1
|
Wegierak D, Nittayacharn P, Cooley MB, Berg FM, Kosmides T, Durig D, Kolios MC, Exner AA. Nanobubble Contrast Enhanced Ultrasound Imaging: A Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2007. [PMID: 39511794 DOI: 10.1002/wnan.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024]
Abstract
Contrast-enhanced ultrasound is currently used worldwide with clinical indications in cardiology and radiology, and it continues to evolve and develop through innovative technological advancements. Clinically utilized contrast agents for ultrasound consist of hydrophobic gas microbubbles stabilized with a biocompatible shell. These agents are used commonly in echocardiography, with emerging applications in cancer diagnosis and therapy. Microbubbles are a blood pool agent with diameters between 1 and 10 μm, which precludes their use in other extravascular applications. To expand the potential use of contrast-enhanced ultrasound beyond intravascular applications, sub-micron agents, often called nanobubbles or ultra-fine bubbles, have recently emerged as a promising tool. Combining the principles of ultrasound imaging with the unique properties of nanobubbles (high concentration and small size), recent work has established their imaging potential. Contrast-enhanced ultrasound imaging using these agents continues to gain traction, with new studies establishing novel imaging applications. We highlight the recent achievements in nonlinear nanobubble contrast imaging, including a discussion on nanobubble formulations and their acoustic characteristics. Ultrasound imaging with nanobubbles is still in its early stages, but it has shown great potential in preclinical research and animal studies. We highlight unexplored areas of research where the capabilities of nanobubbles may offer new advantages. As technology advances, this technique may find applications in various areas of medicine, including cancer detection and treatment, cardiovascular imaging, and drug delivery.
Collapse
Affiliation(s)
- Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Pinunta Nittayacharn
- Department of Radiology, CWRU, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Felipe M Berg
- Department of Radiology, CWRU, Cleveland, Ohio, USA
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Theresa Kosmides
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Dorian Durig
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
- Department of Radiology, CWRU, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Mayer H, Kim GW, Machado P, Eisenbrey JR, Vu T, Wallace K, Forsberg F. Investigation Into the Subharmonic Response of Three Contrast Agents in Static and Dynamic Flow Environments Using a Commercially Available Diagnostic Ultrasound Scanner. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1731-1738. [PMID: 39217026 PMCID: PMC11416899 DOI: 10.1016/j.ultrasmedbio.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the subharmonic response of Lumason (also known as SonoVue; Bracco, Milan, Italy) to static and dynamic ambient pressures, with a direct comparison to Sonazoid (GE HealthCare, Oslo, Norway) and Definity (Lantheus Medical Imaging, MA, USA). The subharmonic responses of contrast agents can be exploited to perform subharmonic-aided pressure estimation. METHODS The subharmonic response of each ultrasound contrast agent was evaluated in both a static and dynamic tank using a commercially available Logiq E10 clinical ultrasound scanner (GE HealthCare) equipped with subharmonic imaging (SHI) and an acoustic power-optimization algorithm. A C1-6 curvilinear array that transmits at 2.5 MHz and receives at 1.25 MHz in SHI mode was used to acquire the subharmonic signals. Data was transferred offline into MATLAB (MathWorks) to perform linear regression analysis and statistical testing for significance of the slopes (i.e., agent sensitivity). RESULTS Sonazoid and Definity showed an inverse linear dependency between subharmonic signal and hydrostatic pressure at all pressure ranges (static and dynamic) tested, with maximum sensitivity under 50 mmHg in the static tank (-0.190 and -0.194 dB/mmHg for Sonazoid and Definity, respectively). Lumason exhibited a tri-phasic subharmonic behavior, beginning with a linear trend from 0 to 90 mmHg (sensitivity = 0.069 dB/mmHg), followed by a plateau from 100 to 130 mmHg, and an inverse linear trend from 140 to 200 mmHg (sensitivity = -0.137 dB/mmHg). CONCLUSION The subharmonic response of Lumason is tri-phasic and differs from Sonazoid and Definity. Further investigation is needed to solidify understanding of the subharmonic behavior of Lumason to identify its usefulness for subharmonic-aided pressure estimation.
Collapse
Affiliation(s)
- Hailee Mayer
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, PA, USA; Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ga Won Kim
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, PA, USA; Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Trang Vu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
4
|
Xu Z, Piao X, Wang M, Pichardo S, Cheng B. Microbubble-enhanced transcranial MR-guided focused ultrasound brain hyperthermia: heating mechanism investigation using finite element method. ULTRASONICS SONOCHEMISTRY 2024; 107:106889. [PMID: 38702233 PMCID: PMC11214346 DOI: 10.1016/j.ultsonch.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Recently, our group developed a synergistic brain drug delivery method to achieve simultaneous transcranial hyperthermia and localized blood-brain barrier opening via MR-guided focused ultrasound (MRgFUS). In a rodent model, we demonstrated that the ultrasound power required for transcranial MRgFUS hyperthermia was significantly reduced by injecting microbubbles (MBs). However, the specific mechanisms underlying the power reduction caused by MBs remain unclear. The present study aims to elucidate the mechanisms of MB-enhanced transcranial MRgFUS hyperthermia through numerical studies using the finite element method. The microbubble acoustic emission (MAE) and the viscous dissipation (VD) were hypothesized to be the specific mechanisms. Acoustic wave propagation was used to model the FUS propagation in the brain tissue, and a bubble dynamics equation for describing the dynamics of MBs with small shell thickness was used to model the MB oscillation under FUS exposures. A modified bioheat transfer equation was used to model the temperature in the rodent brain with different heat sources. A theoretical model was used to estimate the bubble shell's surface tension, elasticity, and viscosity losses. The simulation reveals that MAE and VD caused a 40.5% and 52.3% additional temperature rise, respectively. Compared with FUS only, MBs caused a 64.0% temperature increase, which is consistent with our previous animal experiments. Our investigation showed that MAE and VD are the main mechanisms of MB-enhanced transcranial MRgFUS hyperthermia.
Collapse
Affiliation(s)
- Zhouyang Xu
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Xiangkun Piao
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Mingyu Wang
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Samuel Pichardo
- Department of Radiology, University of Calgary, Calgary, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Bingbing Cheng
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Sojahrood AJ, Yang C, Counil C, Nittayacharn P, Goertz DE, Exner AA, Kolios MC. Influence of the liquid ionic strength on the resonance frequency and shell parameters of lipid-coated microbubbles. J Colloid Interface Sci 2024; 664:533-538. [PMID: 38484521 DOI: 10.1016/j.jcis.2024.01.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 04/07/2024]
Abstract
The correct measurement of the resonance frequency and shell properties of coated microbubbles (MBs) is essential in understanding and optimizing their response to ultrasound (US) exposure parameters. In diagnostic and therapeutic ultrasound, MBs are typically surrounded by blood; however, the influence of the medium charges on the MB resonance frequency has not been systematically studied using controlled measurements. This study aims to measure the medium charge interactions on MB behavior by measuring the frequency-dependent attenuation of the same size MBs in mediums with different charge densities. In-house lipid-coated MBs with C3F8 gas core were formulated. The MBs were isolated to a mean size of 2.35 μm using differential centrifugation. MBs were diluted to ≈8×105 MBs/mL in distilled water (DW), Phosphate-Buffered Saline solution (PBS1x) and PBS10x. The frequency-dependent attenuation of the MBs solutions was measured using an aligned pair of PVDF transducers with a center frequency of 10MHz and 100% bandwidth in the linear oscillation regime (7 kPa pressure amplitude). The MB shell properties were estimated by fitting the linear equation to experiments. Using a pendant drop tension meter, the surface tension at the equilibrium of ≈6 mm diameter size drops of the same MB shell was measured inside DW, PBS1x and PBS10x. The surface tension at the C3F8/solution interface was estimated by fitting the Young-Laplace equation from the recorded images. The frequency of the peak attenuation at different salinity levels was 13, 7.5 and 6.25 MHz in DW, PBS1x and PBS-10x, respectively. The attenuation peak increased by ≈140% with increasing ion density. MBs' estimated shell elasticity decreased by 64% between DW and PBS-1x and 36% between PBS-1x and PBS-10x. The drop surface tension reduced by 10.5% between DW and PBS-1x and by 5% between PBS-1x and PBS-10x, respectively. Reduction in the shell stiffness is consistent with the drop surface tension measurements. The shell viscosity was reduced by ≈40% between DW and PBS-1x and 42% between PBS-1x and PBS-10x. The reduction in the fitted stiffness and viscosity is possibly due to the formation of a densely charged layer around the shell, further reducing the effective surface tension on the MBs. The changes in the resonance frequency and estimated shell parameters were significant and may potentially help to better understand and explain bubble behavior in applications.
