummy FUS sonication applied FUS with a low acoustic pressure for a short duration in the presence of microbubbles to define the baseline stable cavitation level that took into consideration of individual differences in the detected cavitation emissions. FUS-BBBO was then achieved through two sonication phases: ramping-up phase to reach the target cavitation level and maintaining phase to control the stable cavitation level at the target cavitation level. Results. Evaluations performed in wild-type mice demonstrated that this approach achieved effective and safe trans-BBB delivery of a model drug. The drug delivery efficiency increased as the target cavitation level increased from 0.5 dB to 2 dB without causing vascular damage. Increasing the target cavitation level to 3 dB and 4 dB increased the probability of tissue damage. Conclusions. Safe and effective brain drug delivery was achieved using the individualized closed-loop feedback-controlled FUS-BBBO.
Collapse
Affiliation(s)
- Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| |
Collapse
|
9
|
Rominiyi O, Collis SJ. DDRugging glioblastoma: understanding and targeting the DNA damage response to improve future therapies. Mol Oncol 2022; 16:11-41. [PMID: 34036721 PMCID: PMC8732357 DOI: 10.1002/1878-0261.13020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most frequently diagnosed type of primary brain tumour in adults. These aggressive tumours are characterised by inherent treatment resistance and disease progression, contributing to ~ 190 000 brain tumour-related deaths globally each year. Current therapeutic interventions consist of surgical resection followed by radiotherapy and temozolomide chemotherapy, but average survival is typically around 1 year, with < 10% of patients surviving more than 5 years. Recently, a fourth treatment modality of intermediate-frequency low-intensity electric fields [called tumour-treating fields (TTFields)] was clinically approved for glioblastoma in some countries after it was found to increase median overall survival rates by ~ 5 months in a phase III randomised clinical trial. However, beyond these treatments, attempts to establish more effective therapies have yielded little improvement in survival for patients over the last 50 years. This is in contrast to many other types of cancer and highlights glioblastoma as a recognised tumour of unmet clinical need. Previous work has revealed that glioblastomas contain stem cell-like subpopulations that exhibit heightened expression of DNA damage response (DDR) factors, contributing to therapy resistance and disease relapse. Given that radiotherapy, chemotherapy and TTFields-based therapies all impact DDR mechanisms, this Review will focus on our current knowledge of the role of the DDR in glioblastoma biology and treatment. We also discuss the potential of effective multimodal targeting of the DDR combined with standard-of-care therapies, as well as emerging therapeutic targets, in providing much-needed improvements in survival rates for patients.
Collapse
Affiliation(s)
- Ola Rominiyi
- Weston Park Cancer CentreSheffieldUK
- Department of Oncology & MetabolismThe University of Sheffield Medical SchoolUK
- Department of NeurosurgeryRoyal Hallamshire HospitalSheffield Teaching Hospitals NHS Foundation TrustUK
| | - Spencer J. Collis
- Weston Park Cancer CentreSheffieldUK
- Department of Oncology & MetabolismThe University of Sheffield Medical SchoolUK
- Sheffield Institute for Nucleic Acids (SInFoNiA)University of SheffieldUK
| |
Collapse
|
10
|
Abstract
The use of contrast agents as signal enhancers during ultrasound improves visualization and the diagnostic utility of this technology in medical imaging. Although widely used in many disciplines, contrast ultrasound is not routinely implemented in obstetrics, largely due to safety concerns of administered agents for pregnant women and the limited number of studies that address this issue. Here the microbubble characteristics that make them beneficial for enhancement of the blood pool and the quantification of real-time imaging are reviewed. Literature from pregnant animal model studies and safety assessments are detailed, and the potential for contrast-enhanced ultrasound to provide clinically relevant data and benefit our understanding of early placental development and detection of placental dysfunction is discussed.
Collapse
|
11
|
Pacia CP, Zhu L, Yang Y, Yue Y, Nazeri A, Michael Gach H, Talcott MR, Leuthardt EC, Chen H. Feasibility and safety of focused ultrasound-enabled liquid biopsy in the brain of a porcine model. Sci Rep 2020; 10:7449. [PMID: 32366915 PMCID: PMC7198482 DOI: 10.1038/s41598-020-64440-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Although blood-based liquid biopsy is a promising noninvasive technique to acquire a comprehensive molecular tumor profile by detecting cancer-specific biomarkers (e.g. DNA, RNA, and proteins), there has been limited progress for brain tumor application partially because the low permeability of the blood-brain barrier (BBB) hinders the release of tumor biomarkers. We previously demonstrated focused ultrasound-enabled liquid biopsy (FUS-LBx) that uses FUS to increase BBB permeability in murine glioblastoma models and thus enhance the release of tumor-specific biomarkers into the bloodstream. The objective of this study was to evaluate the feasibility and safety of FUS-LBx in the normal brain tissue of a porcine model. Increased BBB permeability was confirmed by the significant increase (p = 0.0053) in Ktrans (the transfer coefficient from blood to brain extravascular extracellular space) when comparing the FUS-sonicated brain area with the contralateral non-sonicated area. Meanwhile, there was a significant increase in the blood concentrations of glial fibrillary acidic protein (GFAP, p = 0.0074) and myelin basic protein (MBP, p = 0.0039) after FUS sonication as compared with before FUS. There was no detectable tissue damage by T2*-weighted MRI and histological analysis. Findings from this study suggest that FUS-LBx is a promising technique for noninvasive and localized diagnosis of the molecular profiles of brain diseases with the potential to translate to the clinic.
