1
|
Zhou Y, Song X, Song Y, Guo J, Han G, Liu X, He F, Ming D. Acoustoelectric brain imaging with different conductivities and acoustic distributions. Front Physiol 2023; 14:1241640. [PMID: 38028773 PMCID: PMC10644821 DOI: 10.3389/fphys.2023.1241640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: Acoustoelectric brain imaging (AEBI) is a promising imaging method for mapping brain biological current densities with high spatiotemporal resolution. Currently, it is still challenging to achieve human AEBI with an unclear acoustoelectric (AE) signal response of medium characteristics, particularly in conductivity and acoustic distribution. This study introduces different conductivities and acoustic distributions into the AEBI experiment, and clarifies the response interaction between medium characteristics and AEBI performance to address these key challenges. Approach: AEBI with different conductivities is explored by the imaging experiment, potential measurement, and simulation on a pig's fat, muscle, and brain tissue. AEBI with different acoustic distributions is evaluated on the imaging experiment and acoustic field measurement through a deep and surface transmitting model built on a human skullcap and pig brain tissue. Main results: The results show that conductivity is not only inversely proportional to the AE signal amplitude but also leads to a higher AEBI spatial resolution as it increases. In addition, the current source and sulcus can be located simultaneously with a strong AE signal intensity. The transcranial focal zone enlargement, pressure attenuation in the deep-transmitting model, and ultrasound echo enhancement in the surface-transmitting model cause a reduced spatial resolution, FFT-SNR, and timing correlation of AEBI. Under the comprehensive effect of conductivity and acoustics, AEBI with skull finally shows reduced imaging performance for both models compared with no-skull AEBI. On the contrary, the AE signal amplitude decreases in the deep-transmitting model and increases in the surface-transmitting model. Significance: This study reveals the response interaction between medium characteristics and AEBI performance, and makes an essential step toward developing AEBI as a practical neuroimaging technique.
Collapse
Affiliation(s)
- Yijie Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yibo Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jiande Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Gangnan Han
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiuyun Liu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Feng He
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Preston C, Alvarez AM, Allard M, Barragan A, Witte RS. Acoustoelectric Time-Reversal for Ultrasound Phase-Aberration Correction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:854-864. [PMID: 37405897 PMCID: PMC10493188 DOI: 10.1109/tuffc.2023.3292595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Acoustoelectric imaging (AEI) is a technique that combines ultrasound (US) with radio frequency recording to detect and map local current source densities. This study demonstrates a new method called acoustoelectric time reversal (AETR), which uses AEI of a small current source to correct for phase aberrations through a skull or other US-aberrating layers with applications to brain imaging and therapy. Simulations conducted at three different US frequencies (0.5, 1.5, and 2.5 MHz) were performed through media layered with different sound speeds and geometries to induce aberrations of the US beam. Time delays of the acoustoelectric (AE) signal from a monopole within the medium were calculated for each element to enable corrections using AETR. Uncorrected aberrated beam profiles were compared with those after applying AETR corrections, which demonstrated a strong recovery (29%-100%) of lateral resolution and increases in focal pressure up to 283%. To further demonstrate the practical feasibility of AETR, we further conducted bench-top experiments using a 2.5 MHz linear US array to perform AETR through 3-D-printed aberrating objects. These experiments restored lost lateral restoration up to 100% for the different aberrators and increased focal pressure up to 230% after applying AETR corrections. Cumulatively, these results highlight AETR as a powerful tool for correcting focal aberrations in the presence of a local current source with applications to AEI, US imaging, neuromodulation, and therapy.