Collapse
Affiliation(s)
- A J Sojahrood
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - C Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - C Counil
- Department of Biomedical Engineering, Case Western University, Cleveland, OH, USA
| | - P Nittayacharn
- Department of Biomedical Engineering, Case Western University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - D E Goertz
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - A A Exner
- Department of Biomedical Engineering, Case Western University, Cleveland, OH, USA
| | - M C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 2024; 367:135-147. [PMID: 38237687 DOI: 10.1016/j.jconrel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe M Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Bisht S, Marri BP, Karmakar J, Mercado Shekhar KP. Viscoelastic Characterization of Phantoms for Ultrasound Elastography Created Using Low- and High-Viscosity Poly(vinyl alcohol) with Ethylene Glycol as the Cryoprotectant. ACS OMEGA 2024; 9:8352-8361. [PMID: 38405437 PMCID: PMC10882697 DOI: 10.1021/acsomega.3c09224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Ultrasound elastography enables noninvasive characterization of the tissue mechanical properties. Phantoms are widely used in ultrasound elastography for developing, testing, and validating imaging techniques. Creating phantoms with a range of viscoelastic properties relevant to human organs and pathological conditions remains an active area of research. Poly(vinyl alcohol) (PVA) cryogel phantoms offer a long shelf life, robustness, and convenient handling and storage. The goal of this study was to develop tunable phantoms using PVA with a clinically relevant range of viscoelastic properties. We combined low- and high-viscosity PVA to tune the viscoelastic properties of the phantom. Further, phantoms were created with an ethylene glycol-based cryoprotectant to determine whether it reduces the variability in the viscoelastic properties. Scanning electron microscopy (SEM) was performed to evaluate the differences in microstructure between phantoms. The density, longitudinal sound speed, and acoustic attenuation spectra (5-20 MHz) of the phantoms were measured. The phantoms were characterized using a shear wave viscoelastography approach assuming the Kelvin-Voigt model. Microstructural differences were revealed by SEM between phantoms with and without a cryoprotectant and with different PVA mixtures. The longitudinal sound speed and attenuation power-law fit exponent of the phantoms were within the clinical range (1510-1571 m/s and 1.23-1.38, respectively). The measured shear modulus (G) ranged from 3.3 to 17.7 kPa, and the viscosity (η) ranged from 2.6 to 7.3 Pa·s. The phantoms with the cryoprotectant were more homogeneous and had lower shear modulus and viscosity (G = 2.17 ± 0.2 kPa; η = 2.0 ± 0.05 Pa·s) than those without a cryoprotectant (G = 3.93 ± 0.7 kPa; η = 2.6 ± 0.14 Pa·s). Notably, phantoms with relatively constant viscosities and varying shear moduli were achieved by this method. These findings advance the development of well-characterized viscoelastic phantoms for use in elastography.
Collapse
Affiliation(s)
- Sapna
R. Bisht
- Department of Biological
Sciences and Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382055, India
| | - Bhanu Prasad Marri
- Department of Biological
Sciences and Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382055, India
| | - Jayashree Karmakar
- Department of Biological
Sciences and Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382055, India
| | - Karla P. Mercado Shekhar
- Department of Biological
Sciences and Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
8
|
Rajora MA, Dhaliwal A, Zheng M, Choi V, Overchuk M, Lou JWH, Pellow C, Goertz D, Chen J, Zheng G. Quantitative Pharmacokinetics Reveal Impact of Lipid Composition on Microbubble and Nanoprogeny Shell Fate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304453. [PMID: 38032129 PMCID: PMC10811482 DOI: 10.1002/advs.202304453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Microbubble-enabled focused ultrasound (MB-FUS) has revolutionized nano and molecular drug delivery capabilities. Yet, the absence of longitudinal, systematic, quantitative studies of microbubble shell pharmacokinetics hinders progress within the MB-FUS field. Microbubble radiolabeling challenges contribute to this void. This barrier is overcome by developing a one-pot, purification-free copper chelation protocol able to stably radiolabel diverse porphyrin-lipid-containing Definity® analogues (pDefs) with >95% efficiency while maintaining microbubble physicochemical properties. Five tri-modal (ultrasound-, positron emission tomography (PET)-, and fluorescent-active) [64 Cu]Cu-pDefs are created with varying lipid acyl chain length and charge, representing the most prevalently studied microbubble compositions. In vitro, C16 chain length microbubbles yield 2-3x smaller nanoprogeny than C18 microbubbles post FUS. In vivo, [64 Cu]Cu-pDefs are tracked in healthy and 4T1 tumor-bearing mice ± FUS over 48 h qualitatively through fluorescence imaging (to characterize particle disruption) and quantitatively through PET and γ-counting. These studies reveal the impact of microbubble composition and FUS on microbubble dissolution rates, shell circulation, off-target tissue retention (predominantly the liver and spleen), and FUS enhancement of tumor delivery. These findings yield pharmacokinetic microbubble structure-activity relationships that disrupt conventional knowledge, the implications of which on MB-FUS platform design, safety, and nanomedicine delivery are discussed.
Collapse
Affiliation(s)
- Maneesha A. Rajora
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Alexander Dhaliwal
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Mark Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Victor Choi
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Marta Overchuk
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNC27599USA
| | - Jenny W. H. Lou
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Carly Pellow
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - David Goertz
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Juan Chen
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| |
Collapse
|
9
|
Zalloum IO, Jafari Sojahrood A, Paknahad AA, Kolios MC, Tsai SSH, Karshafian R. Controlled Tempering of Lipid Concentration and Microbubble Shrinkage as a Possible Mechanism for Fine-Tuning Microbubble Size and Shell Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17622-17631. [PMID: 38016673 DOI: 10.1021/acs.langmuir.3c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The acoustic response of microbubbles (MBs) depends on their resonance frequency, which is dependent on the MB size and shell properties. Monodisperse MBs with tunable shell properties are thus desirable for optimizing and controlling the MB behavior in acoustics applications. By utilizing a novel microfluidic method that uses lipid concentration to control MB shrinkage, we generated monodisperse MBs of four different initial diameters at three lipid concentrations (5.6, 10.0, and 16.0 mg/mL) in the aqueous phase. Following shrinkage, we measured the MB resonance frequency and determined its shell stiffness and viscosity. The study demonstrates that we can generate monodisperse MBs of specific sizes and tunable shell properties by controlling the MB initial diameter and aqueous phase lipid concentration. Our results indicate that the resonance frequency increases by 180-210% with increasing lipid concentration (from 5.6 to 16.0 mg/mL), while the bubble diameter is kept constant. Additionally, we find that the resonance frequency decreases by 260-300% with an increasing MB final diameter (from 5 to 12 μm), while the lipid concentration is held constant. For example, our results depict that the resonance frequency increases by ∼195% with increasing lipid concentration from 5.6 to 16.0 mg/mL, for ∼11 μm final diameter MBs. Additionally, we find that the resonance frequency decreases by ∼275% with increasing MB final diameter from 5 to 12 μm when we use a lipid concentration of 5.6 mg/mL. We also determine that MB shell viscosity and stiffness increase with increasing lipid concentration and MB final diameter, and the level of change depends on the degree of shrinkage experienced by the MB. Specifically, we find that by increasing the concentration of lipids from 5.6 to 16.0 mg/mL, the shell stiffness and viscosity of ∼11 μm final diameter MBs increase by ∼400 and ∼200%, respectively. This study demonstrates the feasibility of fine-tuning the MB acoustic response to ultrasound by tailoring the MB initial diameter and lipid concentration.
