1
|
Ling HJ, Bru S, Puig J, Vixege F, Mendez S, Nicoud F, Courand PY, Bernard O, Garcia D. Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1377-1388. [PMID: 38857144 DOI: 10.1109/tuffc.2024.3411718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme using physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach. When evaluated on simulated color Doppler images derived from a patient-specific computational fluid dynamics (CFD) model and in vivo Doppler acquisitions, both the approaches demonstrate comparable reconstruction performance to the original iVFM algorithm. The efficiency of PINNs is boosted through dual-stage optimization and pre-optimized weights. On the other hand, the nnU-Net method excels in generalizability and real-time capabilities. Notably, nnU-Net shows superior robustness on sparse and truncated Doppler data while maintaining independence from explicit boundary conditions. Overall, our results highlight the effectiveness of these methods in reconstructing intraventricular vector blood flow. The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.
Collapse
|
2
|
Puig J, Friboulet D, Jung Ling H, Varray F, Mougharbel M, Poree J, Provost J, Garcia D, Millioz F. Boosting Cardiac Color Doppler Frame Rates With Deep Learning. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1540-1551. [PMID: 38976463 DOI: 10.1109/tuffc.2024.3424549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Color Doppler echocardiography enables visualization of blood flow within the heart. However, the limited frame rate impedes the quantitative assessment of blood velocity throughout the cardiac cycle, thereby compromising a comprehensive analysis of ventricular filling. Concurrently, deep learning is demonstrating promising outcomes in postprocessing of echocardiographic data for various applications. This work explores the use of deep learning models for intracardiac Doppler velocity estimation from a reduced number of filtered I/Q signals. We used a supervised learning approach by simulating patient-based cardiac color Doppler acquisitions and proposed data augmentation strategies to enlarge the training dataset. We implemented architectures based on convolutional neural networks (CNNs). In particular, we focused on comparing the U-Net model and the recent ConvNeXt model, alongside assessing real-valued versus complex-valued representations. We found that both models outperformed the state-of-the-art autocorrelator method, effectively mitigating aliasing and noise. We did not observe significant differences between the use of real and complex data. Finally, we validated the models on in vitro and in vivo experiments. All models produced quantitatively comparable results to the baseline and were more robust to noise. ConvNeXt emerged as the sole model to achieve high-quality results on in vivo aliased samples. These results demonstrate the interest of supervised deep learning methods for Doppler velocity estimation from a reduced number of acquisitions.
Collapse
|
3
|
Rodríguez-González E, Martínez-Legazpi P, González-Mansilla A, Espinosa MÁ, Mombiela T, Guzmán De-Villoria JA, Borja MG, Díaz-Otero F, Gómez de Antonio R, Fernández-García P, Fernández-Ávila AI, Pascual-Izquierdo C, Del Álamo JC, Bermejo J. Cardiac stasis imaging, stroke, and silent brain infarcts in patients with nonischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 327:H446-H453. [PMID: 38847759 DOI: 10.1152/ajpheart.00245.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024]
Abstract
Cardioembolic stroke is one of the most devastating complications of nonischemic dilated cardiomyopathy (NIDCM). However, in clinical trials of primary prevention, the benefits of anticoagulation are hampered by the risk of bleeding. Indices of cardiac blood stasis may account for the risk of stroke and be useful to individualize primary prevention treatments. We performed a cross-sectional study in patients with NIDCM and no history of atrial fibrillation (AF) from two sources: 1) a prospective enrollment of unselected patients with left ventricular (LV) ejection fraction <45% and 2) a retrospective identification of patients with a history of previous cardioembolic neurological event. The primary end point integrated a history of ischemic stroke or the presence intraventricular thrombus, or a silent brain infarction (SBI) by imaging. From echocardiography, we calculated blood flow inside the LV, its residence time (TR) maps, and its derived stasis indices. Of the 89 recruited patients, 18 showed a positive end point, 9 had a history of stroke or transient ischemic attack (TIA) and 9 were diagnosed with SBIs in the brain imaging. Averaged TR, [Formula: see text] performed well to identify the primary end point [AUC (95% CI) = 0.75 (0.61-0.89), P = 0.001]. When accounting only for identifying a history of stroke or TIA, AUC for [Formula: see text] was 0.92 (0.85-1.00) with odds ratio = 7.2 (2.3-22.3) per cycle, P < 0.001. These results suggest that in patients with NIDCM in sinus rhythm, stasis imaging derived from echocardiography may account for the burden of stroke.NEW & NOTEWORTHY Patients with nonischemic dilated cardiomyopathy (NIDCM) are at higher risk of stroke than their age-matched population. However, the risk of bleeding neutralizes the benefit of preventive oral anticoagulation. In this work, we show that in patients in sinus rhythm, the burden of stroke is related to intraventricular stasis metrics derived from echocardiography. Therefore, stasis metrics may be useful to personalize primary prevention anticoagulation in these patients.
Collapse
Affiliation(s)
- Elena Rodríguez-González
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Pablo Martínez-Legazpi
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - M Ángeles Espinosa
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Juan A Guzmán De-Villoria
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Radiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Maria Guadalupe Borja
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States
| | - Fernando Díaz-Otero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rubén Gómez de Antonio
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pilar Fernández-García
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Ana I Fernández-Ávila
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Cristina Pascual-Izquierdo
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan C Del Álamo
- Division of Cardiology, Department of Mechanical Engineering, Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
4
|
Nahas H, Ishii T, Yiu BYS, Yu ACH. A GPU-Based, Real-Time Dealiasing Framework for High-Frame-Rate Vector Doppler Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1384-1400. [PMID: 37549086 DOI: 10.1109/tuffc.2023.3303349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Vector Doppler is well regarded as a potential way of deriving flow vectors to intuitively visualize complex flow profiles, especially when it is implemented at high frame rates. However, this technique's performance is known to suffer from aliasing artifacts. There is a dire need to devise real-time dealiasing solutions for vector Doppler. In this article, we present a new methodological framework for achieving aliasing-resistant flow vector estimation at real-time throughput from precalculated Doppler frequencies. Our framework comprises a series of compute kernels that have synergized: 1) an extended least squares vector Doppler (ELS-VD) algorithm; 2) single-instruction, multiple-thread (SIMT) processing principles; and 3) implementation on a graphical processing unit (GPU). Results show that this new framework, when executed on an RTX-2080 GPU, can effectively generate aliasing-free flow vector maps using high-frame-rate imaging datasets acquired from multiple transmit-receive angle pairs in a carotid phantom imaging scenario. Over the entire cardiac cycle, the frame processing time for aliasing-resistant vector estimation was measured to be less than 16 ms, which corresponds to a minimum processing throughput of 62.5 frames/s. In a human femoral bifurcation imaging trial with fast flow (150 cm/s), our framework was found to be effective in resolving two-cycle aliasing artifacts at a minimum throughput of 53 frames/s. The framework's processing throughput was generally in the real-time range for practical combinations of ELS-VD algorithmic parameters. Overall, this work represents the first demonstration of real-time, GPU-based aliasing-resistant vector flow imaging using vector Doppler estimation principles.
