1
|
Sun P, Han J, Li M, Wang Z, Guo R, Zhang Y, Qian L, Ma J, Hu X. Ultrasound Spectral Combined With Clinical Pathological Parameters in Prediction of Axillary Lymph Node Metastatic in Breast Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024. [PMID: 39230251 DOI: 10.1002/jum.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES To explore the clinical value of the nomogram based on ultrasound spectral combined with clinical pathological parameter in predicting axillary lymph node metastasis in breast cancer. METHODS We prospectively gathered clinicopathologic and ultrasonic data from 240 patients confirmed breast cancer. The risk factors of axillary lymph node metastasis were analyzed by univariate and multivariate logistic regression, and the prediction model was established. The model calibration, predictive ability, and diagnostic efficiency in the training set and the testing set were analyzed by receiver operating characteristic curve and calibration curve analysis, respectively. RESULTS Univariate analysis showed that lymph node metastasis was related with tumor size, Ki-67, axillary ultrasound, ultrasound spectral quantitative parameter, internal echo, and calcification (P < .05). Multivariate logistic regression analysis showed that the Ki-67, axillary ultrasound, quantitative parameter (the mean of the mid-band fit in tumor and posterior tumor) were independent risk factors of axillary lymph node metastasis (P < .05). The models developed using Ki-67, axillary ultrasound, and quantitative parameters for predicting axillary lymph node metastasis demonstrated an area under the receiver operating characteristic curve of 0.83. Additionally, the prediction model exhibited outstanding predictability for axillary lymph node metastasis, as evidenced by a Harrell C-index of 0.83 (95% confidence interval 0.73-0.93). CONCLUSION Axillary ultrasound combined with Ki-67 and ultrasound spectral parameters has the potential to predict axillary lymph node metastasis in breast cancer, which is superior to axillary ultrasound alone.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Han
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Min Li
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Zhixiang Wang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruifang Guo
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanning Zhang
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Xiangdong Hu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Rojas SS, Samady A, Kim S, Lindsey BD. High-Frequency, 2-mm-Diameter Forward-Viewing 2-D Array for 3-D Intracoronary Blood Flow Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1051-1061. [PMID: 38913530 PMCID: PMC11381909 DOI: 10.1109/tuffc.2024.3418708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Coronary artery disease (CAD) is one of the leading causes of death globally. Currently, diagnosis and intervention in CAD are typically performed via minimally invasive cardiac catheterization procedures. Using current diagnostic technology, such as angiography and fractional flow reserve (FFR), interventional cardiologists must decide which patients require intervention and which can be deferred; 10% of patients with stable CAD are incorrectly deferred using current diagnostic best practices. By developing a forward-viewing intravascular ultrasound (FV-IVUS) 2-D array capable of simultaneously evaluating morphology, hemodynamics, and plaque composition, physicians would be better able to stratify risk of major adverse cardiac events in patients with intermediate stenosis. For this application, a forward-viewing, 16-MHz 2-D array transducer was designed and fabricated. A 2-mm-diameter aperture consisting of 140 elements, with element dimensions of 98×98×70 μ m ( w×h×t ) and a nominal interelement spacing of 120 μ m, was designed for this application based on simulations. The acoustic stack for this array was developed with a designed center frequency of 16 MHz. A novel via-less interconnect was developed to enable electrical connections to fan-out from a 140-element 2-D array with 120- μ m interelement spacing. The fabricated array transducer had 96/140 functioning elements operating at a center frequency of 16 MHz with a -6-dB fractional bandwidth of 62% ± 7 %. Single-element SNR was 23 ± 3 dB, and the measured electrical crosstalk was - 33 ± 3 dB. In imaging experiments, the measured lateral resolution was 0.231 mm and the measured axial resolution was 0.244 mm at a depth of 5 mm. Finally, the transducer was used to perform 3-D B-mode imaging of a 3-mm-diameter spring and 3-D B-mode and power Doppler imaging of a tissue-mimicking phantom.