Collapse
Affiliation(s)
- Intesar O Zalloum
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
| | - Raffi Karshafian
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| |
Collapse
|
10
|
Jiang Y, Hou X, Zhao X, Jing J, Sun L. Tracking adoptive natural killer cells via ultrasound imaging assisted with nanobubbles. Acta Biomater 2023; 169:542-555. [PMID: 37536495 DOI: 10.1016/j.actbio.2023.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The recent years has witnessed an exponential growth in the field of natural killer (NK) cell-based immunotherapy for cancer treatment. As a prerequisite to precise evaluations and on-demand interventions, the noninvasive tracking of adoptive NK cells plays a crucial role not only in post-treatment monitoring, but also in offering opportunities for preclinical studies on therapy optimizations. Here, we describe an NK cell tracking strategy for cancer immunotherapy based on ultrasound imaging modality. Nanosized ultrasound contrast agents, gas vesicles (GVs), were surface-functionalized to label NK cells. Unlike traditional microbubble contrast agents, nanosized GVs with their unique thermodynamical stability enable the detection of labeled NK cells under nonlinear contrast-enhanced ultrasound (nCEUS), without a noticeable impact on cellular viability or migration. By such labeling, we were able to monitor the trafficking of systematically infused NK cells to a subcutaneous tumor model. Upon co-treatment with interleukin (IL)-2, we observed a rapid enhancement in NK cell trafficking at the tumor site as early as 3 h post-infusion. Altogether, we show that the proposed ultrasound-based tracking strategy is able to capture the dynamical changes of cell trafficking in NK cell-based immunotherapy, providing referencing information for early-phase monotherapy evaluation, as well as understanding the effects of modulatory co-treatment. STATEMENT OF SIGNIFICANCE: In cellular immunotherapies, the post-infusion monitoring of the living therapeutics has been challenging. Several popular imaging modalities have been explored the monitoring of the adoptive immune cells, evaluating their trafficking and accumulation in the tumor. Here we demonstrated, for the first time, the ultrasound imaging-based immune cell tracking strategy. We showed that the acoustic labeling of adoptive immune cells was feasible with nanosized ultrasound contrast agents, overcoming the size and stability limitations of traditional microbubbles, enabling dynamical tracking of adoptive natural killer cells in both monotherapy and synergic treatment with cytokines. This article introduced the cost-effective and ubiquitous ultrasound imaging modality into the field of cellular immunotherapies, with broad prospectives in early assessment and on-demand image-guided interventions.
Collapse
Affiliation(s)
- Yizhou Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Xinyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Jianing Jing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China.
| |
Collapse
|
11
|
Nittayacharn P, Abenojar E, Cooley M, Berg F, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555196. [PMID: 37732235 PMCID: PMC10508722 DOI: 10.1101/2023.09.01.555196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe Berg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Sojahrood AJ, Li Q, Haghi H, Karshafian R, Porter TM, Kolios MC. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations. ULTRASONICS SONOCHEMISTRY 2023; 95:106319. [PMID: 36931196 PMCID: PMC11487347 DOI: 10.1016/j.ultsonch.2023.106319] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The problem of attenuation and sound speed of bubbly media has remained partially unsolved. Comprehensive data regarding pressure-dependent changes of the attenuation and sound speed of a bubbly medium are not available. Our theoretical understanding of the problem is limited to linear or semi-linear theoretical models, which are not accurate in the regime of large amplitude bubble oscillations. Here, by controlling the size of the lipid coated bubbles (mean diameter of ≈5.4μm), we report the first time observation and characterization of the simultaneous pressure dependence of sound speed and attenuation in bubbly water below, at and above microbubbles resonance (frequency range between 1-3 MHz). With increasing acoustic pressure (between 12.5-100 kPa), the frequency of the peak attenuation and sound speed decreases while maximum and minimum amplitudes of the sound speed increase. We propose a nonlinear model for the estimation of the pressure dependent sound speed and attenuation with good agreement with the experiments. The model calculations are validated by comparing with the linear and semi-linear models predictions. One of the major challenges of the previously developed models is the significant overestimation of the attenuation at the bubble resonance at higher void fractions (e.g. 0.005). We addressed this problem by incorporating bubble-bubble interactions and comparing the results to experiments. Influence of the bubble-bubble interactions increases with increasing pressure. Within the examined exposure parameters, we numerically show that, even for low void fractions (e.g. 5.1×10-6) with increasing pressure the sound speed may become 4 times higher than the sound speed in the non-bubbly medium.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada.
| | - Q Li
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - H Haghi
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada
| | - T M Porter
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Biomedical Engineering, University of Texas at Austin, Texas, USA
| | - M C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Kaushik A, Khan AH, Pratibha, Dalvi SV, Shekhar H. Effect of temperature on the acoustic response and stability of size-isolated protein-shelled ultrasound contrast agents and SonoVue. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2324. [PMID: 37092939 DOI: 10.1121/10.0017682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Limited work has been reported on the acoustic and physical characterization of protein-shelled UCAs. This study characterized bovine serum albumin (BSA)-shelled microbubbles filled with perfluorobutane gas, along with SonoVue, a clinically approved contrast agent. Broadband attenuation spectroscopy was performed at room (23 ± 0.5 °C) and physiological (37 ± 0.5 °C) temperatures over the period of 20 min for these agents. Three size distributions of BSA-shelled microbubbles, with mean sizes of 1.86 μm (BSA1), 3.54 μm (BSA2), and 4.24 μm (BSA3) used. Viscous and elastic coefficients for the microbubble shell were assessed by fitting de Jong model to the measured attenuation spectra. Stable cavitation thresholds (SCT) and inertial cavitation thresholds (ICT) were assessed at room and physiological temperatures. At 37 °C, a shift in resonance frequency was observed, and the attenuation coefficient was increased relative to the measurement at room temperature. At physiological temperature, SCT and ICT were lower than the room temperature measurement. The ICT was observed to be higher than SCT at both temperatures. These results enhance our understanding of temperature-dependent properties of protein-shelled UCAs. These findings study may guide the rational design of protein-shelled microbubbles and help choose suitable acoustic parameters for applications in imaging and therapy.
Collapse
Affiliation(s)
- Anuj Kaushik
- Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Pratibha
- Physics, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Himanshu Shekhar
- Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
14
|
Tabata H, Koyama D, Matsukawa M, Krafft MP, Yoshida K. Concentration-Dependent Viscoelasticity of Poloxamer-Shelled Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:433-441. [PMID: 36580034 DOI: 10.1021/acs.langmuir.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The oscillation of shelled microbubbles during exposure to ultrasound is influenced by the mechanical properties of the shell components. The oscillation behavior of bubbles coated with various phospholipids and other amphiphiles has been studied. However, there have been few investigations of how the adsorption conditions of the shell molecules relate to the viscoelastic properties of the shell and influence the oscillation behavior of the bubbles. In the present study, we investigated the oscillation characteristics of microbubbles coated with a poloxamer surfactant, that is, Pluronic F-68, at several concentrations after the adsorption kinetics of the surfactant at the gas-water interface had reached equilibrium. The dilatational viscoelasticity of the shell during exposure to ultrasound was analyzed in the frequency domain from the attenuation characteristics of the acoustic pulses propagated in the bubble suspension. At Pluronic F-68 concentrations lower than 2.0 × 10-2 mol L-1, the attenuation characteristics typically exhibited a sharp peak. At concentrations higher than 2.0 × 10-2 mol L-1, the peak flattened. The dilatational elasticity and viscosity of the shell were estimated by fitting the theoretical model to the experimental values, which revealed that both the elasticity and viscosity increased markedly at approximately 2.0 × 10-2 mol L-1. This suggests that the adsorption properties of Pluronic F-68 strongly affect the oscillation characteristics of microbubbles of a size suitable for medical ultrasound diagnostics.