Collapse
|
5
|
Jafarzadeh E, Démoré CE, Burns PN, Goertz DE. Spatially segmented SVD clutter filtering in cardiac blood flow imaging with diverging waves. ULTRASONICS 2023; 132:107006. [PMID: 37116399 DOI: 10.1016/j.ultras.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/29/2023]
Abstract
Ultrafast ultrasound imaging enables the visualization of rapidly changing blood flow dynamics in the chambers of the heart. Singular value decomposition (SVD) filters outperform conventional high pass clutter rejection filters for ultrafast blood flow imaging of small and shallow fields of view (e.g., functional imaging of brain activity). However, implementing SVD filters can be challenging in cardiac imaging due to the complex spatially and temporally varying tissue characteristics. To address this challenge, we describe a method that involves excluding the proximal portion of the image (near the chest wall) and divides the reduced field of view into overlapped segments, within which tissue signals are expected to be spatially and temporally coherent. SVD filtering with automatic selection of cut-off singular vector orders to remove tissue and noise signals is implemented for each segment. Auto-thresholding is based on the coherence of spatial singular vectors, delineating tissue, blood, and noise subspaces within a spatial similarity matrix calculated for each segment. Filtered blood flow signals from the segments are reconstructed and then combined and Doppler processing is used to form a set of blood flow images. Preliminary experimental results suggest that the spatially segmented approach improves the separation of the tissue and blood subsets in the spatial similarity matrix so that automatic thresholding is significantly improved, and tissue clutter can then be rejected more effectively in cardiac ultrafast imaging, compared to using the full field of view. In the case studied, spatially segmented SVD improved the rate of correct automatic selection of thresholds from 78% to 98.7% for the investigated cases and improved the post-filter power of blood signals by an average of more than 10 dB during a cardiac cycle.
Collapse
Affiliation(s)
- Ehsan Jafarzadeh
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| | - Christine Em Démoré
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| | - Peter N Burns
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| | - David E Goertz
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| |
Collapse
|
6
|
Yan S, Shou J, Yu J, Song J, Mao Y, Xu K. Ultrafast Ultrasound Vector Doppler for Small Vasculature Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:613-624. [PMID: 37224370 DOI: 10.1109/tuffc.2023.3279452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ultrafast Doppler has been accepted as a novel modality for small vasculature imaging with high sensitivity, high spatiotemporal resolution, and high penetration. However, the conventional Doppler estimator adopted in studies of ultrafast ultrasound imaging is only sensitive to the velocity component along the beam direction and has angle-dependent limitations. Vector Doppler has been developed with the goal of angle-independent velocity estimation but is typically employed for relatively large vessels. In this study, combining multiangle vector Doppler strategy and ultrafast sequencing, ultrafast ultrasound vector Doppler (ultrafast UVD) is developed for small vasculature hemodynamic imaging. The validity of the technique is demonstrated through experiments on a rotational phantom, rat brain, human brain, and human spinal cord. A rat brain experiment shows that compared with the ultrasound localization microscopy (ULM) velocimetry, which is widely accepted as an accurate flow velocimetry technique, the average relative error (ARE) of the velocity magnitude estimated by ultrafast UVD is approximately 16.2%, with a root-mean-square error (RMSE) of the velocity direction of 26.7°. It is demonstrated that ultrafast UVD is a promising tool for accurate blood flow velocity measurement, especially for the organs, including brain and spinal cord with vasculature typically exhibiting tendential alignment of vascular trees.
Collapse
|
7
|
Cigier A, Varray F, Garcia D. SIMUS: An open-source simulator for medical ultrasound imaging. Part II: Comparison with four simulators. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106774. [PMID: 35398580 DOI: 10.1016/j.cmpb.2022.106774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Computational ultrasound imaging has become a well-established methodology in the ultrasound community. In the accompanying paper (part I), we described a new ultrasound simulator (SIMUS) for MATLAB, which belongs to the Matlab UltraSound Toolbox (MUST). SIMUS can generate pressure fields and radiofrequency RF signals for simulations in medical ultrasound imaging. It works in a harmonic domain and uses far-field and paraxial linear equations. METHODS In this article (part II), we illustrate how SIMUS compares with other ultrasound simulators (Field II, k-Wave, FOCUS, and Verasonics) for a homogeneous medium. We designed different transmit sequences (focused, planar, and diverging wavefronts) and calculated the corresponding 2-D and 3-D (with elevation focusing) RMS pressure fields. RESULTS SIMUS produced pressure fields similar to those of Field II, FOCUS, and k-Wave. The acoustic fields provided by the Verasonics simulator were significantly different from those of SIMUS and k-Wave, although the overall appearance remained consistent. CONCLUSION Our simulations tend to demonstrate that SIMUS is reliable and can be used for realistic medical ultrasound simulations.
Collapse
Affiliation(s)
- Amanda Cigier
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France
| | - François Varray
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| | - Damien Garcia
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| |
Collapse
|
8
|
Noninvasive Evaluation of Intraventricular Flow Dynamics by the HyperDoppler Technique: First Application to Normal Subjects, Athletes, and Patients with Heart Failure. J Clin Med 2022; 11:jcm11082216. [PMID: 35456305 PMCID: PMC9026209 DOI: 10.3390/jcm11082216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022] Open
Abstract
Background: HyperDoppler is a new echocardiographic color Doppler-based technique that can assess intracardiac flow dynamics. The aim of this study was to verify the feasibility and reproducibility of this technique in unselected patients and its capability to differentiate measures of vortex flow within the left ventricle (LV) in normal sedentary subjects, athletes, and patients with heart failure. Methods: Two hundred unselected, consecutive patients presenting at the echocardiographic laboratory, 50 normal subjects, 30 athletes, and 50 patients with chronic heart failure and LV ejection fraction <50% were enrolled. Images were acquired using a MyLab X8 echo-scanner. Area, intensity, depth, length, and kinetic energy dissipation (KED) of vortex flow were measured. Results: The HyperDoppler technique feasibility was 94.5%. According to the intraclass correlation coefficient evaluations, repeatability and reproducibility of vortex flow measures were good for vortex area (0.82, 0.85), length (0.83, 0.82), and depth (0.87, 0.84) and excellent for intensity (0.92, 0.90) and KED (0.98, 0.98). Combining different vortex flow measures, the LV flow profile of healthy sedentary individuals, athletes, and heart failure patients could be differentiated. Conclusions: HyperDoppler is a feasible, reliable, and practical technique for the assessment of LV flow dynamics and may distinguish normal subjects and patients with heart failure.