Collapse
Affiliation(s)
- Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Michael R Talcott
- Division of Comparative Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| |
Collapse
|
12
|
Focused Ultrasonography-Mediated Blood-Brain Barrier Disruption in the Enhancement of Delivery of Brain Tumor Therapies. World Neurosurg 2019; 131:65-75. [PMID: 31323404 DOI: 10.1016/j.wneu.2019.07.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Glioblastoma is the most common intracranial malignancy in adults and carries a poor prognosis. Chemotherapeutic treatment figures prominently in the management of primary and recurrent disease. However, the blood-brain barrier presents a significant and formidable impediment to the entry of oncotherapeutic compounds to target tumor tissue. Several strategies have been developed to effect disruption of the blood-brain barrier and in turn enhance the efficacy of cytotoxic chemotherapy, as well as newly developed biologic agents. Focused ultrasonography is one such treatment modality, using acoustic cavitation of parenterally administered microbubbles to mechanically effect disruption of the vascular endothelium. We review and discuss the preclinical and clinical studies evaluating the biophysical basis for, and efficacy of, focused ultrasonography in the enhancement of oncotherapeutic agent delivery. Further, we provide some perspectives regarding future directions for the role of focused ultrasound in facilitating and improving the safe and effective delivery of oncotherapeutic agents in the treatment of glioblastoma.
Collapse
|
13
|
D'Arrigo JS. Targeting Early Dementia: Using Lipid Cubic Phase Nanocarriers to Cross the Blood⁻Brain Barrier. Biomimetics (Basel) 2018; 3:E4. [PMID: 31105226 PMCID: PMC6352688 DOI: 10.3390/biomimetics3010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, a frequent co-morbidity of cerebrovascular pathology and Alzheimer's disease has been observed. Numerous published studies indicate that the preservation of a healthy cerebrovascular endothelium can be an important therapeutic target. By incorporating the appropriate drug(s) into biomimetic (lipid cubic phase) nanocarriers, one obtains a multitasking combination therapeutic, which targets certain cell surface scavenger receptors, mainly class B type I (i.e., SR-BI), and crosses the blood⁻brain barrier. This targeting allows for various cell types related to Alzheimer's to be simultaneously searched out for localized drug treatment in vivo.
Collapse
|
14
|
Nanotherapy for Alzheimer's disease and vascular dementia: Targeting senile endothelium. Adv Colloid Interface Sci 2018; 251:44-54. [PMID: 29274774 DOI: 10.1016/j.cis.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022]
Abstract
Due to the complexity of Alzheimer's disease, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted lipid nanoemulsion) are available. Versatile small molecule drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble" [LCM]/"nanoparticle-derived" [ND] (or LCM/ND) nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly class B type I), or SR-BI, making possible for various Alzheimer's-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM suspension); such film-stabilized microbubbles are well known to substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer's patient.
Collapse
|
15
|
O'Reilly MA, Hynynen K. Ultrasound and Microbubble-Mediated Blood-Brain Barrier Disruption for Targeted Delivery of Therapeutics to the Brain. Methods Mol Biol 2018; 1831:111-119. [PMID: 30051428 DOI: 10.1007/978-1-4939-8661-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound and microbubble-mediated disruption of the Blood-Brain barrier is a noninvasive and targetable technique that permits the investigation of pharmacological interventions in the brain and CNS. This technique provides an alternative to direct injection of agents into the brain parenchyma or chemical disruption of the Blood-Brain barrier. Here, we detail one protocol for inducing transient Blood-Brain barrier disruption in a rodent model using a commercially available microbubble contrast agent (Definity).
Collapse
Affiliation(s)
- Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Alzheimer’s Disease, Brain Injury, and C.N.S. Nanotherapy in Humans: Sonoporation Augmenting Drug Targeting. Med Sci (Basel) 2017. [PMCID: PMC5753658 DOI: 10.3390/medsci5040029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Owing to the complexity of neurodegenerative diseases, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted nanoemulsion) are available. Versatile small-molecule drug(s) targeting multiple pathways of Alzheimer’s disease pathogenesis are known. By incorporating such drug(s) into the targeted lipid-coated microbubble/nanoparticle-derived (LCM/ND) lipid nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly scavenger receptor class B type I (SR-BI)), making it possible for various Alzheimer’s-related cell types to be simultaneously sought for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble (LCM) subpopulation (i.e., a stable LCM suspension); such LCM substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer’s patient.
Collapse
|
17
|
Hsu YH, Liu RS, Lin WL, Yuh YS, Lin SP, Wong TT. Transcranial pulsed ultrasound facilitates brain uptake of laronidase in enzyme replacement therapy for Mucopolysaccharidosis type I disease. Orphanet J Rare Dis 2017; 12:109. [PMID: 28595620 PMCID: PMC5465581 DOI: 10.1186/s13023-017-0649-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Background Mucopolysaccharidosis type I (MPS I) is a debilitating hereditary disease characterized by alpha-L-iduronidase (IDUA) deficiency and consequent inability to degrade glycosaminoglycans. The pathological accumulation of glycosaminoglycans systemically results in severe mental retardation and multiple organ dysfunction. Enzyme replacement therapy with recombinant human alpha-L-iduronidase (rhIDU) improves the function of some organs but not neurological deficits owing to its exclusion from the brain by the blood-brain barrier (BBB). Methods We divided MPS I mice into control group, enzyme replacement group with rhIDU 2.9 mg/kg injection, enzyme replacement with one-spot ultrasound treatment group, and enzyme replacement with two-spot ultrasound treatment group, and compare treatment effectiveness between groups. All ultrasound treatments were applied on left side brain. Evans blue was used to simulate the distribution of rhIDU in the brain. Results Transcranial pulsed weakly focused ultrasound combined with microbubbles facilitates brain rhIDU delivery in MPS I mice receiving systemic enzyme replacement therapy. With intravenously injected rhIDU 2.9 mg/kg, the IDUA enzyme activity on the ultrasound treated side of the cerebral hemisphere raised to 7.81-fold that on the untreated side and to 75.84% of its normal value. Evans blue simulation showed the distribution of the delivered drug was extensive, involving a large volume of the treated cerebral hemisphere. Two-spot ultrasound treatment scheme is more efficient for brain rhIDU delivery than one-spot ultrasound treatment scheme. Conclusions Transcranial pulsed weakly focused ultrasound can open BBB extensively and facilitates brain rhIDU delivery. This novel technology may provide a new MPS I treatment strategy.