Collapse
|
3
|
Legutko J, Bryniarski KL, Kaluza GL, Roleder T, Pociask E, Kedhi E, Wojakowski W, Jang IK, Kleczynski P. Intracoronary Imaging of Vulnerable Plaque-From Clinical Research to Everyday Practice. J Clin Med 2022; 11:jcm11226639. [PMID: 36431116 PMCID: PMC9699515 DOI: 10.3390/jcm11226639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The introduction into clinical practice of intravascular imaging, including intravascular ultrasound (IVUS), optical coherence tomography (OCT) and their derivatives, allowed for the in vivo assessment of coronary atherosclerosis in humans, including insights into plaque evolution and progression process. Intravascular ultrasound, the most commonly used intravascular modality in many countries, due to its low resolution cannot assess many features of vulnerable plaque such as lipid plaque or thin-cap fibroatheroma. Thus, novel methods were introduced to facilitate this problem including virtual histology intravascular ultrasound and later on near-infrared spectroscopy and OCT. Howbeit, none of the currently used modalities can assess all known characteristics of plaque vulnerability; hence, the idea of combining different intravascular imaging methods has emerged including NIRS-IVUS or OCT-IVUS imaging. All of those described methods may allow us to identify the most vulnerable plaques, which are prone to cause acute coronary syndrome, and thus they may allow us to introduce proper treatment before plaque destabilization.
Collapse
Affiliation(s)
- Jacek Legutko
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Krzysztof L. Bryniarski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Grzegorz L. Kaluza
- Skirball Center for Innovation, Cardiovascular Research Foundation, Orangeburg, NY 10019, USA
| | - Tomasz Roleder
- Department of Cardiology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Elzbieta Pociask
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Elvin Kedhi
- Clinique Hopitaliere Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-635 Katowice, Poland
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, Boston, MA 02115, USA
- Division of Cardiology, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Pawel Kleczynski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
- Correspondence: ; Tel.: +48-12-614-35-01
| |
Collapse
|
4
|
Newsome IG, Kierski TM, Pang G, Yin J, Yang J, Cherin E, Foster FS, Carnevale CA, Demore CEM, Dayton PA. Implementation of a Novel 288-Element Dual-Frequency Array for Acoustic Angiography: In Vitro and In Vivo Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2657-2666. [PMID: 33872146 PMCID: PMC8375591 DOI: 10.1109/tuffc.2021.3074025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging method that produces high-resolution, 3-D maps of the microvasculature. Previous acoustic angiography studies have used twoelement, annular,mechanicallyactuated transducers(called "wobblers") to image microvasculature in preclinical tumor models with high contrast-to-tissue ratio and resolution, but these earlywobbler transducerscould not achieve the depth and sensitivity required for clinical acoustic angiography. In this work, we present a system for performing acoustic angiography with a novel dual-frequency(DF) transducer-a coaxially stacked DF array (DFA). We evaluate the DFA system bothin vitro andin vivo and demonstrate improvements in sensitivity and imaging depth up to 13.1 dB and 10 mm, respectively, compared with previous wobbler probes.
Collapse
|
5
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|
6
|
Kang S, Lee J, Chang JH. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging. ULTRASONICS 2021; 113:106364. [PMID: 33517139 DOI: 10.1016/j.ultras.2021.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Synthetic aperture focusing (SAF) and coherence factor weighting (CFW) have been used to improve the lateral resolution of ultrasound images. Although the two methods are effective for array-based ultrasound imaging, many researchers have also employed the methods for single-element-based imaging including intravascular ultrasound (IVUS) imaging. For single-element-based imaging, CFW is generally calculated from the scanlines obtained by SAF and applied to the scanline obtained after coherent summation of the SAF delayed scanlines, which is called a SAF-CFW method. In the paper, a theoretical model was derived to explore the effectiveness of SAF and CFW for single-element-based imaging, and the model was used to explain that SAF is not effective for IVUS imaging in terms of enhancing the spatial resolution, although it has the advantage of improving a contrast-to-noise ratio (CNR). This means that the SAF-CFW method is not optimal for improving the spatial resolution of IVUS imaging. In contrast, it was found in simulations and experiments that applying CFW to the target scanline itself is beneficial for the spatial resolution rather than a coherent summed scanline for IVUS SAF imaging, but CNR was not as good as SAF and SAF-CFW. As a result of both simulation and experimentation, it could be concluded that focused IVUS transducers without the application of those methods may be more advantageous to improve the spatial and contrast resolution simultaneously, considering the system complexity in the implementation of such imaging methods.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Electronic Engineering, Sogang University, Seoul, South Korea
| | - Junsu Lee
- Department of Electronic Engineering, Sogang University, Seoul, South Korea
| | - Jin Ho Chang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.