Collapse
|
9
|
Vixège F, Berod A, Sun Y, Mendez S, Bernard O, Ducros N, Courand PY, Nicoud F, Garcia D. Physics-constrained intraventricular vector flow mapping by color Doppler. Phys Med Biol 2021; 66. [PMID: 34874296 DOI: 10.1088/1361-6560/ac3ffe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023]
Abstract
Color Doppler by transthoracic echocardiography creates two-dimensional fan-shaped maps of blood velocities in the cardiac cavities. It is a one-component velocimetric technique since it only returns the velocity components parallel to the ultrasound beams. Intraventricular vector flow mapping (iVFM) is a method to recover the blood velocity vectors from the Doppler scalar fields in an echocardiographic three-chamber view. We improved ouriVFM numerical scheme by imposing physical constraints. TheiVFM consisted in minimizing regularized Doppler residuals subject to the condition that two fluid-dynamics constraints were satisfied, namely planar mass conservation, and free-slip boundary conditions. The optimization problem was solved by using the Lagrange multiplier method. A finite-difference discretization of the optimization problem, written in the polar coordinate system centered on the cardiac ultrasound probe, led to a sparse linear system. The single regularization parameter was determined automatically for non-supervision considerations. The physics-constrained method was validated using realistic intracardiac flow data from a patient-specific computational fluid dynamics (CFD) model. The numerical evaluations showed that theiVFM-derived velocity vectors were in very good agreement with the CFD-based original velocities, with relative errors ranged between 0.3% and 12%. We calculated two macroscopic measures of flow in the cardiac region of interest, the mean vorticity and mean stream function, and observed an excellent concordance between physics-constrainediVFM and CFD. The capability of physics-constrainediVFM was finally tested within vivocolor Doppler data acquired in patients routinely examined in the echocardiographic laboratory. The vortex that forms during the rapid filling was deciphered. The physics-constrainediVFM algorithm is ready for pilot clinical studies and is expected to have a significant clinical impact on the assessment of diastolic function.
Collapse
Affiliation(s)
- Florian Vixège
- CREATIS UMR 5220, U1294, University Lyon 1, INSA Lyon, France
| | - Alain Berod
- IMAG UMR 5149, University of Montpellier, France
| | - Yunyun Sun
- CREATIS UMR 5220, U1294, University Lyon 1, INSA Lyon, France
| | - Simon Mendez
- IMAG UMR 5149, University of Montpellier, France
| | - Olivier Bernard
- CREATIS UMR 5220, U1294, University Lyon 1, INSA Lyon, France
| | - Nicolas Ducros
- CREATIS UMR 5220, U1294, University Lyon 1, INSA Lyon, France
| | - Pierre-Yves Courand
- CREATIS UMR 5220, U1294, University Lyon 1, INSA Lyon, France.,Department of Echocardiography, Croix-Rousse Hospital, Lyon, France
| | | | - Damien Garcia
- CREATIS UMR 5220, U1294, University Lyon 1, INSA Lyon, France
| |
Collapse
|
10
|
Evaluation of intraventricular flow by multimodality imaging: a review and meta-analysis. Cardiovasc Ultrasound 2021; 19:38. [PMID: 34876127 PMCID: PMC8653587 DOI: 10.1186/s12947-021-00269-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this systematic review was to evaluate current inter-modality agreement of noninvasive clinical intraventricular flow (IVF) assessment with 3 emerging imaging modalities: echocardiographic particle image velocimetry (EPIV), vector flow mapping (VFM), and 4-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR). Methods We performed a systematic literature review in the databases EMBASE, Medline OVID and Cochrane Central for identification of studies evaluating left ventricular (LV) flow patterns using one of these flow visualization modalities. Of the 2224 initially retrieved records, 10 EPIV, 23 VFM, and 25 4D flow CMR studies were included in the final analysis. Results Vortex parameters were more extensively studied with EPIV, while LV energetics and LV transport mechanics were mainly studied with 4D flow CMR, and LV energy loss and vortex circulation were implemented by VFM studies. Pooled normative values are provided for these parameters. The meta- analysis for the values of two vortex morphology parameters, vortex length and vortex depth, failed to reveal a significant change between heart failure patients and healthy controls. Conclusion Agreement between the different modalities studying intraventricular flow is low and different methods of measurement and reporting were used among studies. A multimodality framework with a standardized set of flow parameters is necessary for implementation of noninvasive flow visualization in daily clinical practice. The full potential of noninvasive flow visualization in addition to diagnostics could also include guiding medical or interventional treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12947-021-00269-8.
Collapse
|
11
|
Daae AS, Wigen MS, Fadnes S, Løvstakken L, Støylen A. Intraventricular Vector Flow Imaging with Blood Speckle Tracking in Adults: Feasibility, Normal Physiology and Mechanisms in Healthy Volunteers. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3501-3513. [PMID: 34620522 DOI: 10.1016/j.ultrasmedbio.2021.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
This study examines the feasibility of blood speckle tracking for vector flow imaging in healthy adults and describes the physiologic flow pattern and vortex formation in relation to the wall motion in the left ventricle. The study included 21 healthy volunteers and quantified and visualized flow patterns with high temporal resolution down to a depth of 10-12 cm without the use of contrast agents. Intraventricular flow seems to originate during the isovolumetric relaxation with a propagation of blood from base to apex. With the E-wave, rapid inflow and vortex formation occurred on both sides of the valve basally. During diastasis the flow gathers in a large vortex before the pattern from the E-wave repeats during the A-wave. In isovolumetric contraction, the flow again gathers in a large vortex that seems to facilitate the flow out in the aorta during systole. No signs of a persistent systolic vortex were visualized. The geometry of the left ventricle and the movement of the AV-plane is important in creating vortices that are favorable for the blood flow and facilitate outflow. The quantitative measurements are in concordance with these findings, but the clinical interpretation must be evaluated in future clinical studies.
Collapse
Affiliation(s)
- Annichen Søyland Daae
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway.
| | - Morten Smedsrud Wigen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Møre og Romsdal Hospital Trust, Women's Health, Child and Adolescent Clinic, Ålesund Hospital, Ålesund, Norway
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asbjørn Støylen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Poree J, Goudot G, Pedreira O, Laborie E, Khider L, Mirault T, Messas E, Julia P, Alsac JM, Tanter M, Pernot M. Dealiasing High-Frame-Rate Color Doppler Using Dual-Wavelength Processing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2117-2128. [PMID: 33534706 DOI: 10.1109/tuffc.2021.3056932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doppler ultrasound is the premier modality to analyze blood flow dynamics in clinical practice. With conventional systems, Doppler can either provide a time-resolved quantification of the flow dynamics in sample volumes (spectral Doppler) or an average Doppler velocity/power [color flow imaging (CFI)] in a wide field of view (FOV) but with a limited frame rate. The recent development of ultrafast parallel systems made it possible to evaluate simultaneously color, power, and spectral Doppler in a wide FOV and at high-frame rates but at the expense of signal-to-noise ratio (SNR). However, like conventional Doppler, ultrafast Doppler is subject to aliasing for large velocities and/or large depths. In a recent study, staggered multi-pulse repetition frequency (PRF) sequences were investigated to dealias color-Doppler images. In this work, we exploit the broadband nature of pulse-echo ultrasound and propose a dual-wavelength approach for CFI dealiasing with a constant PRF. We tested the dual-wavelength bandpass processing, in silico, in laminar flow phantom and validated it in vivo in human carotid arteries ( n = 25 ). The in silico results showed that the Nyquist velocity could be extended up to four times the theoretical limit. In vivo, dealiased CFI were highly consistent with unfolded Spectral Doppler ( r2=0.83 , y=1.1x+0.1 , N=25 ) and provided consistent vector flow images. Our results demonstrate that dual-wavelength processing is an efficient method for high-velocity CFI.