Collapse
Affiliation(s)
- Yu-Hone Hsu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Department of Neurosurgery, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.,National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Win-Li Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yeong-Seng Yuh
- Department of Pediatrics, Cheng-Hsin General Hospital, No.45, Cheng Hsin St., Pai-Tou, Taipei, 112, Taiwan.,Department of Pediatrics, National Defense Medical Center, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Pediatrics, MacKay Memorial Hospital, No. 92, Sec. 2 Chung-Shan North Road, Taipei, 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2 Chung-Shan North Road, Taipei, 10449, Taiwan.,Department of Early Childhood Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, 252 Wuxing St, Taipei, 11031, Taiwan. .,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep 2017; 7:45657. [PMID: 28374753 PMCID: PMC5379491 DOI: 10.1038/srep45657] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Therapeutic treatment options for central nervous system diseases are greatly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), in conjunction with circulating microbubbles, can be used to induce a targeted and transient increase in BBB permeability, providing a unique approach for the delivery of drugs from the systemic circulation into the brain. While preclinical research has demonstrated the utility of FUS, there remains a large gap in our knowledge regarding the impact of sonication on BBB gene expression. This work is focused on investigating the transcriptional changes in dorsal hippocampal rat microvessels in the acute stages following sonication. Microarray analysis of microvessels was performed at 6 and 24 hrs post-FUS. Expression changes in individual genes and bioinformatic analysis suggests that FUS may induce a transient inflammatory response in microvessels. Increased transcription of proinflammatory cytokine genes appears to be short-lived, largely returning to baseline by 24 hrs. This observation may help to explain some previously observed bioeffects of FUS and may also be a driving force for the angiogenic processes and reduced drug efflux suggested by this work. While further studies are necessary, these results open up intriguing possibilities for novel FUS applications and suggest possible routes for pharmacologically modifying the technique.
Collapse
|
19
|
Abstract
Access to the CNS and delivery of therapeutics across the blood-brain barrier remains a challenge for most treatments of major neurological diseases such as AD or PD. Focused ultrasound represents a potential approach for overcoming these barriers to treating AD and PD and perhaps other neurological diseases. Ultrasound (US) is best known for its imaging capabilities of organs in the periphery, but various arrangements of the transducers producing the acoustic signal allow the energy to be precisely focused (F) within the skull. Using FUS in combination with MRI and contrast agents further enhances accuracy by providing clear information on location. Varying the acoustic power allows FUS to be used in applications ranging from imaging, stimulation of brain circuits, to ablation of tissue. In several transgenic mouse models of AD, the use of FUS with microbubbles reduces plaque load and improves cognition and suggests the need to investigate this technology for plaque removal in AD. In PD, FUS is being explored as a way to non-invasively ablate the brain areas responsible for the tremor and dyskinesia associated with the disease, but has yet to be utilized for non-invasive delivery of putative therapeutics. The FUS approach also greatly increases the range of possible CNS therapeutics as it overcomes the issues of BBB penetration. In this review we discuss how the characteristics and various applications of FUS may advance the therapeutics available for treating or preventing neurodegenerative disorders with an emphasis on treating AD and PD.
Collapse
Affiliation(s)
- Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| | - James P O'Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| |
Collapse
|
20
|
Sennoga CA, Kanbar E, Auboire L, Dujardin PA, Fouan D, Escoffre JM, Bouakaz A. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv 2016; 14:1031-1043. [DOI: 10.1080/17425247.2017.1266328] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Charles A. Sennoga
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Emma Kanbar
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Laurent Auboire
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | | | - Damien Fouan
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Jean-Michel Escoffre
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Ayache Bouakaz
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| |
Collapse
|
21
|
Tan JKY, Sellers DL, Pham B, Pun SH, Horner PJ. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Front Mol Neurosci 2016; 9:108. [PMID: 27847462 PMCID: PMC5088201 DOI: 10.3389/fnmol.2016.00108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application.
Collapse
Affiliation(s)
- James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Binhan Pham
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Philip J Horner
- Center for Neuroregenerative Medicine, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
22
|
Dasgupta A, Liu M, Ojha T, Storm G, Kiessling F, Lammers T. Ultrasound-mediated drug delivery to the brain: principles, progress and prospects. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 20:41-48. [PMID: 27986222 DOI: 10.1016/j.ddtec.2016.07.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022]
Abstract
The blood-brain barrier (BBB) limits drug delivery to the central nervous system. When combined with microbubbles, ultrasound can transiently permeate blood vessels in the brain. This approach, which can be referred to as sonoporation or sonopermeabilization, holds significant promise for shuttling large therapeutic molecules, such as antibodies, growth factors and nanomedicine formulations, across the BBB. We here describe the basic principles of BBB permeation using ultrasound and microbubbles, and we summarize several (pre-) clinical studies showing the potential of BBB opening for improving the treatment of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Mengjiao Liu
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Tarun Ojha
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
23
|
Mangraviti A, Gullotti D, Tyler B, Brem H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J Control Release 2016; 240:443-453. [DOI: 10.1016/j.jconrel.2016.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
24
|
Focused ultrasound to transiently disrupt the blood brain barrier. J Clin Neurosci 2016; 28:187-9. [PMID: 26883350 DOI: 10.1016/j.jocn.2015.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
25
|
Tan JKY, Pham B, Zong Y, Perez C, Maris DO, Hemphill A, Miao CH, Matula TJ, Mourad PD, Wei H, Sellers DL, Horner PJ, Pun SH. Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain. J Control Release 2016; 231:86-93. [PMID: 26860281 DOI: 10.1016/j.jconrel.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Neurons in the brain can be damaged or lost from neurodegenerative disease, stroke, or traumatic injury. Although neurogenesis occurs in mammalian adult brains, the levels of natural neurogenesis are insufficient to restore function in these cases. Gene therapy has been pursued as a promising strategy to induce differentiation of neural progenitor cells into functional neurons. Non-viral vectors are a preferred method of gene transfer due to potential safety and manufacturing benefits but suffer from lower delivery efficiencies compared to viral vectors. Since the neural stem and progenitor cells reside in the subventricular zone of the brain, intraventricular injection has been used as an administration route for gene transfer to these cells. However, the choroid plexus epithelium remains an obstacle to delivery. Recently, transient disruption of the blood-brain barrier by microbubble-enhanced ultrasound has been used to successfully improve drug delivery to the brain after intravenous injection. In this work, we demonstrate that microbubble-enhanced ultrasound can similarly improve gene transfer to the subventricular zone after intraventricular injection. Microbubbles of different surface charges (neutral, slightly cationic, and cationic) were prepared, characterized by acoustic flow cytometry, and evaluated for their ability to increase the permeability of immortalized choroid plexus epithelium monolayers in vitro. Based on these results, slightly cationic microbubbles were evaluated for microbubble and ultrasound-mediated enhancement of non-viral gene transfer in vivo. When coupled with our previously reported gene delivery vehicles, the slightly cationic microbubbles significantly increased ultrasound-mediated transfection of the murine brain when compared to commercially available Definity® microbubbles. Temporary disruption of the choroid plexus by microbubble-enhanced ultrasound is therefore a viable way of enhancing gene delivery to the brain and merits further research.