Collapse
Affiliation(s)
- Hiraku Tabata
- Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto610-0321, Japan
| | - Daisuke Koyama
- Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto610-0321, Japan
| | - Mami Matsukawa
- Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto610-0321, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, Strasbourg67034, France
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba263-8522, Japan
| |
Collapse
|
15
|
Kalayeh K, Fowlkes JB, Claflin J, Fabiilli ML, Schultz WW, Sack BS. Ultrasound Contrast Stability for Urinary Bladder Pressure Measurement. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:136-151. [PMID: 36244919 DOI: 10.1016/j.ultrasmedbio.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The goal of this study was to evaluate ultrasound contrast microbubbles (MB) stability during a typical cystometrogram (CMG) for bladder pressure measurement application using the subharmonic-aided pressure estimation technique. A detailed study of MB stability was required given two unique characteristics of this application: first, bulk infusion of MBs into the bladder through the CMG infusion system, and second, duration of a typical CMG which may last up to 30 min. To do so, a series of size measurement and contrast-enhanced ultrasound imaging studies under different conditions were performed and the effects of variables that we hypothesized have an effect on MB stability, namely, i) IV bag air headspace, ii) MB dilution factor, and iii) CMG infusion system were investigated. The results verified that air volume in intravenous (IV) bag headspace was not enough to have a significant effect on MB stability during a CMG. We also showed that higher MB dosage results in a more stable condition. Finally, the results indicated that the CMG infusion system adversely affects MB stability. In summary, to ensure MB stability during the entire duration of a CMG, lower filling rates (limited by estimated bladder capacity in clinical applications) and/or higher MB dosage (limited by FDA regulations and shadowing artifact) and/or the consideration of alternative catheter design may be needed.
Collapse
Affiliation(s)
- Kourosh Kalayeh
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jake Claflin
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - William W Schultz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Bryan S Sack
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Azami RH, Aliabouzar M, Osborn J, Kumar KN, Forsberg F, Eisenbrey JR, Mallik S, Sarkar K. Material Properties, Dissolution and Time Evolution of PEGylated Lipid-Shelled Microbubbles: Effects of the Polyethylene Glycol Hydrophilic Chain Configurations. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1720-1732. [PMID: 35697583 PMCID: PMC9357055 DOI: 10.1016/j.ultrasmedbio.2022.04.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 05/12/2023]
Abstract
Polyethylene glycol (PEG) is often added to the lipid coating of a contrast microbubble to prevent coalescence and improve circulation. At high surface density, PEG chains are known to undergo a transition from a mushroom configuration to an extended brush configuration. We investigated the effects of PEG chain configuration on attenuation and dissolution of microbubbles by varying the molar ratio of the PEGylated lipid in the shell with three (0%, 2% and 5%) in the mushroom configuration and two (10% and 20%) in the brush configuration. We measured attenuation through the bubble suspensions and used it to obtain the characteristic rheological properties of their shells according to two interfacial rheological models. The interfacial elasticity was found to be significantly lower in the brush regime (∼0.6 N/m) than in the mushroom regime (∼1.3 N/m), but similar in value within each regime. The dissolution behavior of microbubbles under acoustic excitation inside an air-saturated medium was studied by measuring the time-dependent attenuation. Total attenuation recorded a transient increase because of growth resulting from air influx and an eventual decrease caused by dissolution. Microbubble shell composition with varying PEG concentrations had significant effects on dissolution dynamics.
Collapse
Affiliation(s)
- Roozbeh H Azami
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Mitra Aliabouzar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Jenna Osborn
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Krishna N Kumar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA.
| |
Collapse
|
17
|
Khan AH, Jiang X, Kaushik A, Nair HS, Edirisinghe M, Mercado-Shekhar KP, Shekhar H, Dalvi SV. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10288-10304. [PMID: 35943351 DOI: 10.1021/acs.langmuir.2c01676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbubbles are tiny gas-filled bubbles that have a variety of applications in ultrasound imaging and therapeutic drug delivery. Microbubbles can be synthesized using a number of techniques including sonication, amalgamation, and saline shaking. These approaches can produce highly concentrated microbubble suspensions but offer minimal control over the size and polydispersity of the microbubbles. One of the simplest and effective methods for producing monodisperse microbubbles is capillary-embedded T-junction microfluidic devices, which offer great control over the microbubble size. However, lower production rates (∼200 bubbles/s) and large microbubble sizes (∼300 μm) limit the applicability of such devices for biomedical applications. To overcome the limitations of these technologies, we demonstrate in this work an alternative approach to combine a capillary-embedded T-junction device with ultrasound to enhance the generation of narrow-sized microbubbles in aqueous suspensions. Two T-junction microfluidic devices were connected in parallel and combined with an ultrasonic horn to produce lipid-coated SF6 core microbubbles in the size range of 1-8 μm. The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 106 bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 109/mL to ∼2.3 × 106/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. The acoustic response of these microbubbles was examined using broadband attenuation spectroscopy, and flow phantom imaging was performed to determine the ability of these microbubble suspensions to enhance the contrast relative to the surrounding tissue. Overall, this approach of coupling ultrasound with microfluidic parallelization enabled the continuous production of stable microbubbles at high production rates and low polydispersity using simple T-junction devices.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Xinyue Jiang
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, U.K
| | - Anuj Kaushik
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Hari S Nair
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, U.K
| | - Karla P Mercado-Shekhar
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Himanshu Shekhar
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
18
|
Langeveld SAG, Meijlink B, Beekers I, Olthof M, van der Steen AFW, de Jong N, Kooiman K. Theranostic Microbubbles with Homogeneous Ligand Distribution for Higher Binding Efficacy. Pharmaceutics 2022; 14:pharmaceutics14020311. [PMID: 35214044 PMCID: PMC8878664 DOI: 10.3390/pharmaceutics14020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Phospholipid-coated targeted microbubbles are used for ultrasound molecular imaging and locally enhanced drug delivery, with the binding efficacy being an important trait. The use of organic solvent in microbubble production makes the difference between a heterogeneous or homogeneous ligand distribution. This study demonstrates the effect of ligand distribution on the binding efficacy of phospholipid-coated ανβ3-targeted microbubbles in vitro using a monolayer of human umbilical-vein endothelial cells and in vivo using chicken embryos. Microbubbles with a homogeneous ligand distribution had a higher binding efficacy than those with a heterogeneous ligand distribution both in vitro and in vivo. In vitro, 1.55× more microbubbles with a homogeneous ligand distribution bound under static conditions, while this was 1.49× more under flow with 1.25 dyn/cm2, 1.56× more under flow with 2.22 dyn/cm2, and 1.25× more in vivo. The in vitro dissociation rate of bound microbubbles with homogeneous ligand distribution was lower at low shear stresses (1–5 dyn/cm2). The internalized depth of bound microbubbles was influenced by microbubble size, not by ligand distribution. In conclusion, for optimal binding the use of organic solvent in targeted microbubble production is preferable over directly dispersing phospholipids in aqueous medium.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Correspondence:
| | - Bram Meijlink
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Inés Beekers
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Department of Health, ORTEC B.V., 2719 EA Zoetermeer, The Netherlands
| | - Mark Olthof
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Antonius F. W. van der Steen
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Nico de Jong
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Klazina Kooiman
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| |
Collapse
|
19
|
Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomater Sci Eng 2021; 7:4371-4387. [PMID: 34460238 DOI: 10.1021/acsbiomaterials.1c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of ultrasound in medicine and biological sciences is expanding rapidly beyond its use in conventional diagnostic imaging. Numerous studies have reported the effects of ultrasound on cellular and tissue physiology. Advances in instrumentation and electronics have enabled successful in vivo applications of therapeutic ultrasound. Despite path breaking advances in understanding the biophysical and biological mechanisms at both microscopic and macroscopic scales, there remain substantial gaps. With the progression of research in this area, it is important to take stock of the current understanding of the field and to highlight important areas for future work. We present herein key developments in the biological applications of ultrasound especially in the context of nanoparticle delivery, drug delivery, and regenerative medicine. We conclude with a brief perspective on the current promise, limitations, and future directions for interfacing ultrasound technology with biological systems, which could provide guidance for future investigations in this interdisciplinary area.