Collapse
|
13
|
Perrot V, Ekroll IK, Avdal J, Saxhaug LM, Dalen H, Vray D, Lovstakken L, Liebgott H. Translation of Simultaneous Vessel Wall Motion and Vectorial Blood Flow Imaging in Healthy and Diseased Carotids to the Clinic: A Pilot Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:558-569. [PMID: 32776877 DOI: 10.1109/tuffc.2020.3015340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aims to investigate the clinical feasibility of simultaneous extraction of vessel wall motion and vectorial blood flow at high frame rates for both extraction of clinical markers and visual inspection. If available in the clinic, such a technique would allow a better estimation of plaque vulnerability and improved evaluation of the overall arterial health of patients. In this study, both healthy volunteers and patients were recruited and scanned using a planewave acquisition scheme that provided a data set of 43 carotid recordings in total. The vessel wall motion was extracted based on the complex autocorrelation of the signals received, while the vector flow was extracted using the transverse oscillation technique. Wall motion and vector flow were extracted at high frame rates, which allowed for a visual appreciation of tissue movement and blood flow simultaneously. Several clinical markers were extracted, and visual inspections of the wall motion and flow were conducted. From all the potential markers, young healthy volunteers had smaller artery diameter (7.72 mm) compared with diseased patients (9.56 mm) ( p -value ≤ 0.001), 66% of diseased patients had backflow compared with less than 10% for the other patients ( p -value ≤ 0.05), a carotid with a pulse wave velocity extracted from the wall velocity greater than 7 m/s was always a diseased vessel, and the peak wall shear rate decreased as the risk increases. Based on both the pathological markers and the visual inspection of tissue motion and vector flow, we conclude that the clinical feasibility of this approach is demonstrated. Larger and more disease-specific studies using such an approach will lead to better understanding and evaluation of vessels, which can translate to future use in the clinic.
Collapse
|
14
|
Galarce F, Lombardi D, Mula O. Reconstructing haemodynamics quantities of interest from Doppler ultrasound imaging. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3416. [PMID: 33219632 DOI: 10.1002/cnm.3416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
The present contribution deals with the estimation of haemodynamics Quantities of Interest by exploiting Ultrasound Doppler measurements. A fast method is proposed, based on the Parameterized Background Data-Weak (PBDW) method. Several methodological contributions are described: a sub-manifold partitioning is introduced to improve the reduced-order approximation, two different ways to estimate the pressure drop are compared, and an error estimation is derived. A fully synthetic test-case on a realistic common carotid geometry is presented, showing that the proposed approach is promising in view of realistic applications.
Collapse
Affiliation(s)
- Felipe Galarce
- Centre de Recherche INRIA de Paris, Laboratoire Jacques-Louis Lions Faculté des Sciences de Sorbonne Université, INRIA, Paris, France
| | - Damiano Lombardi
- Centre de Recherche INRIA de Paris, Laboratoire Jacques-Louis Lions Faculté des Sciences de Sorbonne Université, INRIA, Paris, France
| | - Olga Mula
- Centre de Recherche INRIA de Paris, Laboratoire Jacques-Louis Lions Faculté des Sciences de Sorbonne Université, INRIA, Paris, France
- CEREMADE, Paris-Dauphine University, PSL Research University, CNRS, Paris, France
| |
Collapse
|
15
|
Nahas H, Au JS, Ishii T, Yiu BYS, Chee AJY, Yu ACH. A Deep Learning Approach to Resolve Aliasing Artifacts in Ultrasound Color Flow Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2615-2628. [PMID: 32746180 DOI: 10.1109/tuffc.2020.3001523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite being used clinically as a noninvasive flow visualization tool, color flow imaging (CFI) is known to be prone to aliasing artifacts that arise due to fast blood flow beyond the detectable limit. From a visualization standpoint, these aliasing artifacts obscure proper interpretation of flow patterns in the image view. Current solutions for resolving aliasing artifacts are typically not robust against issues such as double aliasing. In this article, we present a new dealiasing technique based on deep learning principles to resolve CFI aliasing artifacts that arise from single- and double-aliasing scenarios. It works by first using two convolutional neural networks (CNNs) to identify and segment CFI pixel positions with aliasing artifacts, and then it performs phase unwrapping at these aliased pixel positions. The CNN for aliasing identification was devised as a U-net architecture, and it was trained with in vivo CFI frames acquired from the femoral bifurcation that had known presence of single- and double-aliasing artifacts. Results show that the segmentation of aliased CFI pixels was achieved successfully with intersection over union approaching 90%. After resolving these artifacts, the dealiased CFI frames consistently rendered the femoral bifurcation's triphasic flow dynamics over a cardiac cycle. For dealiased CFI pixels, their root-mean-squared difference was 2.51% or less compared with manual dealiasing. Overall, the proposed dealiasing framework can extend the maximum flow detection limit by fivefold, thereby improving CFI's flow visualization performance.
Collapse
|
16
|
Association between the E-wave propagation index and left ventricular thrombus formation after ST-elevation myocardial infarction. Int J Cardiol 2020; 326:213-219. [PMID: 33152416 DOI: 10.1016/j.ijcard.2020.10.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To explore the association between E-wave propagation index (EPI) as a marker of apical washout and the risk of left ventricular thrombus (LVT) formation in patients with ST-elevation myocardial infarction (STEMI). METHODS We performed a post-hoc analysis on 364 prospectively enrolled STEMI patients from a single-center. Non-contrast transthoracic echocardiographic examinations were performed a median of 2 days (IQR:1-3 days) after PCI. The endpoint was LVT formation, identified retrospectively. Univariable and multivariable logistic regression was applied to assess the association between EPI and LVT formation. Multivariable adjustments included LVEF, LAD culprit, prior myocardial infarction, heart rate, and early myocardial relaxation velocity. Area under receiver operating characteristic curves (AUC) was used to assess the diagnostic ability. RESULTS AND CONCLUSIONS Among 364 patients, 31 (8.5%) developed LVT. The mean age was 62 years, 75% were men, and mean LVEF was 46%. Patients developing LVT had increased heart rate, lower LVEF, impaired GLS, and more frequently had prior myocardial infarction. Variables associated with low values of EPI included, among others, LVEF, LV aneurysm, and GLS. EPI and LVT formation were significantly associated in the univariable model (OR = 1.87 (1.53-2.28), p < 0.001), and EPI showed an AUC of 0.90. After multivariable adjustments, EPI and LVT formation remained significantly associated (OR = 1.79 (1.42-2.27), p < 0.001). Patients with an EPI < 1.0 had a 23 times higher likelihood of LVT formation (OR = 23.41 (10.06-54.49), p < 0.001). EPI and LVT formation are strongly associated in patients with STEMI, with low values of EPI indicating a markedly increased probability of LVT formation.