Collapse
|
3
|
Song X, Wang T, Su M, Chen X, Liu X, Ming D. An adaptive acoustoelectric signal decoding algorithm based on Fourier fitting for brain function imaging. Front Physiol 2022; 13:1054103. [PMID: 36569760 PMCID: PMC9772038 DOI: 10.3389/fphys.2022.1054103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Acousticelectric brain imaging (ABI), which is based on the acoustoelectric (AE) effect, is a potential brain function imaging method for mapping brain electrical activity with high temporal and spatial resolution. To further enhance the quality of the decoded signal and the resolution of the ABI, the decoding accuracy of the AE signal is essential. An adaptive decoding algorithm based on Fourier fitting (aDAF) is suggested to increase the AE signal decoding precision. The envelope of the AE signal is first split into a number of harmonics by Fourier fitting in the suggested aDAF. The least square method is then utilized to adaptively select the greatest harmonic component. Several phantom experiments are implemented to assess the performance of the aDAF, including 1-source with various frequencies, multiple-source with various frequencies and amplitudes, and multiple-source with various distributions. Imaging resolution and decoded signal quality are quantitatively evaluated. According to the results of the decoding experiments, the decoded signal amplitude accuracy has risen by 11.39% when compared to the decoding algorithm with envelope (DAE). The correlation coefficient between the source signal and the decoded timing signal of aDAF is, on average, 34.76% better than it was for DAE. Finally, the results of the imaging experiment show that aDAF has superior imaging quality than DAE, with signal-to noise ratio (SNR) improved by 23.32% and spatial resolution increased by 50%. According to the experiments, the proposed aDAF increased AE signal decoding accuracy, which is vital for future research and applications related to ABI.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Tong Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Mengyue Su
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xinrui Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China,*Correspondence: Dong Ming,
| |
Collapse
|
4
|
Song X, Su X, Chen X, Xu M, Ming D. In Vivo Transcranial Acoustoelectric Brain Imaging of Different Steady-State Visual Stimulation Paradigms. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2233-2241. [PMID: 35930511 DOI: 10.1109/tnsre.2022.3196828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Based on the acoustoelectric (AE) effect, transcranial acoustoelectric brain imaging (tABI) is of potential for brain functional imaging with high temporal and spatial resolution. With nonlinear and non-steady-state, brain electrical signal is microvolt level which makes the development of tABI more difficult. This study demonstrates for the first time in vivo tABI of different steady-state visual stimulation paradigms. METHOD To obtain different brain activation maps, we designed three steady-state visual stimulation paradigms, including binocular, left eye and right eye stimulations. Then, tABI was implemented with one fixed recording electrode. And, based on decoded signal power spectrum (tABI-power) and correlation coefficient between steady-state visual evoked potential (SSVEP) and decoded signal (tABI-cc) respectively, two imaging methods were investigated. To quantitatively evaluate tABI spatial resolution performance, ECoG was implemented at the same time. Finally, we explored the performance of tABI transient imaging. RESULTS Decoded AE signal of activation region is consistent with SSVEP in both time and frequency domains, while that of the nonactivated region is noise. Besides, with transcranial measurement, tABI has a millimeter-level spatial resolution (< 3mm). Meanwhile, it can achieve millisecond-level (125ms) transient brain activity imaging. CONCLUSION Experiment results validate tABI can realize brain functional imaging under complex paradigms and is expected to develop into a brain functional imaging method with high spatiotemporal resolution.
Collapse
|
5
|
Zhang H, Xu M, Liu M, Song X, He F, Chen S, Ming D. Biological current source imaging method based on acoustoelectric effect: A systematic review. Front Neurosci 2022; 16:807376. [PMID: 35924223 PMCID: PMC9339687 DOI: 10.3389/fnins.2022.807376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging can help reveal the spatial and temporal diversity of neural activity, which is of utmost importance for understanding the brain. However, conventional non-invasive neuroimaging methods do not have the advantage of high temporal and spatial resolution, which greatly hinders clinical and basic research. The acoustoelectric (AE) effect is a fundamental physical phenomenon based on the change of dielectric conductivity that has recently received much attention in the field of biomedical imaging. Based on the AE effect, a new imaging method for the biological current source has been proposed, combining the advantages of high temporal resolution of electrical measurements and high spatial resolution of focused ultrasound. This paper first describes the mechanism of the AE effect and the principle of the current source imaging method based on the AE effect. The second part summarizes the research progress of this current source imaging method in brain neurons, guided brain therapy, and heart. Finally, we discuss the problems and future directions of this biological current source imaging method. This review explores the relevant research literature and provides an informative reference for this potential non-invasive neuroimaging method.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Miao Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Xizi Song