Collapse
|
20
|
Collado-Lara G, Heymans SV, Godart J, D'Agostino E, D'hooge J, Van Den Abeele K, Vos HJ, de Jong N. Effect of a Radiotherapeutic Megavoltage Beam on Ultrasound Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1857-1867. [PMID: 33810887 DOI: 10.1016/j.ultrasmedbio.2021.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Collateral damage to healthy surrounding tissue during conventional radiotherapy increases when deviations from the treatment plan occur. Ultrasound contrast agents (UCAs) are a possible candidate for radiation dose monitoring. This study investigated the size distribution and acoustic response of two commercial formulations, SonoVue/Lumason and Definity/Luminity, as a function of dose on clinical megavoltage photon beam exposure (24 Gy). SonoVue samples exhibited a decrease in concentration of bubbles smaller than 7 µm, together with an increase in acoustic attenuation and a decrease in acoustic scattering. Definity samples did not exhibit a significant response to radiation, suggesting that the effect of megavoltage photons depends on the UCA formulation. For SonoVue, the influence of the megavoltage photon beam was especially apparent at the second harmonic frequency, and can be captured using pulse inversion and amplitude modulation (3.5-dB decrease for the maximum dose), which could eventually be used for dosimetry in a well-controlled environment.
Collapse
Affiliation(s)
- Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Jeremy Godart
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Sojahrood AJ, Haghi H, Shirazi NR, Karshafian R, Kolios MC. On the threshold of 1/2 order subharmonic emissions in the oscillations of ultrasonically excited bubbles. ULTRASONICS 2021; 112:106363. [PMID: 33508558 DOI: 10.1016/j.ultras.2021.106363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The pressure threshold for 1/2 order subharmonic (SH) emissions and period doubling during the oscillations of ultrasonically excited bubbles is thought to be minimum when the bubble is sonicated with twice its resonance frequency (fr). This estimate is based on studies that simplified or neglected the effects of thermal damping. In this work, the nonlinear dynamics of ultrasonically excited bubbles is investigated accounting for the thermal dissipation. Results are visualized using bifurcation diagrams as a function of pressure. Here we show that, and depending on the gas, the pressure threshold for 1/2 order SHs can be minimum at a frequency between 0.5fr≤f≤0.6fr. In this frequency range, the generation of 1/2 order SHs are due to the occurrence of 5/2 order ultra-harmonic resonance. The stability of such oscillations is size dependent. For an air bubble immersed in water, only bubbles bigger than 1 μm in diameter are able to emit non-destructive SHs in these frequency ranges.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - N R Shirazi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Sojahrood AJ, Haghi H, Karshafian R, Kolios MC. Nonlinear dynamics and bifurcation structure of ultrasonically excited lipid coated microbubbles. ULTRASONICS SONOCHEMISTRY 2021; 72:105405. [PMID: 33360533 PMCID: PMC7803687 DOI: 10.1016/j.ultsonch.2020.105405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
In many applications, microbubbles (MBs) are encapsulated by a lipid coating to increase their stability. However, the complex behavior of the lipid coating including buckling and rupture sophisticates the dynamics of the MBs and as a result the dynamics of the lipid coated MBs (LCMBs) are not well understood. Here, we investigate the nonlinear behavior of the LCMBs by analyzing their bifurcation structure as a function of acoustic pressure. We show that, the LC can enhance the generation of period 2 (P2), P3, higher order subharmonics (SH), superharmonics and chaos at very low excitation pressures (e.g. 1 kPa). For LCMBs sonicated by their SH resonance frequency and in line with experimental observations with increasing pressure, P2 oscillations exhibit three stages: generation at low acoustic pressures, disappearance and re-generation. Within non-destructive oscillation regimes and by pressure amplitude increase, LCMBs can also exhibit two saddle node (SN) bifurcations resulting in possible abrupt enhancement of the scattered pressure. The first SN resembles the pressure dependent resonance phenomenon in uncoated MBs and the second SN resembles the pressure dependent SH resonance. Depending on the initial surface tension of the LCMBs, the nonlinear behavior may also be suppressed for a wide range of excitation pressures.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Lafond M, Salido NG, Haworth KJ, Hannah AS, Macke GP, Genstler C, Holland CK. Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:693-709. [PMID: 33349516 PMCID: PMC11537209 DOI: 10.1016/j.ultrasmedbio.2020.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
The EkoSonic endovascular system has been cleared by the U.S. Food and Drug Administration for the controlled and selective infusion of physician specified fluids, including thrombolytics, into the peripheral vasculature and the pulmonary arteries. The objective of this study was to explore whether this catheter technology could sustain cavitation nucleated by infused Definity, to support subsequent studies of ultrasound-mediated drug delivery to diseased arteries. The concentration and attenuation spectroscopy of Definity were assayed before and after infusion at 0.3, 2.0 and 4.0 mL/min through the EkoSonic catheter. PCI was used to map and quantify stable and inertial cavitation as a function of Definity concentration in a flow phantom mimicking the porcine femoral artery. The 2.0 mL/min infusion rate yielded the highest surviving Definity concentration and acoustic attenuation. Cavitation was sustained throughout each 15 ms ultrasound pulse, as well as throughout the 3 min infusion. These results demonstrate a potential pathway to use cavitation nucleation to promote drug delivery with the EkoSonic endovascular system.
Collapse
Affiliation(s)
- Maxime Lafond
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Nuria G Salido
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Gregory P Macke
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Alsadiq H, Tupally K, Vogel R, Kokil G, Parekh HS, Veidt M. Shell properties and concentration stability of acoustofluidic delivery agents. Phys Eng Sci Med 2021; 44:79-91. [PMID: 33398637 DOI: 10.1007/s13246-020-00954-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/24/2020] [Indexed: 01/24/2023]
Abstract
This paper investigates the shell elastic properties and the number-concentration stability of a new acoustofluidic delivery agent liposome in comparison to Definity™, a monolayer ultrasonic contrast agent microbubble. The frequency dependent attenuation of an acoustic beam passing through a microbubble suspension was measured to estimate the shell parameters. The excitation voltage was adjusted to ensure constant acoustic pressure at all frequencies. The pressure was kept at the lowest possible magnitude to ensure that effects from nonlinear bubble behaviour which are not considered in the analytical model were minimal. The acoustofluidic delivery agent shell stiffness Sp and friction Sf parameters were determined as (Sp = 0.11 N/m, Sf = 0.31 × 10-6 Kg/s at 25 °C) in comparison to the Definity™ monolayer ultrasound contrast agent which were (Sp = 1.53 N/m, Sf = 1.51 × 10-6 Kg/s at 25 °C). When the temperature was raised to physiological levels, the friction coefficient Sf decreased by 28% for the monolayer microbubbles and by only 9% for the liposomes. The stiffness parameter Sp of the monolayer microbubble decreased by 23% while the stiffness parameter of the liposome increased by a similar margin (27%) when the temperature was raised to 37 °C. The size distribution of the bubbles was measured using Tunable Resistive Pulse Sensing (TRPS) for freshly prepared microbubbles and for bubble solutions at 6 h and 24 h after activation to investigate their number-concentration stability profile. The liposome maintained >80% of their number-concentration for 24 h at physiological temperature, while the monolayer microbubbles maintained only 27% of their number-concentration over the same period. These results are important input parameters for the design of effective acoustofluidic delivery systems using the new liposomes.
Collapse
Affiliation(s)
- Hussain Alsadiq
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Australia.
| | - Karnaker Tupally
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | - Robert Vogel
- School of Mathematics and Physics, University of Queensland, Brisbane, Australia
| | - Ganesh Kokil
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | | | - Martin Veidt
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Stability of Engineered Micro or Nanobubbles for Biomedical Applications. Pharmaceutics 2020; 12:pharmaceutics12111089. [PMID: 33202709 PMCID: PMC7698255 DOI: 10.3390/pharmaceutics12111089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
A micro/nanobubble (MNB) refers to a bubble structure sized in a micrometer or nanometer scale, in which the core is separated from the external environment and is normally made of gas. Recently, it has been confirmed that MNBs can be widely used in angiography, drug delivery, and treatment. Thus, MNBs are attracting attention as they are capable of constructing a new contrast agent or drug delivery system. Additionally, in order to effectively use an MNB, the method of securing its stability is also being studied. This review highlights the factors affecting the stability of an MNB and the stability of the MNB within the ultrasonic field. It also discusses the relationship between the stability of the bubble and its applicability in vivo.