Collapse
|
17
|
Relationship between left ventricular isovolumic relaxation flow patterns and mitral inflow patterns studied by using vector flow mapping. Sci Rep 2019; 9:16264. [PMID: 31700142 PMCID: PMC6838154 DOI: 10.1038/s41598-019-52680-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 02/02/2023] Open
Abstract
The purpose of this study was to investigate the relationship between isovolumic relaxation flow (IRF) patterns in left ventricle (LV) and mitral inflow patterns. Color Doppler loops were acquired for vector flow mapping in apical long-axis view in 57 patients with coronary artery disease, 31 patients with dilated cardiomyopathy, and 58 healthy controls. IRF patterns were classified into three categories: pattern A, apically directed flow; pattern B, bidirectional flow with small scattered vortices; and pattern C, a large vortex. All normals and patients with normal LV filling (n = 10) showed pattern A. Patients with impaired relaxation consisted of 31 (66%) patients having pattern A, 11 (23%) having pattern B, and 5 (11%) having pattern C. Patients with pseudonormal filling included 4 (31%) patients having pattern A, 7 (54%) having pattern B, and 2 (15%) having pattern C. In patients with restrictive filling, 14 (78%) showed pattern C, 4 (22%) showed pattern B, and no patient showed pattern A. IRF patterns were associated with LV filling patterns (χ2 = 52.026, p < 0.001). There are significant relationships between LV filling and IRF patterns. IRF patterns may provide an index for evaluation of LV diastolic function.
Collapse
|
18
|
Faurie J, Baudet M, Poree J, Cloutier G, Tournoux F, Garcia D. Coupling Myocardium and Vortex Dynamics in Diverging-Wave Echocardiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:425-432. [PMID: 29993542 DOI: 10.1109/tuffc.2018.2842427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Echocardiography is widely used to provide critical left ventricular indices describing myocardial motion and blood inflow velocity. Tissue motion and blood flow are strongly connected and interdependent in the ventricle. During cardiac relaxation, rapid filling leads to the formation of a vortical blood flow pattern. In this paper, we introduce a high-frame-rate method to track vortex dynamics alongside myocardium motion, in a single heartbeat. Cardiac triplex imaging (B-mode + tissue Doppler + color Doppler) was obtained by insonating the left ventricle with diverging waves. We used coherent compounding with integrated motion compensation to obtain high-quality B-mode images. Tissue Doppler was retrieved and the septal and lateral velocities of the mitral annulus were deduced. A rate of ~80 triplex images/s was obtained. Vortex dynamics was analyzed by Doppler vortography. Blood vortex signature maps were used to track the vortex and compute core vorticities. The sequence was implemented in a Verasonics scanner with a 2.5-MHz phased array and tested in vivo in 12 healthy volunteers. Two main peaks appeared on the vorticity curves. These peaks were synchronized with the mitral inflow velocities with a small delay. We observed a relationship between the tissue and vortex waveforms, though also with a delay, which denoted the lag between the wall and the flow motion. Clinical diastolic indices combining basal and mitral inflow velocities (E/A ratio and E/ e' ratio) were determined and compared with those measured using a conventional ultrasound scanner; a good correlation was obtained ( r2 = 0.96 ). High-frame-rate Doppler echocardiography enabled us to retrieve time-resolved dynamics of the myocardium and vortex flow within the same cardiac cycle. Coupling wall-flow analysis could be of clinical relevance for early diagnosis of filling impairment.
Collapse
|
19
|
Li Q, Huang L, Ma N, Li Z, Han Y, Wu L, Zhang X, Li Y, Zhang H. Relationship between left ventricular vortex and preejectional flow velocity during isovolumic contraction studied by using vector flow mapping. Echocardiography 2019; 36:558-566. [PMID: 30726568 DOI: 10.1111/echo.14277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the relationship between the vortex in left ventricle (LV) during the isovolumic contraction (IVC) period and the preejectional flow velocity in LV outflow tract (VLVOT ). METHODS Color Doppler loops were acquired for vector flow mapping in apical long-axis view in 76 patients with dilated cardiomyopathy, 61 patients with coronary artery disease and 36 healthy controls. RESULTS All normals exhibited an IVC vortex reaching the LV base. VLVOT was significantly related to IVC vortex area flux, transmitral A velocity, mitral annular a' velocity and E/e' ratio, respectively. Transmitral A velocity was the only independent predictor of VLVOT (R2 = 0.292, P = 0.001). In patients the IVC vortex could reach the LV base, middle, or apex. VLVOT was significantly related to range, area and area flux of the IVC vortex, LV size, LVEF, mitral annular velocities, E/e' ratio, transmitral A velocity, and IVC time, respectively. Range and corrected area flux of the IVC vortex, LV end-systolic short diameter, and IVC time were independent predictors of VLVOT (R2 = 0.608, P < 0.001). CONCLUSIONS In normals, the transmitral A velocity (momentum) is efficiently transferred from mitral orifice to LV outflow tract by a normally formed IVC vortex, and transmitral A velocity is the only independent predictor of VLVOT . However, in patients with a wide range of LV enlargement and dysfunction, the momentum transfer is associated with not only the LV dimension and function, but also the range and volume of the IVC vortex.