| |
Collapse
|
7
|
Newsome IG, Dayton PA. Visualization of Microvascular Angiogenesis Using Dual-Frequency Contrast-Enhanced Acoustic Angiography: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2625-2635. [PMID: 32703659 PMCID: PMC7608693 DOI: 10.1016/j.ultrasmedbio.2020.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 05/07/2023]
Abstract
Cancerous tumor growth is associated with the development of tortuous, chaotic microvasculature, and this aberrant microvascular morphology can act as a biomarker of malignant disease. Acoustic angiography is a contrast-enhanced ultrasound technique that relies on superharmonic imaging to form high-resolution 3-D maps of the microvasculature. To date, acoustic angiography has been performed with dual-element transducers that can achieve high contrast-to-tissue ratio and resolution in pre-clinical small animal models. In this review, we first describe the development of acoustic angiography, including the principle, transducer design, and optimization of superharmonic imaging techniques. We then detail several preclinical applications of this microvascular imaging method, as well as the current and future development of acoustic angiography as a pre-clinical and clinical diagnostic tool.
Collapse
Affiliation(s)
- Isabel G Newsome
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
8
|
Chen Q, Yu J, Lukashova L, Latoche JD, Zhu J, Lavery L, Verdelis K, Anderson CJ, Kim K. Validation of Ultrasound Super-Resolution Imaging of Vasa Vasorum in Rabbit Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1725-1729. [PMID: 32086204 PMCID: PMC7424774 DOI: 10.1109/tuffc.2020.2974747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acute coronary syndromes and strokes are mainly caused by atherosclerotic plaque (AP) rupture. Abnormal increase of vasa vasorum (VV) is reported as a key evidence of plaque progression and vulnerability. However, due to their tiny size, it is still challenging to noninvasively identify VV near the major vessels. Ultrasound super resolution (USR), a technique that provides high spatial resolution beyond the acoustic diffraction limit, demonstrated an adequate spatial resolution for VV detection in early studies. However, a thorough validation of this technology in the plaque model is particularly needed in order to continue further extended preclinical studies. In this letter, we present an experiment protocol that verifies the USR technology for VV identification with subsequent histology and ex vivo micro-computed tomography ( μ CT). Deconvolution-based USR imaging was applied on two rabbits to identify the VV near the AP in the femoral artery. Histology and ex vivo μ CT imaging were performed on excised femoral tissue to validate the USR technique both pathologically and morphologically. This established validation protocol could facilitate future extended preclinical studies toward the clinical translation of USR imaging for VV identification.
Collapse
|
9
|
Goel L, Wu H, Kim H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1698-1706. [PMID: 32389332 PMCID: PMC7293952 DOI: 10.1016/j.ultrasmedbio.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
Previous work revealed that a forward-viewing intravascular (FVI) transducer can be used for microbubble (MB)-mediated sonothrombolysis and that the clot lysis was dependent on MB concentration. This study examined the effects of combining tissue plasminogen activator (tPA) with MB-mediated FVI sonothrombolysis. In vitro clot lysis and passive cavitation experiments were conducted to study the effect of low-dose tPA in FVI sonothrombolysis with varying MB concentrations. Enhanced FVI sonothrombolysis was observed in cases in which ultrasound (US) was combined with tPA or MBs compared with control, tPA alone or US alone. The lysis rate of US + tPA + MBs was improved by up to 130%, 31% and 8% for MB concentrations of 106, 107 and 108 MBs/mL, respectively, compared with MBs + US alone. Changes in stable and inertial cavitation doses were observed, corresponding to changes in clot lysis in MB-mediated FVI sonothrombolysis with and without tPA.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Howuk Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
10
|
Ma J, Wei M, Xie Z, Huang S, Chen B, Qiu Y, Wang Y, Li Y, Du J, Xu L. Spectrum enhanced colour ultrasound (SECU) imaging. MEASUREMENT 2020; 154:107401. [DOI: 10.1016/j.measurement.2019.107401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
|
11
|
Peng J, Ma L, Li X, Tang H, Li Y, Chen S. A Novel Synchronous Micro Motor for Intravascular Ultrasound Imaging. IEEE Trans Biomed Eng 2018; 66:802-809. [PMID: 30028687 DOI: 10.1109/tbme.2018.2856930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Intravascular ultrasound (IVUS) is an important method for evaluating lumen dimensions and guiding intervention. However, the current IVUS catheter using a proximal motor and flexible drive shaft is easily rotated at an unstable speed when it passes through along bending vessel. One approach to solve this problem is to develop a catheter driven by a distal motor. METHODS This paper presents a rotation device incorporating a high-frequency transducer as an attempt to facilitate this approach. A novel micro distal synchronous micro motor with 3.7 mm length and 1.2 mm outer diameter was proposed as an actuator for the IVUS catheter. A 0.5 mm × 0.5 mm Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal 1-3 composite single-element transducer was designed and manufactured. The probe is fixed to the front end of the catheter. The 45° reflector, which is opposite to the probe, was used to steer ultrasound to the tissue. RESULTS The results showed that the maximum torque and rotation speed of the motor were 2.79 μNm and 275 revolutions per second, respectively, at a driving current of 0.34 A. The maximum angular error was 7° at 0.13 A and 30 Hz. The center frequency and -6 dB fractional bandwidth of single element were 34 MHz and 72%, respectively. At the center frequency, the two-way insertion loss was 14 dB. CONCLUSION The integrated distal motor IVUS catheter, with small dimensions, a good torque, speed stability, and good ultrasound imaging performance, has tremendous potential in blood vessel imaging. SIGNIFICANCE The novel structure of the catheter could facilitate endoluminal sonography, reducing risks of the clinical diagnosis.