Collapse
Affiliation(s)
- James-Kevin Y Tan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Binhan Pham
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Yujin Zong
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA 98195, USA; Department of Biomedical Engineering, Xian Jiaotong University, Xi'an, 710049, China
| | - Camilo Perez
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA 98195, USA
| | - Don O Maris
- Department of Neurological Surgery, University of Washington, Seattle, WA 98109, USA
| | - Ashton Hemphill
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Carol H Miao
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Thomas J Matula
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA 98195, USA
| | - Pierre D Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA 98109, USA
| | - Hua Wei
- Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Philip J Horner
- Department of Neurological Surgery, University of Washington, Seattle, WA 98109, USA.
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Downs ME, Buch A, Karakatsani ME, Konofagou EE, Ferrera VP. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles. Sci Rep 2015; 5:15076. [PMID: 26496829 PMCID: PMC4620488 DOI: 10.1038/srep15076] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022] Open
Abstract
Over the past fifteen years, focused ultrasound coupled with intravenously administered microbubbles (FUS) has been proven an effective, non-invasive technique to open the blood-brain barrier (BBB) in vivo. Here we show that FUS can safely and effectively open the BBB at the basal ganglia and thalamus in alert non-human primates (NHP) while they perform a behavioral task. The BBB was successfully opened in 89% of cases at the targeted brain regions of alert NHP with an average volume of opening 28% larger than prior anesthetized FUS procedures. Safety (lack of edema or microhemorrhage) of FUS was also improved during alert compared to anesthetized procedures. No physiological effects (change in heart rate, motor evoked potentials) were observed during any of the procedures. Furthermore, the application of FUS did not disrupt reaching behavior, but in fact improved performance by decreasing reaction times by 23 ms, and significantly decreasing touch error by 0.76 mm on average.
Collapse
Affiliation(s)
- Matthew E. Downs
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Amanda Buch
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Maria Eleni Karakatsani
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Radiology, Columbia University, New York, New York, United States of America
| | - Vincent P. Ferrera
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| |
Collapse
|
27
|
Desai P, Shete H, Adnaik R, Disouza J, Patravale V. Therapeutic targets and delivery challenges for Alzheimer’s disease. World J Pharmacol 2015; 4:236-264. [DOI: 10.5497/wjp.v4.i3.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Dementia, including Alzheimer’s disease, the 21st Century epidemic, is one of the most significant social and health crises which has currently afflicted nearly 44 million patients worldwide and about new 7.7 million cases are reported every year. This portrays the unmet need towards better understanding of Alzheimer’s disease pathomechanisms and related research towards more effective treatment strategies. The review thus comprehensively addresses Alzheimer’s disease pathophysiology with an insight of underlying multicascade pathway and elaborates possible therapeutic targets- particularly anti-amyloid approaches, anti-tau approaches, acetylcholinesterase inhibitors, glutamatergic system modifiers, immunotherapy, anti-inflammatory targets, antioxidants, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors and insulin. In spite of extensive research leading to identification of newer targets and potent drugs, complete cure of Alzheimer’s disease appears to be an unreached holy grail. This can be attributed to their ineffective delivery across blood brain barrier and ultimately to the brain. With this understanding, researchers are now focusing on development of drug delivery systems to be delivered via suitable route that can circumvent blood brain barrier effectively with enhanced patient compliance. In this context, we have summarized current drug delivery strategies by oral, transdermal, intravenous, intranasal and other miscellaneous routes and have accentuated the future standpoint towards promising therapy ultimately leading to Alzheimer’s disease cure.
Collapse
|
28
|
Downs ME, Buch A, Sierra C, Karakatsani ME, Chen S, Konofagou EE, Ferrera VP. Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task. PLoS One 2015; 10:e0125911. [PMID: 25945493 PMCID: PMC4422704 DOI: 10.1371/journal.pone.0125911] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/23/2015] [Indexed: 01/11/2023] Open
Abstract
Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500kHz, 200–400 kPa, 4–5μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4–20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of’ visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4–5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.