Collapse
Affiliation(s)
- Qiaozhen Li
- Graduate School of Dalian Medical University, Dalian, China
| | - Liang Huang
- Department of Urinary Surgery, PLA 967th Hospital, Dalian, China
| | - Na Ma
- Department of Ultrasound, PLA 967th Hospital, Dalian, China
| | - Zhiguo Li
- Department of Ultrasound, PLA 967th Hospital, Dalian, China
| | - Yu Han
- Graduate School of Dalian Medical University, Dalian, China
| | - Ling Wu
- Graduate School of Jinzhou Medical University, Jinzhou, China
| | - Xiaoxia Zhang
- Graduate School of Jinzhou Medical University, Jinzhou, China
| | - Yiwei Li
- Graduate School of Dalian Medical University, Dalian, China
| | - Haibin Zhang
- Department of Ultrasound, PLA 967th Hospital, Dalian, China
| |
Collapse
|
20
|
Malakan Rad E, Sheykhian T, Zeinaloo AA. Atrial and ventricular ejection force of the fetal heart: Which of the four chambers is the dominant? Ann Pediatr Cardiol 2019; 12:220-227. [PMID: 31516278 PMCID: PMC6716320 DOI: 10.4103/apc.apc_146_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background/Aim: This study aimed to measure and compare the ejection force of the cardiac chambers in healthy singleton fetuses and to investigate the relationship of ejection force of cardiac chambers with gestational age, fetal sex, and fetal heart rate. Patients and Methods: A prospective study was performed on 68 singleton fetuses with a gestational age of 17–34 weeks. Atrial and ventricular ejection force was measured. Measurements were repeated in 18 of the fetuses to assess intraobserver reliability. Results: The right atrium had the highest ejection force of all the cardiac chambers. Ejection force of both atria and ventricles increased with gestational age. Conclusion: The right atrium is the dominant chamber of the fetal heart in 17–34 weeks of gestation. Comparison of our values with previous studies indicates that left atrial ejection force almost doubles in the 1st month after birth. This study highlights the crucial role of the right atrium in the fetal cardiac function during 17–34 weeks of gestation.
Collapse
Affiliation(s)
- Elaheh Malakan Rad
- Department of Pediatric Cardiology, Children's Medical Center (The Pediatric Center of Excellence), Affiliated to Tehran University of Medical Sciences, Tehran, Iran
| | - Toktam Sheykhian
- Department of Pediatric Cardiology, Children's Medical Center (The Pediatric Center of Excellence), Affiliated to Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Zeinaloo
- Department of Pediatric Cardiology, Children's Medical Center (The Pediatric Center of Excellence), Affiliated to Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Shahriari S, Garcia D. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics. Phys Med Biol 2018; 63:205011. [PMID: 30247153 DOI: 10.1088/1361-6560/aae3c3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Before embarking on a series of in vivo tests, design of ultrasound-flow-imaging modalities are generally more efficient through computational models as multiple configurations can be tested methodically. To that end, simulation models must generate realistic blood flow dynamics and Doppler signals. The current in silico ultrasound simulation techniques suffer mainly from uncertainty in providing accurate trajectories of moving ultrasound scatterers. In mesh-based Eulerian methods, numerical truncation errors from the interpolated velocities, both in the time and space dimensions, can accumulate significantly and make the pathlines unreliable. These errors can distort beam-to-beam inter-correlation present in ultrasound flow imaging. It is thus a technical issue to model a correct motion of the scatterers by considering their interaction with boundaries and neighboring scatterers. We hypothesized that in silico analysis of emerging ultrasonic imaging modalities can be implemented more accurately with meshfree approaches. We developed an original fluid-ultrasound simulation environment based on a meshfree Lagrangian CFD (computational fluid dynamics) formulation, which allows analysis of ultrasound flow imaging. This simulator combines smoothed particle hydrodynamics (SPH) and Fourier-domain linear acoustics (SIMUS = simulator for ultrasound imaging). With such a particle-based computation, the fluid particles also acted as individual ultrasound scatterers, resulting in a direct and physically sound fluid-ultrasonic coupling. We used the in-house algorithms for fluid and ultrasound simulations to simulate high-frame-rate vector flow imaging. The potential of the particle-based method was tested in 2D simulations of vector Doppler for the intracarotid flow. The Doppler-based velocity fields were compared with those issued from SPH. The numerical evaluations showed that the vector flow fields obtained by vector Doppler components were in good agreement with the original SPH velocities, with relative errors less than 10% and 2% in the cross-beam and axial directions, respectively. Our results showed that SPH-SIMUS coupling enables direct and realistic simulations of ultrasound flow imaging. The proposed coupled algorithm has also the advantage to be 3D compatible and parallelizable.
Collapse
Affiliation(s)
- Shahrokh Shahriari
- Previously, Research Center of the University of Montreal Hospital, Montreal, QC H2X 0A9, Canada
| | | |
Collapse
|
22
|
Holbek S, Hansen KL, Fogh N, Moshavegh R, Olesen JB, Nielsen MB, Jensen JA. Real-Time 2-D Phased Array Vector Flow Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1205-1213. [PMID: 29993373 DOI: 10.1109/tuffc.2018.2838518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental offline 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner. A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSVs) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow rig with continuous laminar parabolic flow and in a pulsating flow pump system before being tested in vivo, where measurements were obtained on two healthy volunteers. Mean PSV from 11 cycles was 155 cms-1 with a precision of ±9.0% for the pulsating flow pump. In vivo, PSV estimated in the ascending aorta was 135 cms-1 ± 16.9% for eight cardiac cycles. Furthermore, in vivo flow dynamics of the left ventricle and in the ascending aorta were visualized. In conclusion, angle independent 2-D VFI on a phased array has been implemented in real time, and it is capable of providing quantitative and qualitative flow evaluations of both the complex and fully transverse flow.
Collapse
|
23
|
Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: A review. Med Eng Phys 2018; 54:1-13. [DOI: 10.1016/j.medengphy.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/17/2017] [Accepted: 01/28/2018] [Indexed: 01/26/2023]
|
24
|
Goya S, Wada T, Shimada K, Hirao D, Tanaka R. The relationship between systolic vector flow mapping parameters and left ventricular cardiac function in healthy dogs. Heart Vessels 2017; 33:549-560. [PMID: 29230570 DOI: 10.1007/s00380-017-1093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/01/2017] [Indexed: 11/24/2022]
Abstract
Vector flow mapping (VFM) is a novel echocardiographic technology that shows blood flow vectors and vortexes, enabled the hydrokinetic evaluation of hemodynamics within the left ventricle. VFM provides several unique parameters: circulation, vorticity, vortex area, and energy loss. The present study aims to reveal a relationship between VFM parameters and cardiac function. Five healthy Beagle dogs were anesthetized and administered with dobutamine (0, 2, 4, 8, 12 µg/kg/min). Pressure-volume diagrams were acquired to assess cardiac function using pressure-volume conductance catheter. Systolic maximum circulation, vorticity, vortex area, and energy loss were measured using VFM. The systolic maximum circulation, systolic vorticity, systolic vortex area, and systolic energy loss were increased by dobutamine administration. There was a strongly significant correlation between the systolic maximum circulation and ejection fraction (r = 0.76), maximal positive left ventricular (LV) pressure derivatives (dP/dt max) (r = 0.80), and end-systolic LV elastance (r = 0.73). Systolic vorticity and systolic vortex area were strongly correlated with ejection fraction (r = 0.76, 0.68) and dP/dt max (r = 0.76, 0.69), and end-systolic LV elastance (r = 0.62, 0.74), respectively. Systolic energy loss was strongly correlated with dP/dt max (r = 0.78), systolic maximum circulation (r = 0.81), and systolic vorticity (r = 0.82). The present study revealed that systolic VFM parameters are associated with the LV contractility. Furthermore, systolic energy loss was susceptible to the systolic vortex parameters such as systolic vorticity and systolic maximum circulation. Systolic VFM parameters are new hydrokinetic indices reflecting LV contractility.