Collapse
|
12
|
Shekhar H, Rowan JS, Doyley MM. Combining Subharmonic and Ultraharmonic Modes for Intravascular Ultrasound Imaging: A Preliminary Evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2725-2732. [PMID: 28847499 PMCID: PMC5679122 DOI: 10.1016/j.ultrasmedbio.2017.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 05/12/2023]
Abstract
Contrast-enhanced intra-vascular ultrasound (CE-IVUS) imaging could provide clinicians a valuable tool to assess cardiovascular risk and guide the choice of therapeutic strategies. In this technical note, we evaluated the feasibility of combining subharmonic and ultraharmonic imaging to improve the performance of CE-IVUS. Vessel phantoms perfused with phospholipid-shelled ultrasound contrast agents were visualized using subharmonic, ultraharmonic and combined CE-IVUS modes with commercial peripheral and coronary imaging catheters. Flow channels as small as 0.8 mm and 0.5 mm were imaged at 12-MHz and 30-MHz transmit frequencies, respectively. Subharmonic and ultraharmonic imaging modes achieved a contrast-to-tissue ratio (CTR) up to 18.1 ± 1.8 dB and 19.6 ± 1.9 dB at 12-MHz, and 8.8 ± 1.8 and 12.5 ± 1.1 dB at 30-MHz transmit frequencies, respectively. Combining these modes improved the CTR to 32.5 ± 3.0 dB and 25.0 ± 1.6 dB at 12-MHz and 30-MHz transmit frequencies. These results underscore the potential of combined-mode CE-IVUS imaging. Furthermore, the demonstration of this approach with commercial catheters may serve as a first step toward the clinical translation of CE-IVUS.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.
| | - Jeffrey S Rowan
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
13
|
Lindsey BD, Kim J, Dayton PA, Jiang X. Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1078-1086. [PMID: 28489536 PMCID: PMC5568756 DOI: 10.1109/tuffc.2017.2702010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cancers of the pancreas have the poorest prognosis among all cancers, as many tumors are not detected until surgery is no longer a viable option. Surgical viability is typically determined via endoscopic ultrasound imaging. However, many patients who may be eligible for resection are not offered surgery due to diagnostic challenges in determining vascular or lymphatic invasion. In this paper, we describe the development of a dual-frequency piezoelectric transducer for rotational endoscopic imaging designed to transmit at 4 MHz and receive at 20 MHz in order to image microbubble-specific superharmonic signals. Imaging performance is assessed in a tissue-mimicking phantom at depths from 1 cm [contrast-to-tissue ratio (CTR) = 21.6 dB] to 2.5 cm (CTR = 11.4 dB), in ex vivo porcine vessels, and in vivo in a rodent. The prototyped 1.1-mm aperture transducer demonstrates contrast-specific imaging of microbubbles in a 200- [Formula: see text]-diameter tube through the wall of a 1-cm-diameter porcine artery, suggesting such a device may enable direct visualization of small vessels from within the lumen of larger vessels such as the portal vein or superior mesenteric vein.
Collapse
|
14
|
Lindsey BD, Shelton SE, Martin KH, Ozgun KA, Rojas JD, Foster FS, Dayton PA. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography. Ann Biomed Eng 2016; 45:939-948. [PMID: 27832421 DOI: 10.1007/s10439-016-1753-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Kathryn A Ozgun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | | | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA. .,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|