Collapse
|
26
|
Sojahrood AJ, Haghi H, Karshafian R, Kolios MC. Critical corrections to models of nonlinear power dissipation of ultrasonically excited bubbles. ULTRASONICS SONOCHEMISTRY 2020; 66:105089. [PMID: 32252009 DOI: 10.1016/j.ultsonch.2020.105089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 05/25/2023]
Abstract
Current models for calculating nonlinear power dissipation during the oscillations of acoustically excited bubbles generate non-physical values for the radiation damping (Drd) term for some frequency and pressure regions that include near resonance oscillations. Moreover, the ratio of the dissipated powers significantly deviate from the values that are calculated by the linear model at low amplitude oscillations (acoustic excitation pressure of PA=1 kPa and expansion ratio of <≊1.01). In high amplitude oscillation regimes (Pa⩾20 kPa), the dissipated power due to Drd deviates largely from the dissipated power as calculated by the widely accepted approach that uses the scattered power by the bubbles. We provide critical corrections to the present models. The validity of the results was examined in regimes of low amplitude oscillations and high amplitude oscillations. In the low amplitude regime, the ratio of the dissipated powers as calculated by the current and proposed model were compared with the linear model predictions. At higher amplitude oscillations, the dissipated power by radiation loss as calculated by the current and the proposed models were compared with the dissipated power calculated using the scattered power by the bubbles. We show that non-physical values are absent in the proposed model. Moreover, predictions of the proposed approach are identical to the predictions of the linear model and the dissipated power estimated using the scattered pressure by the bubble. We show that damping due to thermal effects, liquid viscosity and radiation heavily depend on the excitation pressure and that the linear model estimations are not valid even at pressures as low as 20 kPa.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Cimorelli M, Flynn MA, Angel B, Fafarman A, Kohut A, Wrenn S. An Ultrasound Enhancing Agent with Nonlinear Acoustic Activity that Depends on the Presence of an Electric Field. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2370-2387. [PMID: 32616427 DOI: 10.1016/j.ultrasmedbio.2020.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The nonlinear acoustic properties of microbubble ultrasound enhancing agents have allowed for the development of subharmonic, second harmonic, and contrast-pulse sequence ultrasound imaging modes, which enhance the quality, reduce the noise, and improve the diagnostic capabilities of clinical ultrasound. This study details acoustic scattering responses of perfluorobutane (PFB) microbubbles, an un-nested perfluoropentane (PFP) nanoemulsion, and two nested PFP nanoemulsions-one comprising a negatively charged phospholipid bilayer and another comprising a zwitterionic phospholipid bilayer-when excited at 1 or 2.25 MHz over a peak negative pressure range of 200 kPa to 4 MPa in the absence and presence of a 1-Hz, 1-V/cm electric field. The only sample that exhibited an increase in nonlinear activity in the presence of an electric field at both excitation frequencies was the negatively charged nested PFP nanoemulsion; the most pronounced effect was observed at an excitation of 2.25 MHz. Interestingly, the application of an electric field not only increased the nonlinear acoustic activity of the negatively charged nested PFP nanoemulsion but increased it beyond that seen when the nanoemulsion is un-nested and on the same scale as PFB microbubbles.
Collapse
Affiliation(s)
- Michael Cimorelli
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael A Flynn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brett Angel
- Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron Fafarman
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew Kohut
- Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Wrenn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Sojahrood AJ, Haghi H, Li Q, Porter TM, Karshafian R, Kolios MC. Nonlinear power loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damping at various excitation pressures. ULTRASONICS SONOCHEMISTRY 2020; 66:105070. [PMID: 32279052 DOI: 10.1016/j.ultsonch.2020.105070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/29/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
This study presents the fundamental equations governing the pressure dependent disipation mechanisms in the oscillations of coated bubbles. A simple generalized model (GM) for coated bubbles accounting for the effect of compressibility of the liquid is presented. The GM was then coupled with nonlinear ODEs that account for the thermal effects. Starting with mass and momentum conservation equations for a bubbly liquid and using the GM, nonlinear pressure dependent terms were derived for power dissipation due to thermal damping (Td), radiation damping (Rd) and dissipation due to the viscosity of liquid (Ld) and coating (Cd). The pressure dependence of the dissipation mechanisms of the coated bubble have been analyzed. The dissipated energies were solved for uncoated and coated 2-20 μm in bubbles over a frequency range of 0.25fr-2.5fr (fr is the bubble resonance) and for various acoustic pressures (1 kPa-300 kPa). Thermal effects were examined for air and C3F8 gas cores. In the case of air bubbles, as pressure increases, the linear thermal model looses accuracy and accurate modeling requires inclusion of the full thermal model. However, for coated C3F8 bubbles of diameter 1-8 μm, which are typically used in medical ultrasound, thermal effects maybe neglected even at higher pressures. For uncoated bubbles, when pressure increases, the contributions of Rd grow faster and become the dominant damping mechanism for pressure dependent resonance frequencies (e.g. fundamental and super harmonic resonances). For coated bubbles, Cd is the strongest damping mechanism. As pressure increases, Rd contributes more to damping compared to Ld and Td. For coated bubbles, the often neglected compressibility of the liquid has a strong effect on the oscillations and should be incorporated in models. We show that the scattering to damping ratio (STDR), a measure of the effectiveness of the bubble as contrast agent, is pressure dependent and can be maximized for specific frequency ranges and pressures.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - Q Li
- Department of Mechanical Engineering and the Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - T M Porter
- Department of Mechanical Engineering and the Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Pouliopoulos AN, Jimenez DA, Frank A, Robertson A, Zhang L, Kline-Schoder AR, Bhaskar V, Harpale M, Caso E, Papapanou N, Anderson R, Li R, Konofagou EE. Temporal stability of lipid-shelled microbubbles during acoustically-mediated blood-brain barrier opening. FRONTIERS IN PHYSICS 2020; 8:137. [PMID: 32457896 PMCID: PMC7250395 DOI: 10.3389/fphy.2020.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Non-invasive blood-brain barrier (BBB) opening using focused ultrasound (FUS) is being tested as a means to locally deliver drugs into the brain. Such FUS therapies require injection of preformed microbubbles, currently used as contrast agents in ultrasound imaging. Although their behavior during exposure to imaging sequences has been well described, our understanding of microbubble stability within a therapeutic field is still not complete. Here, we study the temporal stability of lipid-shelled microbubbles during therapeutic FUS exposure in two timescales: the short time scale (i.e., μs of low-frequency ultrasound exposure) and the long time scale (i.e., days post-activation). We first simulated the microbubble response to low-frequency sonication, and found a strong correlation between viscosity and fragmentation pressure. Activated microbubbles had a concentration decay constant of 0.02 d-1 but maintained a quasi-stable size distribution for up to 3 weeks (< 10% variation). Microbubbles flowing through a 4-mm vessel within a tissue-mimicking phantom (5% gelatin) were exposed to therapeutic pulses (fc: 0.5 MHz, peak-negative pressure: 300 kPa, pulse length: 1 ms, pulse repetition frequency: 1 Hz, n=10). We recorded and analyzed their acoustic emissions, focusing on emitted energy and its temporal evolution, alongside the frequency content. Measurements were repeated with concentration-matched samples (107 microbubbles/ml) on day 0, 7, 14, and 21 after activation. Temporal stability decreased while inertial cavitation response increased with storage time both in vitro and in vivo, possibly due to changes in the shell lipid content. Using the same parameters and timepoints, we performed BBB opening in a mouse model (n=3). BBB opening volume measured through T1-weighted contrast-enhanced MRI was equal to 19.1 ± 7.1 mm3, 21.8 ± 14 mm3, 29.3 ± 2.5 mm3, and 38 ± 20.1 mm3 on day 0, 7, 14, and 21, respectively, showing no significant difference over time (p-value: 0.49). Contrast enhancement was 24.9 ± 1.7 %, 23.7 ± 11.7 %, 28.9 ± 5.3 %, and 35 ± 13.4 %, respectively (p-value: 0.63). In conclusion, the in-house made microbubbles studied here maintain their capacity to produce similar therapeutic effects over a period of 3 weeks after activation, as long as the natural concentration decay is accounted for. Future work should focus on stability of commercially available microbubbles and tailoring microbubble shell properties towards therapeutic applications.