Collapse
Affiliation(s)
- Seijirow Goya
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Tomoki Wada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Daiki Hirao
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
25
|
Assi KC, Gay E, Chnafa C, Mendez S, Nicoud F, Abascal JFPJ, Lantelme P, Tournoux F, Garcia D. Intraventricular vector flow mapping—a Doppler-based regularized problem with automatic model selection. ACTA ACUST UNITED AC 2017; 62:7131-7147. [DOI: 10.1088/1361-6560/aa7fe7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Holbek S, Ewertsen C, Bouzari H, Pihl MJ, Hansen KL, Stuart MB, Thomsen C, Nielsen MB, Jensen JA. Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:544-554. [PMID: 27992335 DOI: 10.1109/tuffc.2016.2639318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames/s in a plane, and was used to estimate 3-D vector flow in a cross-sectional image plane. The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared with the expected 79.8 L/min, and to 2.68 ± 0.04 mL/stroke in the pulsating environment compared with the expected 2.57 ± 0.08 mL/stroke. Flow rates estimated in the common carotid artery of a healthy volunteer are compared with magnetic resonance imaging (MRI) measured flow rates using a 1-D through-plane velocity sequence. Mean flow rates were 333 ± 31 mL/min for the presented method and 346 ± 2 mL/min for the MRI measurements.
Collapse
|
27
|
Faurie J, Baudet M, Assi KC, Auger D, Gilbert G, Tournoux F, Garcia D. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:424-432. [PMID: 27913338 DOI: 10.1109/tuffc.2016.2632707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.
Collapse
|
28
|
Ho CK, Chee AJY, Yiu BYS, Tsang ACO, Chow KW, Yu ACH. Wall-Less Flow Phantoms With Tortuous Vascular Geometries: Design Principles and a Patient-Specific Model Fabrication Example. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:25-38. [PMID: 27959808 DOI: 10.1109/tuffc.2016.2636129] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Flow phantoms with anatomically realistic geometry and high acoustic compatibility are valuable investigative tools in vascular ultrasound studies. Here, we present a new framework to fabricate ultrasound-compatible flow phantoms to replicate human vasculature that is tortuous, nonplanar, and branching in nature. This framework is based upon the integration of rapid prototyping and investment casting principles. A pedagogical walkthrough of our engineering protocol is presented in this paper using a patient-specific cerebral aneurysm model as an exemplar demonstration. The procedure for constructing the flow circuit component of the phantoms is also presented, including the design of a programmable flow pump system, the fabrication of blood mimicking fluid, and flow rate calibration. Using polyvinyl alcohol cryogel as the tissue mimicking material, phantoms developed with the presented protocol exhibited physiologically relevant acoustic properties [attenuation coefficient: 0.229±0.032 dB/( [Formula: see text]) and acoustic speed: 1535±2.4 m/s], and their pulsatile flow dynamics closely resembled the flow profile input. As a first application of our developed phantoms, the flow pattern of the patient-specific aneurysm model was visualized by performing high-frame-rate color-encoded speckle imaging over multiple time-synchronized scan planes. Persistent recirculation was observed, and the vortex center was found to shift in position over a cardiac cycle, indicating the 3-D nature of flow recirculation inside an aneurysm. These findings suggest that phantoms produced from our reported protocol can serve well as acoustically compatible test beds for vascular ultrasound studies, including 3-D flow imaging.
Collapse
|
29
|
Van Cauwenberge J, Lovstakken L, Fadnes S, Rodriguez-Morales A, Vierendeels J, Segers P, Swillens A. Assessing the Performance of Ultrafast Vector Flow Imaging in the Neonatal Heart via Multiphysics Modeling and In Vitro Experiments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1772-1785. [PMID: 27824560 DOI: 10.1109/tuffc.2016.2596804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrafast vector flow imaging would benefit newborn patients with congenital heart disorders, but still requires thorough validation before translation to clinical practice. This paper investigates 2-D speckle tracking (ST) of intraventricular blood flow in neonates when transmitting diverging waves at ultrafast frame rate. Computational and in vitro studies enabled us to quantify the performance and identify artifacts related to the flow and the imaging sequence. First, synthetic ultrasound images of a neonate's left ventricular flow pattern were obtained with the ultrasound simulator Field II by propagating point scatterers according to 3-D intraventricular flow fields obtained with computational fluid dynamics (CFD). Noncompounded diverging waves (opening angle of 60°) were transmitted at a pulse repetition frequency of 9 kHz. ST of the B-mode data provided 2-D flow estimates at 180 Hz, which were compared with the CFD flow field. We demonstrated that the diastolic inflow jet showed a strong bias in the lateral velocity estimates at the edges of the jet, as confirmed by additional in vitro tests on a jet flow phantom. Furthermore, ST performance was highly dependent on the cardiac phase with low flows (<5 cm/s), high spatial flow gradients, and out-of-plane flow as deteriorating factors. Despite the observed artifacts, a good overall performance of 2-D ST was obtained with a median magnitude underestimation and angular deviation of, respectively, 28% and 13.5° during systole and 16% and 10.5° during diastole.
Collapse
|
30
|
Jensen JA, Nikolov SI, Yu ACH, Garcia D. Ultrasound Vector Flow Imaging-Part I: Sequential Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1704-1721. [PMID: 27824555 DOI: 10.1109/tuffc.2016.2600763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper gives a review of the most important methods for blood velocity vector flow imaging (VFI) for conventional sequential data acquisition. This includes multibeam methods, speckle tracking, transverse oscillation, color flow mapping derived VFI, directional beamforming, and variants of these. The review covers both 2-D and 3-D velocity estimation and gives a historical perspective on the development along with a summary of various vector flow visualization algorithms. The current state of the art is explained along with an overview of clinical studies conducted and methods for presenting and using VFI. A number of examples of VFI images are presented, and the current limitations and potential solutions are discussed.
Collapse
|
31
|
Posada D, Poree J, Pellissier A, Chayer B, Tournoux F, Cloutier G, Garcia D. Staggered Multiple-PRF Ultrafast Color Doppler. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1510-1521. [PMID: 26780789 DOI: 10.1109/tmi.2016.2518638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.