Collapse
Affiliation(s)
- Matthew E. Downs
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Amanda Buch
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Carlos Sierra
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Maria Eleni Karakatsani
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Shangshang Chen
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Radiology, Columbia University, New York, New York, United States of America
| | - Vincent P. Ferrera
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| |
Collapse
|
29
|
Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2089-100. [PMID: 25926719 PMCID: PMC4403597 DOI: 10.2147/dddt.s79592] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood–brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Lei Xu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Mei Liu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Fan CH, Yeh CK. Microbubble-enhanced Focused Ultrasound-induced Blood–brain Barrier Opening for Local and Transient Drug Delivery in Central Nervous System Disease. J Med Ultrasound 2014. [DOI: 10.1016/j.jmu.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Aleynik A, Gernavage KM, Mourad YSH, Sherman LS, Liu K, Gubenko YA, Rameshwar P. Stem cell delivery of therapies for brain disorders. Clin Transl Med 2014; 3:24. [PMID: 25097727 PMCID: PMC4106911 DOI: 10.1186/2001-1326-3-24] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023] Open
Abstract
The blood brain barrier (BBB) poses a problem to deliver drugs for brain malignancies and neurodegenerative disorders. Stem cells such as neural stem cells (NSCs) and mesenchymal stem cells (MSCs) can be used to delivery drugs or RNA to the brain. This use of methods to bypass the hurdles of delivering drugs across the BBB is particularly important for diseases with poor prognosis such as glioblastoma multiforme (GBM). Stem cell treatment to deliver drugs to neural tumors is currently in clinical trial. This method, albeit in the early phase, could be an advantage because stem cells can cross the BBB into the brain. MSCs are particularly interesting because to date, the experimental and clinical evidence showed 'no alarm signal' with regards to safety. Additionally, MSCs do not form tumors as other more primitive stem cells such as embryonic stem cells. More importantly, MSCs showed pathotropism by migrating to sites of tissue insult. Due to the ability of MSCs to be transplanted across allogeneic barrier, drug-engineered MSCs can be available as off-the-shelf cells for rapid transplantation. This review discusses the advantages and disadvantages of stem cells to deliver prodrugs, genes and RNA to treat neural disorders.
Collapse
Affiliation(s)
| | | | | | - Lauren S Sherman
- Graduate School of Biomedical Sciences, Texas, USA
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| | - Katherine Liu
- Department of Anesthesiology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| | - Yuriy A Gubenko
- Department of Anesthesiology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| |
Collapse
|
32
|
Oh KS, Han H, Yoon BD, Lee M, Kim H, Seo DW, Seo JH, Kim K, Kwon IC, Yuk SH. Effect of HIFU treatment on tumor targeting efficacy of docetaxel-loaded Pluronic nanoparticles. Colloids Surf B Biointerfaces 2014; 119:137-44. [DOI: 10.1016/j.colsurfb.2014.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
|
33
|
Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 2014; 9:2539-55. [PMID: 24904213 PMCID: PMC4039421 DOI: 10.2147/ijn.s47129] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The growing research interest in nanomedicine for the treatment of cancer and inflammatory-related pathologies is yielding encouraging results. Unfortunately, enthusiasm is tempered by the limited specificity of the enhanced permeability and retention effect. Factors such as lack of cellular specificity, low vascular density, and early release of active agents prior to reaching their target contribute to the limitations of the enhanced permeability and retention effect. However, improved nanomedicine designs are creating opportunities to overcome these problems. In this review, we present examples of the advances made in this field and endeavor to highlight the potential of these emerging technologies to improve targeting of nanomedicine to specific pathological cells and tissues.
Collapse
Affiliation(s)
- Hayley Nehoff
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Neha N Parayath
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Laura Domanovitch
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand ; Department of Oncology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
34
|
Facilitated brain delivery of poly (ethylene glycol)–poly (lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials 2014; 35:3384-95. [DOI: 10.1016/j.biomaterials.2013.12.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/18/2013] [Indexed: 12/27/2022]
|
35
|
Liu HL, Fan CH, Ting CY, Yeh CK. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014; 4:432-44. [PMID: 24578726 PMCID: PMC3936295 DOI: 10.7150/thno.8074] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Malignant glioma is one of the most challenging central nervous system (CNS) diseases, which is typically associated with high rates of recurrence and mortality. Current surgical debulking combined with radiation or chemotherapy has failed to control tumor progression or improve glioma patient survival. Microbubbles (MBs) originally serve as contrast agents in diagnostic ultrasound but have recently attracted considerable attention for therapeutic application in enhancing blood-tissue permeability for drug delivery. MB-facilitated focused ultrasound (FUS) has already been confirmed to enhance CNS-blood permeability by temporally opening the blood-brain barrier (BBB), thus has potential to enhance delivery of various kinds of therapeutic agents into brain tumors. Here we review the current preclinical studies which demonstrate the reports by using FUS with MB-facilitated drug delivery technology in brain tumor treatment. In addition, we review newly developed multifunctional theranostic MBs for FUS-induced BBB opening for brain tumor therapy.
Collapse
Affiliation(s)
- Hao-Li Liu
- 1. Department of Electrical Engineering, Chang-Gung University, 259 Wen-Hwa 1st Road, Kuei-Shan, Tao-Yuan, Taiwan 33302
| | - Ching-Hsiang Fan
- 2. Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013
| | - Chien-Yu Ting
- 2. Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013
| | - Chih-Kuang Yeh
- 2. Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013
| |
Collapse
|
36
|
Alkins RD, Brodersen PM, Sodhi RNS, Hynynen K. Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound. Neuro Oncol 2013; 15:1225-35. [PMID: 23640533 DOI: 10.1093/neuonc/not052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glioblastoma is a notoriously difficult tumor to treat because of its relative sanctuary in the brain and infiltrative behavior. Therapies need to penetrate the CNS but avoid collateral tissue injury. Boron neutron capture therapy (BNCT) is a treatment whereby a (10)B-containing drug preferentially accumulates in malignant cells and causes highly localized damage when exposed to epithermal neutron irradiation. Studies have suggested that (10)B-enriched L-4-boronophenylalanine-fructose (BPA-f) complex uptake can be improved by enhancing the permeability of the cerebrovasculature with osmotic agents. We investigated the use of MRI-guided focused ultrasound, in combination with injectable microbubbles, to noninvasively and focally augment the uptake of BPA-f. METHODS With the use of a 9L gliosarcoma tumor model in Fisher 344 rats, the blood-brain and blood-tumor barriers were disrupted with pulsed ultrasound using a 558 kHz transducer and Definity microbubbles, and BPA-f (250 mg/kg) was delivered intravenously over 2 h. (10)B concentrations were estimated with imaging mass spectrometry and inductively coupled plasma atomic emission spectroscopy. RESULTS The tumor to brain ratio of (10)B was 6.7 ± 0.5 with focused ultrasound and only 4.1 ± 0.4 in the control group (P < .01), corresponding to a mean tumor [(10)B] of 123 ± 25 ppm and 85 ± 29 ppm, respectively. (10)B uptake in infiltrating clusters treated with ultrasound was 0.86 ± 0.10 times the main tumor concentration, compared with only 0.29 ± 0.08 in controls. CONCLUSIONS Ultrasound increases the accumulation of (10)B in the main tumor and infiltrating cells. These findings, in combination with the expanding clinical use of focused ultrasound, may offer improvements in BNCT and the treatment of glioblastoma.