Collapse
Affiliation(s)
| | - Daniella A. Jimenez
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Alexander Frank
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Alexander Robertson
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Lin Zhang
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Alina R. Kline-Schoder
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Vividha Bhaskar
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Mitra Harpale
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Elizabeth Caso
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Nicholas Papapanou
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Rachel Anderson
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Rachel Li
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
- Department of Radiology, Columbia University, New York City, New York 10032, USA
- Correspondence: Elisa E. Konofagou 351 Engineering Terrace, 1210 Amsterdam Avenue Mail Code: 8904, New York, NY, USA 10027 Phone: 212-342-0863, 212-854-9661
| |
Collapse
|
30
|
Chen W, Cai H, Zhang X, Huang D, Yang J, Chen C, Qian Q, He Y, Chen Z. Physiologic Factors Affecting the Circulatory Persistence of Copolymer Microbubbles and Comparison of Contrast-Enhanced Effects between Copolymer Microbubbles and Sonovue. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:721-734. [PMID: 31899039 DOI: 10.1016/j.ultrasmedbio.2019.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound contrast agents have been widely used in clinical diagnosis. Knowledge of the physiologic factors affecting circulatory persistence is helpful in preparing long-lasting microbubbles (MBs) for blood perfusion and drug delivery research. In the study described here, we prepared copolymer MBs, compared their characteristics and contrast-enhanced effects with those of SonoVue and investigated the influence of external pressure, temperature, plasma components, renal microcirculation and cardiac motion on their circulatory persistence. The mean size of the copolymer MBs was 3.57 μm, larger than that of SonoVue. The copolymer MBs had longer circulatory persistence than SonoVue. At external pressures of 110 and 150 mm Hg, neither the quantity nor the morphology of the copolymer MBs changed. Further, their quantity and size were similar after incubation at 4°C and 39.4°C and when rabbit plasma and saline were compared. In vivo contrast-enhanced ultrasonography revealed a slightly larger area under the curve for the renal artery than for the renal vein. Thus, copolymer MBs exhibited good stability. However, the quantity of copolymer MBs decreased significantly after 180 s of circulation in an isolated toad heart perfusion model, indicating that cardiac motion was the main factor affecting their circulatory persistence.
Collapse
Affiliation(s)
- Wanping Chen
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Hongjiao Cai
- Fisheries College of Jimei University, Xiamen, China
| | - Xiujuan Zhang
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Danfeng Huang
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Yang
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Cong Chen
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Qingfu Qian
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Yimi He
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhikui Chen
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
31
|
Bjånes T, Kotopoulis S, Murvold ET, Kamčeva T, Gjertsen BT, Gilja OH, Schjøtt J, Riedel B, McCormack E. Ultrasound- and Microbubble-Assisted Gemcitabine Delivery to Pancreatic Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12020141. [PMID: 32046005 PMCID: PMC7076495 DOI: 10.3390/pharmaceutics12020141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death worldwide. Poor drug delivery to tumours is thought to limit chemotherapeutic treatment efficacy. Sonoporation combines ultrasound (US) and microbubbles to increase the permeability of cell membranes. We assessed gemcitabine uptake combined with sonoporation in vitro in three PDAC cell lines (BxPC-3, MIA PaCa-2 and PANC-1). Cells were cultured in hypoxic bioreactors, while gemcitabine incubation ± sonoporation was conducted in cells with operational or inhibited nucleoside membrane transporters. Intracellular active metabolite (dFdCTP), extracellular gemcitabine, and inactive metabolite (dFdU) concentrations were measured with liquid chromatography tandem mass spectrometry. Sonoporation with increasing US intensities resulted in decreasing extracellular gemcitabine concentrations in all three cell lines with inhibited membrane transporters. In cells with inhibited membrane transporters, without sonoporation, dFdCTP concentrations were reduced down to 10% of baseline. Sonoporation partially restored gemcitabine uptake in these cells, as indicated by a moderate increase in dFdCTP concentrations (up to 37% of baseline) in MIA PaCa-2 and PANC-1. In BxPC-3, gemcitabine was effectively inactivated to dFdU, which might represent a protective mechanism against dFdCTP accumulation in these cells. Intracellular dFdCTP concentrations did not change significantly following sonoporation in any of the cell lines with operational membrane transporters, indicating that the gemcitabine activation pathway may have been saturated with the drug. Sonoporation allowed a moderate increase in gemcitabine transmembrane uptake in all three cell lines, but pre-existing nucleoside transporters were the major determinants of gemcitabine uptake and retention.
Collapse
Affiliation(s)
- Tormod Bjånes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Correspondence: (T.B.); (E.M.)
| | - Spiros Kotopoulis
- Phoenix Solutions AS, Ullernchausseen 64, 0379 Oslo, Norway;
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | | | - Tina Kamčeva
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
| | - Bjørn Tore Gjertsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen 5021, Norway
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | - Jan Schjøtt
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Bettina Riedel
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Emmet McCormack
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Correspondence: (T.B.); (E.M.)
| |
Collapse
|
32
|
Lafond M, Shekhar H, Panmanee W, Collins SD, Palaniappan A, McDaniel CT, Hassett DJ, Holland CK. Bactericidal Activity of Lipid-Shelled Nitric Oxide-Loaded Microbubbles. Front Pharmacol 2020; 10:1540. [PMID: 32082143 PMCID: PMC7002315 DOI: 10.3389/fphar.2019.01540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The global pandemic of antibiotic resistance is an ever-burgeoning public health challenge, motivating the development of adjunct bactericidal therapies. Nitric oxide (NO) is a potent bioactive gas that induces a variety of therapeutic effects, including bactericidal and biofilm dispersion properties. The short half-life, high reactivity, and rapid diffusivity of NO make therapeutic delivery challenging. The goal of this work was to characterize NO-loaded microbubbles (MB) stabilized with a lipid shell and to assess the feasibility of antibacterial therapy in vitro. MB were loaded with either NO alone (NO-MB) or with NO and octafluoropropane (NO-OFP-MB) (9:1 v/v and 1:1 v/v). The size distribution and acoustic attenuation coefficient of NO-MB and NO-OFP-MB were measured. Ultrasound-triggered release of the encapsulated gas payload was demonstrated with 3-MHz pulsed Doppler ultrasound. An amperometric microelectrode sensor was used to measure NO concentration released from the MB and compared to an NO-OFP-saturated solution. The effect of NO delivery on the viability of planktonic (free living) Staphylococcus aureus (SA) USA 300, a methicillin-resistant strain, was evaluated in a 96 well-plate format. The co-encapsulation of NO with OFP increased the total volume and attenuation coefficient of MB. The NO-OFP-MB were destroyed with a clinical ultrasound scanner with an output of 2.48 MPa peak negative pressure (in situ MI of 1.34) but maintained their echogenicity when exposed to 0.02 MPa peak negative pressure (in situ MI of 0.01. The NO dose in NO-MB and NO-OFP-MB was more than 2-fold higher than the NO-OFP-saturated solution. Delivery of NO-OFP-MB increased bactericidal efficacy compared to the NO-OFP-saturated solution or air and OFP-loaded MB. These results suggest that encapsulation of NO with OFP in lipid-shelled MB enhances payload delivery. Furthermore, these studies demonstrate the feasibility and limitations of NO-OFP-MB for antibacterial applications.
Collapse
Affiliation(s)
- Maxime Lafond
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sydney D. Collins
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Arunkumar Palaniappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Cameron T. McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christy K. Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
33
|
Shelf-Life Evaluation and Lyophilization of PBCA-Based Polymeric Microbubbles. Pharmaceutics 2019; 11:pharmaceutics11090433. [PMID: 31454967 PMCID: PMC6781551 DOI: 10.3390/pharmaceutics11090433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.