Collapse
|
32
|
Vector Flow Mapping in Mitral Valve Disease: a Novel Method for the Assessment of Flow Mechanics and Their Potential Implications for Mitral Valve Repair. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015. [DOI: 10.1007/s12410-015-9358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Fadnes S, Ekroll IK, Nyrnes SA, Torp H, Lovstakken L. Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1757-67. [PMID: 26470038 DOI: 10.1109/tuffc.2015.007108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two-dimensional blood velocity estimation has shown potential to solve the angle-dependency of conventional ultrasound flow imaging. Clutter filtering, however, remains a major challenge for large beam-to-flow angles, leading to signal drop-outs and corrupted velocity estimates. This work presents and evaluates a compounding speckle tracking (ST) algorithm to obtain robust angle-independent 2-D blood velocity estimates for all beam-to-flow angles. A dual-angle plane wave imaging setup with full parallel receive beamforming is utilized to achieve high-frame-rate speckle tracking estimates from two scan angles, which may be compounded to obtain velocity estimates of increased robustness. The acquisition also allows direct comparison with vector Doppler (VD) imaging. Absolute velocity bias and root-mean-square (RMS) error of the compounding ST estimations were investigated using simulations of a rotating flow phantom with low velocities ranging from 0 to 20 cm/s. In a challenging region where the estimates were influenced by clutter filtering, the bias and RMS error for the compounding ST estimates were 11% and 2 cm/s, a significant reduction compared with conventional single-angle ST (22% and 4 cm/s) and VD (36% and 6 cm/s). The method was also tested in vivo for vascular and neonatal cardiac imaging. In a carotid artery bifurcation, the obtained blood velocity estimates showed that the compounded ST method was less influenced by clutter filtering than conventional ST and VD methods. In the cardiac case, it was observed that ST velocity estimation is more affected by low signal-to-noise (SNR) than VD. However, with sufficient SNR the in vivo results indicated that a more robust angle-independent blood velocity estimator is obtained using compounded speckle tracking compared with conventional ST and VD methods.
Collapse
|
34
|
Salles S, Liebgott H, Garcia D, Vray D. Full 3-D transverse oscillations: a method for tissue motion estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1473-1485. [PMID: 26276957 DOI: 10.1109/tuffc.2015.007050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a new method to estimate 4-D (3-D + time) tissue motion. The method used combines 3-D phase based motion estimation with an unconventional beamforming strategy. The beamforming technique allows us to obtain full 3-D RF volumes with axial, lateral, and elevation modulations. Based on these images, we propose a method to estimate 3-D motion that uses phase images instead of amplitude images. First, volumes featuring 3-D oscillations are created using only a single apodization function, and the 3-D displacement between two consecutive volumes is estimated simultaneously by applying this 3-D estimation. The validity of the method is investigated by conducting simulations and phantom experiments. The results are compared with those obtained with two other conventional estimation methods: block matching and optical flow. The results show that the proposed method outperforms the conventional methods, especially in the transverse directions.
Collapse
|
35
|
A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:108274. [PMID: 26078773 PMCID: PMC4452383 DOI: 10.1155/2015/108274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/25/2014] [Indexed: 11/17/2022]
Abstract
Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance.
Collapse
|
36
|
Kokkalis E, Cookson AN, Stonebridge PA, Corner GA, Houston JG, Hoskins PR. Comparison of vortical structures induced by arteriovenous grafts using vector Doppler ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:760-774. [PMID: 25683221 DOI: 10.1016/j.ultrasmedbio.2014.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/18/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Arteriovenous prosthetic grafts are used in hemodialysis. Stenosis in the venous anastomosis is the main cause of occlusion and the role of local hemodynamics in this is considered significant. A new spiral graft design has been proposed to stabilize the flow phenomena in the host vein. Cross-flow vortical structures in the outflow of this graft were compared with those from a control device. Both grafts were integrated in identical in-house ultrasound-compatible flow phantoms with realistic surgical configurations. Constant flow rates were applied. In-plane 2-D velocity and vorticity mapping was developed using a vector Doppler technique. One or two vortices were detected for the spiral graft and two to four for the control, along with reduced stagnation points for the former. The in-plane peak velocity and circulation were calculated and found to be greater for the spiral device, implying increased in-plane mixing, which is believed to inhibit thrombosis and neo-intimal hyperplasia.
Collapse
Affiliation(s)
- Efstratios Kokkalis
- Institute for Medical Science and Technology, University of Dundee, Dundee, UK; Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| | - Andrew N Cookson
- Department of Biomedical Engineering, King's College London, London, UK
| | - Peter A Stonebridge
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - George A Corner
- Medical Physics, Ninewells Hospital and Medical School, Dundee, UK
| | - J Graeme Houston
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Peter R Hoskins
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Yiu BYS, Lai SSM, Yu ACH. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2295-309. [PMID: 24972498 DOI: 10.1016/j.ultrasmedbio.2014.03.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 05/22/2023]
Abstract
Achieving non-invasive, accurate and time-resolved imaging of vascular flow with spatiotemporal fluctuations is well acknowledged to be an ongoing challenge. In this article, we present a new ultrasound-based framework called vector projectile imaging (VPI) that can dynamically render complex flow patterns over an imaging view at millisecond time resolution. VPI is founded on three principles: (i) high-frame-rate broad-view data acquisition (based on steered plane wave firings); (ii) flow vector estimation derived from multi-angle Doppler analysis (coupled with data regularization and least-squares fitting); (iii) dynamic visualization of color-encoded vector projectiles (with flow speckles displayed as adjunct). Calibration results indicated that by using three transmit angles and three receive angles (-10°, 0°, +10° for both), VPI can consistently compute flow vectors in a multi-vessel phantom with three tubes positioned at different depths (1.5, 4, 6 cm), oriented at different angles (-10°, 0°, +10°) and of different sizes (dilated diameter: 2.2, 4.4 and 6.3 mm; steady flow rate: 2.5 mL/s). The practical merit of VPI was further illustrated through an anthropomorphic flow phantom investigation that considered both healthy and stenosed carotid bifurcation geometries. For the healthy bifurcation with 1.2-Hz carotid flow pulses, VPI was able to render multi-directional and spatiotemporally varying flow patterns (using a nominal frame rate of 416 fps or 2.4-ms time resolution). In the case of stenosed bifurcations (50% eccentric narrowing), VPI enabled dynamic visualization of flow jet and recirculation zones. These findings suggest that VPI holds promise as a new tool for complex flow analysis.
Collapse
Affiliation(s)
- Billy Y S Yiu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Simon S M Lai
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Alfred C H Yu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
38
|
Osmanski BF, Maresca D, Messas E, Tanter M, Pernot M. Transthoracic ultrafast Doppler imaging of human left ventricular hemodynamic function. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1268-75. [PMID: 25073134 PMCID: PMC4878714 DOI: 10.1109/tuffc.2014.3033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2-D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased-array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits reliance on a much more effective wall filtering and increased sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis, and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function.
Collapse
|
39
|
CardioPulse Articles. Eur Heart J 2014; 35:745-6. [DOI: 10.1093/eurheartj/ehu057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|