Collapse
Affiliation(s)
- Ryan D Alkins
- Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
37
|
Zhao YZ, Lu CT, Li XK, Cai J. Ultrasound-mediated strategies in opening brain barriers for drug brain delivery. Expert Opin Drug Deliv 2013; 10:987-1001. [DOI: 10.1517/17425247.2013.787987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Wang G, Zhuo Z, Xia H, Zhang Y, He Y, Tan W, Gao Y. Investigation into the impact of diagnostic ultrasound with microbubbles on the capillary permeability of rat hepatomas. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:628-637. [PMID: 23415284 DOI: 10.1016/j.ultrasmedbio.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) takes advantage of transiently increased capillary permeability to enhance the release of tumor-specific drugs from blood vessels into sonicated tumor tissues. However, the application of focused ultrasound is limited because of the lack of an appropriate image-monitoring system. In this study, hepatoma-bearing Sprague-Dawley rats were insonicated with low-frequency diagnostic ultrasound and injected with Evans Blue (EB) dye and microbubbles through their tail veins to test changes in capillary permeability. We studied how the mechanical index, sonication duration and the injected microbubble (MB) concentration affect the hepatoma vascular permeability by quantitatively evaluating the EB delivery efficiency. Confocal laser scanning microscopy was used to observe the deposition of red fluorescence-dyed EB in tumor tissues. In addition, P-selectin, a type of biochemical marker that reflects vascular endothelial cell activation, was identified using an immunoblotting analysis. The experimental results reveal that EB delivery efficiency in tumor tissues was greater in groups with the diagnostic ultrasound-mediated UTMD (8.40 ± 0.71 %ID/g) than in groups without UTMD (1.73 ± 0.19 %ID/g) and EB delivery efficiency could be affected by MI, sonication duration and MB dose. The immunoblotting analysis indicates that diagnostic ultrasound-induced UTMD results in the vascular endothelial cell activation to increase capillary permeability, justifying the high quantity of EB deposited in tumor tissues.
Collapse
Affiliation(s)
- Gong Wang
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Feshitan JA, Boss MA, Borden MA. Magnetic resonance properties of Gd(III)-bound lipid-coated microbubbles and their cavitation fragments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15336-15343. [PMID: 23045962 DOI: 10.1021/la303283y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gas-filled microbubbles are potentially useful theranostic agents for magnetic resonance imaging-guided focused ultrasound surgery (MRIgFUS). Previously, MRI at 9.4 T was used to measure the contrast properties of lipid-coated microbubbles with gadolinium (Gd(III)) bound to lipid headgroups, which revealed that the longitudinal molar relaxivity (r(1)) increased after microbubble fragmentation. This behavior was attributed to an increase in water proton exchange with the Gd(III)-bound lipid fragments caused by an increase in the lipid headgroup area that accompanied the lipid shell monolayer-to-bilayer transition. In this article, we explore this mechanism by comparing the changes in r(1) and its transverse counterpart, r(2)*, after the fragmentation of microbubbles consisting of Gd(III) bound to two different locations on the lipid monolayer shell: the phosphatidylethanolamine (PE) lipid headgroup region or the distal region of the poly(ethylene glycol) (PEG) brush. Nuclear magnetic resonance (NMR) at 1.5 T was used to measure the contrast properties of the various microbubble constructs because this is the most common field strength used in clinical MRI. Results for the lipid-headgroup-labeled Gd(III) microbubbles revealed that r(1) increased after microbubble fragmentation, whereas r(2)* was unchanged. An analysis of PEG-labeled Gd(III) microbubbles revealed that both r(1) and r(2)* decreased after microbubble fragmentation. Further analysis revealed that the microbubble gas core enhanced the transverse MR signal (T(2)*) in a concentration-dependent manner but minimally affected the longitudinal (T(1)) signal. These results illustrate a new method for the use of NMR to measure the biomembrane packing structure and suggest that two mechanisms, proton-exchange enhancement by lipid membrane relaxation and magnetic field inhomogeneity imposed by the gas/liquid interface, may be used to detect and differentiate Gd(III)-labeled microbubbles and their cavitation fragments with MRI.
Collapse
Affiliation(s)
- Jameel A Feshitan
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | | | | |
Collapse
|
40
|
O'Reilly MA, Hynynen K. Ultrasound enhanced drug delivery to the brain and central nervous system. Int J Hyperthermia 2012; 28:386-96. [PMID: 22621739 DOI: 10.3109/02656736.2012.666709] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an increasing interest in the use of ultrasound to enhance drug delivery to the brain and central nervous system. Disorders of the brain and CNS historically have had poor response to drug therapy due to the presence of the blood-brain barrier (BBB). Techniques for circumventing the BBB are typically highly invasive or involve disrupting large portions of the BBB, exposing the brain to pathogens. Ultrasound can be non-invasively delivered to the brain through the intact skull. When combined with preformed microbubbles, ultrasound can safely induce transient, localised and reversible disruption of the BBB, allowing therapeutics to be delivered. Investigations to date have shown positive response to ultrasound BBB disruption combined with therapeutic agent delivery in rodent models of primary and metastatic brain cancer and Alzheimer's disease. Recent work in non-human primates has demonstrated that the technique is feasible for use in humans. This review examines the current status of drug delivery to the brain and CNS both by disruption of the BBB, and by ultrasound enhancement of drug delivery through the already compromised BBB. Cellular and physical mechanisms of disruption are discussed, as well as treatment technique, safety and monitoring.