Collapse
|
34
|
Shekhar H, Kleven RT, Peng T, Palaniappan A, Karani KB, Huang S, McPherson DD, Holland CK. In vitro characterization of sonothrombolysis and echocontrast agents to treat ischemic stroke. Sci Rep 2019; 9:9902. [PMID: 31289285 PMCID: PMC6616381 DOI: 10.1038/s41598-019-46112-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
The development of adjuvant techniques to improve thrombolytic efficacy is important for advancing ischemic stroke therapy. We characterized octafluoropropane and recombinant tissue plasminogen activator (rt-PA)-loaded echogenic liposomes (OFP t-ELIP) using differential interference and fluorescence microscopy, attenuation spectroscopy, and electrozone sensing. The loading of rt-PA in OFP t-ELIP was assessed using spectrophotometry. Further, it was tested whether the agent shields rt-PA against degradation by plasminogen activator inhibitor-1 (PAI-1). An in vitro system was used to assess whether ultrasound (US) combined with either Definity or OFP t-ELIP enhances rt-PA thrombolysis. Human whole blood clots were mounted in a flow system and visualized using an inverted microscope. The perfusate consisted of either (1) plasma alone, (2) rt-PA, (3) OFP t-ELIP, (4) rt-PA and US, (5) OFP t-ELIP and US, (6) Definity and US, or (7) rt-PA, Definity, and US (n = 16 clots per group). An intermittent US insonation scheme was employed (220 kHz frequency, and 0.44 MPa peak-to-peak pressures) for 30 min. Microscopic imaging revealed that OFP t-ELIP included a variety of structures such as liposomes (with and without gas) and lipid-shelled microbubbles. OFP t-ELIP preserved up to 76% of rt-PA activity in the presence of PAI-1, whereas only 24% activity was preserved for unencapsulated rt-PA. The use of US with rt-PA and Definity enhanced lytic efficacy (p < 0.05) relative to rt-PA alone. US combined with OFP t-ELIP enhanced lysis over OFP t-ELIP alone (p < 0.01). These results demonstrate that ultrasound combined with Definity or OFP t-ELIP can enhance the lytic activity relative to rt-PA or OFP t-ELIP alone, respectively.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.
| | - Robert T Kleven
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - Arunkumar Palaniappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Kunal B Karani
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Shaoling Huang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
35
|
Jin ZQ, Yu HZ, Mo CJ, Su RQ. Clinical Study of the Prediction of Malignancy in Thyroid Nodules: Modified Score versus 2017 American College of Radiology's Thyroid Imaging Reporting and Data System Ultrasound Lexicon. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1627-1637. [PMID: 31064698 DOI: 10.1016/j.ultrasmedbio.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
The clinical importance of thyroid nodules rests with the need to exclude thyroid cancer. In the present study, we developed a modified Thyroid Imaging Reporting and Data System (TI-RADS) score using gray-scale ultrasound, contrast-enhanced ultrasound (CEUS) and shear-wave elastography (SWE) images to predict malignancy of thyroid nodules and compared this modified score system with the subjective scoring criteria based on the Thyroid Imaging Reporting and Data System (TI-RADS, 2017 edition). The results revealed that by using SWE and CEUS (enhanced pattern) to downgrade TI-RADS category 4 and 5 nodules, the malignancy rate for TI-RADS category 4 and 5 nodules increased from 47.6% with American College of Radiology (ACR) TI-RADS assessment alone to 49.4% with ACR TI-RADS combined with shear wave elastography (SWE) and CEUS (enhanced pattern). Likewise, by using the modified TI-RADS to adjust TI-RADS category 3 nodules, the malignancy rate for TI-RADS category 3 nodules increased from 13.9%-20.0%. The discriminating power for detection of malignancy of the variable score 2 (ACR TI-RADS + SWE + CEUS), with an area under the curve (AUC) of 0.899 (95% confidence interval [CI]: 86.1%-93.6%), was higher than that of score 1 (ACR TI-RADS), with an AUC of 0.862 (95% CI: 81.9%-90.6%; p > 0.05). With a point 4.5 as the optimal cutoff value, a score of 1 predicted malignancy with an accuracy of 75.6%, sensitivity of 85.0% and specificity of 71.6%. However, with a point 5.5 as the optimal cutoff value, a score of 2 predicted malignancy with an accuracy of 84.9%, sensitivity of 81.0% and specificity of 86.6%. The modified TI-RADS based on ACR TI-RADS + SWE + CEUS (enhanced pattern) could contribute to a reduction in the number of biopsies performed on benign nodules and the implementation of consistent follow-up in clinical practice.
Collapse
Affiliation(s)
- Zhan-Qiang Jin
- Department of Ultrasound, Affiliated Hospital of Guilin Medical University, Guilin, China.
| | - Hong-Zhen Yu
- Department of Ultrasound, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chun-Jian Mo
- Department of Ultrasound, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Rong-Qing Su
- Department of Ultrasound, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
36
|
Shekhar H, Palaniappan A, Peng T, Lafond M, Moody MR, Haworth KJ, Huang S, McPherson DD, Holland CK. Characterization and Imaging of Lipid-Shelled Microbubbles for Ultrasound-Triggered Release of Xenon. Neurotherapeutics 2019; 16:878-890. [PMID: 31020629 PMCID: PMC6694347 DOI: 10.1007/s13311-019-00733-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Xenon (Xe) is a bioactive gas capable of reducing and stabilizing neurologic injury in stroke. The goal of this work was to develop lipid-shelled microbubbles for xenon loading and ultrasound-triggered release. Microbubbles loaded with either xenon (Xe-MB) or xenon and octafluoropropane (Xe-OFP-MB) (9:1 v/v) were synthesized by high-shear mixing. The size distribution and the frequency-dependent attenuation coefficient of Xe-MB and Xe-OFP-MB were measured using a Coulter counter and a broadband acoustic attenuation spectroscopy system, respectively. The Xe dose was evaluated using gas chromatography/mass spectrometry. The total Xe doses in Xe-MB and Xe-OFP-MB were 113.1 ± 13.5 and 145.6 ± 25.5 μl per mg of lipid, respectively. Co-encapsulation of OFP increased the total xenon dose, attenuation coefficient, microbubble stability (in an undersaturated solution), and shelf life of the agent. Triggered release of gas payload was demonstrated with 6-MHz duplex Doppler and 220-kHz pulsed ultrasound. These results constitute the first step toward the use of lipid-shelled microbubbles for applications such as neuroprotection in stroke.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Arunkumar Palaniappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tao Peng
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maxime Lafond
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Melanie R Moody
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shaoling Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David D McPherson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Beekers I, van Rooij T, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. Acoustic Characterization of the CLINIcell for Ultrasound Contrast Agent Studies. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:244-246. [PMID: 30452354 DOI: 10.1109/tuffc.2018.2881724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasound contrast agents consist of gas-filled coated microbubbles that oscillate upon ultrasound insonification. Their characteristic oscillatory response provides contrast enhancement for imaging and has the potential to locally enhance drug delivery. Since microbubble response depends on the local acoustic pressure, an ultrasound compatible chamber is needed to study their behavior and the underlying drug delivery pathways. In this study, we determined the amplitude of the acoustic pressure in the CLINIcell, an optically transparent chamber suitable for cell culture. The pressure field was characterized based on microbubble response recorded using the Brandaris 128 ultrahigh-speed camera and an iterative processing method. The results were compared to a control experiment performed in an OptiCell, which is conventionally used in microbubble studies. Microbubbles in the CLINIcell responded in a controlled manner, comparable to those in the OptiCell. For frequencies from 1 to 4 MHz, the mean pressure amplitude was -5.4 dB with respect to the externally applied field. The predictable ultrasound pressure demonstrates the potential of the CLINIcell as an optical, ultrasound, and cell culture compatible device to study microbubble oscillation behavior and ultrasound-mediated drug delivery.
Collapse
|
38
|
de Leon A, Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy. Adv Cancer Res 2018; 139:57-84. [PMID: 29941107 DOI: 10.1016/bs.acr.2018.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasound is the second most utilized imaging modality in the world because it is widely accessible, robust, and safe. Aside from its extensive use in diagnostic imaging, ultrasound has also been frequently utilized in therapeutic applications. Particularly, when combined with appropriate delivery systems, ultrasound provides a flexible platform for simultaneous real-time imaging and triggered release, enabling precise, on-demand drug delivery to target sites. This chapter will discuss the basics of ultrasound including its mechanism of action and how it can be used to trigger the release of encapsulated drug either through thermal or cavitation effects. Fundamentals of ultrasound contrast agents, how they enhance ultrasound signals, and how they can be modified to function as carriers for triggered and targeted release of drugs will also be discussed.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Reshani Perera
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michaela Cooley
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Olive Jung
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|