Collapse
|
41
|
Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 2012; 1:819-48. [PMID: 21785679 DOI: 10.4155/tde.10.66] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective delivery of therapeutic agents into the brain can greatly improve the treatments of neurological and neurodegenerative diseases. Application of focused ultrasound facilitated by microbubbles has shown the potential to deliver drugs across the blood-brain barrier into targeted sites within the brain noninvasively. This review provides a summary of the technological background and principle, highlights of recent significant developments and research progress, as well as a critical commentary on the challenges and future directions in the field. This review also outlines and discusses the tasks that researchers face in order to successfully translate the technology into a clinical reality, including obtaining improved understanding of the mechanisms, demonstration of therapeutic efficacy and safety for specific applications, and development of methodology for rational design to achieve optimized and consistent outcomes.
Collapse
|
42
|
Improved otutcome of targeted delivery of chemotherapy drugs to the brain using a combined strategy of ultrasound, magnetic targeting and drug-loaded nanoparticles. Ther Deliv 2012; 2:137-41. [PMID: 22833939 DOI: 10.4155/tde.10.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Wei KC, Tsai HC, Lu YJ, Yang HW, Hua MY, Wu MF, Chen PY, Huang CY, Yen TC, Liu HL. Neuronavigation-guided focused ultrasound-induced blood-brain barrier opening: a preliminary study in swine. AJNR Am J Neuroradiol 2012; 34:115-20. [PMID: 22723060 DOI: 10.3174/ajnr.a3150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE FUS-induced BBB opening is a promising technique for noninvasive and local delivery of drugs into the brain. Here we propose the novel use of a neuronavigation system to guide the FUS-induced BBB opening procedure and investigate its feasibility in vivo in large animals. MATERIALS AND METHODS We developed an interface between the neuronavigator and FUS to allow guidance of the focal energy produced by the FUS transducer. The system was tested in 29 swine by more than 40 sonication procedures and evaluated by MR imaging. Gd-DTPA concentration was quantitated in vivo by MR imaging R1 relaxometry and compared with ICP-OES assay. Brain histology after FUS exposure was investigated using H&E and TUNEL staining. RESULTS Neuronavigation could successfully guide the focal beam, with precision comparable to neurosurgical stereotactic procedures (2.3 ± 0.9 mm). A FUS pressure of 0.43 MPa resulted in consistent BBB opening. Neuronavigation-guided BBB opening increased Gd-DTPA deposition by up to 1.83 mmol/L (a 140% increase). MR relaxometry demonstrated high correlation with ICP-OES measurements (r(2) = 0.822), suggesting that Gd-DTPA deposition can be directly measured by imaging. CONCLUSIONS Neuronavigation provides sufficient precision for guiding FUS to temporally and locally open the BBB. Gd-DTPA deposition in the brain can be quantified by MR relaxometry, providing a potential tool for the in vivo quantification of therapeutic agents in CNS disease treatment.
Collapse
Affiliation(s)
- K-C Wei
- Department of Neurosurgery, Chang-Gung University and Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
O'Reilly MA, Hynynen K. Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 2012; 263:96-106. [PMID: 22332065 DOI: 10.1148/radiol.11111417] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if focused ultrasound disruption of the blood-brain barrier (BBB) can be safely controlled by using real-time modulation of treatment pressures on the basis of acoustic emissions from the exposed microbubbles. MATERIALS AND METHODS All experiments were performed with the approval of the institutional animal care committee. Transcranial focused ultrasound (551.5 kHz, 10-msec bursts, 2-Hz pulse repetition frequency, 2 minute sonication) in conjunction with circulating microbubbles was applied in 86 locations in 27 rats to disrupt the BBB. Acoustic emissions captured during each burst by using a wideband polyvinylidene fluoride hydrophone were analyzed for spectral content and used to adjust treatment pressures. Pressures were increased incrementally after each burst until ultraharmonic emissions were detected, at which point the pressure was reduced to a percentage of the pressure required to induce the ultraharmonics and was maintained for the remainder of the sonication. Disruption was evaluated at contrast material-enhanced T1-weighted magnetic resonance (MR) imaging. Mean enhancement was calculated by averaging the signal intensity at the focus over a 3 × 3-pixel region of interest and comparing it with that in nonsonicated tissue. Histologic analysis was performed to determine the extent of damage to the tissue. Statistical analysis was performed by using Student t tests. RESULTS For sonications resulting in BBB disruption, the mean peak pressure was 0.28 MPa ± 0.05 (standard deviation) (range, 0.18-0.40 MPa). By using the control algorithm, a linear relationship was found between the scaling level and the mean enhancement on T1-weighted MR images after contrast agent injection. At a 50% scaling level, mean enhancement of 19.6% ± 1.7 (standard error of the mean) was achieved without inducing damage. At higher scaling levels, histologic analysis revealed gross tissue damage, while at a 50% scaling level, no damage was observed at high-field-strength MR imaging or histologic examination 8 days after treatment. CONCLUSION This study demonstrates that acoustic emissions can be used to actively control focused ultrasound exposures for the safe induction of BBB disruption.
Collapse
Affiliation(s)
- Meaghan A O'Reilly
- Physical Science Platform, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5.
| | | |
Collapse
|
45
|
Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE. The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:3059-67. [PMID: 22087933 PMCID: PMC3248062 DOI: 10.1121/1.3646905] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The activation of bubbles by an acoustic field has been shown to temporarily open the blood-brain barrier (BBB), but the trigger cause responsible for the physiological effects involved in the process of BBB opening remains unknown. Here, the trigger cause (i.e., physical mechanism) of the focused ultrasound-induced BBB opening with monodispersed microbubbles is identified. Sixty-seven mice were injected intravenously with bubbles of 1-2, 4-5, or 6-8 μm in diameter and the concentration of 10(7) numbers/ml. The right hippocampus of each mouse was then sonicated using focused ultrasound (1.5 MHz frequency, 100 cycles pulse length, 10 Hz pulse repetition frequency, 1 min duration). Peak-rarefactional pressures of 0.15, 0.30, 0.45, or 0.60 MPa were applied to identify the threshold of BBB opening and inertial cavitation (IC). Our results suggest that the BBB opens with nonlinear bubble oscillation when the bubble diameter is similar to the capillary diameter and with inertial cavitation when it is not. The bubble may thus have to be in contact with the capillary wall to induce BBB opening without IC. BBB opening was shown capable of being induced safely with nonlinear bubble oscillation at the pressure threshold and its volume was highly dependent on both the acoustic pressure and bubble diameter.
Collapse
Affiliation(s)
- Yao-Sheng Tung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
46
|
Liu HL, Chen PY, Yang HW, Wu JS, Tseng IC, Ma YJ, Huang CY, Tsai HC, Chen SM, Lu YJ, Huang CY, Hua MY, Ma YH, Yen TC, Wei KC. In vivo MR quantification of superparamagnetic iron oxide nanoparticle leakage during low-frequency-ultrasound-induced blood-brain barrier opening in swine. J Magn Reson Imaging 2011; 34:1313-24. [PMID: 21965168 DOI: 10.1002/jmri.22697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/25/2011] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To verify that low-frequency planar ultrasound can be used to disrupt the BBB in large animals, and the usefulness of MRI to quantitatively monitor the delivery of superparamagnetic iron oxide (SPIO) nanoparticles into the disrupted regions. MATERIALS AND METHODS Two groups of swine subjected to craniotomy were sonicated with burst lengths of 30 or 100 ms, and one group of experiment was also performed to confirm the ability of 28-kHz sonication to open the BBB transcranially. SPIO nanoparticles were administered to the animals after BBB disruption. Procedures were monitored by MRI; SPIO concentrations were estimated by relaxivity mapping. RESULTS Sonication for 30 ms created shallow disruptions near the probe tip; 100-ms sonications after craniotomy can create larger and more penetrating openings, increasing SPIO leakage ∼3.6-fold than 30-ms sonications. However, this was accompanied by off-target effects possibly caused by ultrasonic wave reflection. SPIO concentrations estimated from transverse relaxation rate maps correlated well with direct measurements of SPIO concentration by optical emission spectrometry. We have also shown that transcranial low-frequency 28-kHz sonication can induce secure BBB opening from longitudinal MR image follow up to 7 days. CONCLUSION This study provides valuable information regarding the use low-frequency ultrasound for BBB disruption and suggest that SPIO nanoparticles has the potential to serve as a thernostic agent in MRI-guided ultrasound-enhanced brain drug delivery.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan; Molecular Imaging Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Samiotaki G, Vlachos F, Tung YS, Konofagou EE. A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using MRI. Magn Reson Med 2011; 67:769-77. [PMID: 21858862 DOI: 10.1002/mrm.23063] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 11/05/2022]
Abstract
Focused ultrasound in conjunction with the systemic administration of microbubbles has been shown to open the blood-brain barrier (BBB) selectively, noninvasively and reversibly. In this study, we investigate the dependence of the BBB opening's reversibility on the peak-rarefactional pressure (0.30-0.60 MPa) as well as the microbubble size (diameters of 1-2, 4-5, or 6-8 μm) in mice using contrast-enhanced T(1)-weighted (CE-T(1)) MR images (9.4 T). Volumetric measurements of the diffusion of Gd-DTPA-BMA into the brain parenchyma were used for the quantification of the BBB-opened region on the day of sonication and up to 5 days thereafter. The volume of opening was found to increase with both pressure and microbubble diameter. The duration required for closing was found to be proportional to the volume of opening on the day of opening, and ranged from 24 h, for the smaller microbubbles, to 5 days at high peak-rarefactional pressures. Overall, larger bubbles did not show significant differences. Also, the extent of BBB opening decreased radially towards the focal region until the BBB's integrity was restored. In the cases where histological damage was detected, it was found to be highly correlated with hyperintensity on the precontrast T(1) images.
Collapse
Affiliation(s)
- Gesthimani Samiotaki
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
48
|
Tung YS, Marquet F, Teichert T, Ferrera V, Konofagou EE. Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates. APPLIED PHYSICS LETTERS 2011; 98:163704. [PMID: 21580802 PMCID: PMC3094460 DOI: 10.1063/1.3580763] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/29/2011] [Indexed: 05/20/2023]
Abstract
In vivo transcranial and noninvasive cavitation detection with blood-brain barrier (BBB) opening in nonhuman primates is hereby reported. The BBB in monkeys was opened transcranically using focused ultrasound (FUS) in conjunction with microbubbles. A passive cavitation detector, confocal with the FUS transducer, was used to identify and monitor the bubble behavior. During sonication, the cavitation spectrum, which was found to be region-, pressure-, and bubble-dependent, provided real-time feedback regarding the opening occurrence and its properties. These findings demonstrate feasibility of transcranial, cavitation-guided BBB opening using FUS and microbubbles in noninvasive human applications.
Collapse
|
49
|
Huang Y, Hynynen K. MR-guided focused ultrasound for brain ablation and blood-brain barrier disruption. Methods Mol Biol 2011; 711:579-593. [PMID: 21279624 DOI: 10.1007/978-1-61737-992-5_30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
MR-guided transcranial focused ultrasound (FUS) has been demonstrated as a non-invasive tool for treating various brain diseases. First, FUS can thermally ablate brain tissues under real-time MR thermometry monitoring. The MRI guidance significantly improves the precision of the thermal dose deposition. Second, in conjunction with microbubble contrast agents, FUS can reversibly disrupt the blood-brain barrier for delivery of macromolecular drugs to the brain parenchyma. This offers huge potential for treating brain diseases with a much higher local drug concentration than other drug delivery methods. In this chapter, a detailed protocol of MR-guided focused ultrasound for brain thermal ablation and BBB disruption in an animal research setting is presented.
Collapse
Affiliation(s)
- Yuexi Huang
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| | | |
Collapse
|
50
|
Tung YS, Vlachos F, Choi JJ, Deffieux T, Selert K, Konofagou EE. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice. Phys Med Biol 2010; 55:6141-55. [PMID: 20876972 DOI: 10.1088/0031-9155/55/20/007] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity® microbubbles (mean diameter range: 1.1-3.3 µm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 µm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity® microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without craniotomy in mice and IC may not be required for BBB opening at relatively low pressures.
Collapse
Affiliation(s)
- Yao-Sheng Tung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|