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Feng He
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Shanguang Chen
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
- *Correspondence: Dong Ming
| |
Collapse
|
6
|
Alvarez A, Preston C, Trujillo T, Wilhite C, Burton A, Vohnout S, Witte RS. In vivo acoustoelectric imaging for high-resolution visualization of cardiac electric spatiotemporal dynamics. APPLIED OPTICS 2020; 59:11292-11300. [PMID: 33362052 PMCID: PMC8569939 DOI: 10.1364/ao.410172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
Acoustoelectric cardiac imaging (ACI) is a hybrid modality that exploits the interaction of an ultrasonic pressure wave and the resistivity of tissue to map current densities in the heart. This study demonstrates for the first time in vivo ACI in a swine model. ACI measured beat-to-beat variability (n=20) of the peak of the cardiac activation wave at one location of the left ventricle as 5.32±0.74µV, 3.26±0.54mm below the epicardial surface, and 2.67±0.56ms before the peak of the local electrogram. Cross-sectional ACI images exhibited propagation velocities of 0.192±0.061m/s along the epicardial-endocardial axis with an SNR of 24.9 dB. This study demonstrates beat-to-beat and multidimensional ACI, which might reveal important information to help guide electroanatomic mapping procedures during ablation therapy.
Collapse
Affiliation(s)
- Alexander Alvarez
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
| | - Chet Preston
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Teodoro Trujillo
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Cameron Wilhite
- Department of Medical Imaging, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Sonia Vohnout
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
| | - Russell S. Witte
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
- Department of Medical Imaging, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- James C. Wyant College of Optical Sciences, University of Arizona, 1630 E University Blvd., Tucson, Arizona 85719, USA
| |
Collapse
|
7
|
Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020. [PMID: 32672777 DOI: 10.1039/d1030cs00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Barragan A, Preston C, Alvarez A, Bera T, Qin Y, Weinand M, Kasoff W, Witte RS. Acoustoelectric imaging of deep dipoles in a human head phantom for guiding treatment of epilepsy. J Neural Eng 2020; 17:056040. [PMID: 33124600 DOI: 10.1088/1741-2552/abb63a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study employs a human head model with real skull to demonstrate the feasibility of transcranial acoustoelectric brain imaging (tABI) as a new modality for electrical mapping of deep dipole sources during treatment of epilepsy with much better resolution and accuracy than conventional mapping methods. APPROACH This technique exploits an interaction between a focused ultrasound (US) beam and tissue resistivity to localize current source densities as deep as 63 mm at high spatial resolution (1 to 4 mm) and resolve fast time-varying currents with sub-ms precision. MAIN RESULTS Detection thresholds through a thick segment of the human skull at biologically safe US intensities was below 0.5 mA and within range of strong currents generated by the human brain. SIGNIFICANCE This work suggests that 4D tABI may emerge as a revolutionary modality for real-time high-resolution mapping of neuronal currents for the purpose of monitoring, staging, and guiding treatment of epilepsy and other brain disorders characterized by abnormal rhythms.
Collapse
Affiliation(s)
- Andres Barragan
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Preston C, Alvarez AM, Barragan A, Becker J, Kasoff WS, Witte RS. High resolution transcranial acoustoelectric imaging of current densities from a directional deep brain stimulator. J Neural Eng 2020; 17:016074. [PMID: 31978914 PMCID: PMC7446234 DOI: 10.1088/1741-2552/ab6fc3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE New innovations in deep brain stimulation (DBS) enable directional current steering-allowing more precise electrical stimulation of the targeted brain structures for Parkinson's disease, essential tremor and other neurological disorders. While intra-operative navigation through MRI or CT approaches millimeter accuracy for placing the DBS leads, no existing modality provides feedback of the currents as they spread from the contacts through the brain tissue. In this study, we investigate transcranial acoustoelectric imaging (tAEI) as a new modality to non-invasively image and characterize current produced from a directional DBS lead. tAEI uses ultrasound (US) to modulate tissue resistivity to generate detectable voltage signals proportional to the local currents. APPROACH An 8-channel directional DBS lead (Infinity 6172ANS, Abbott Inc) was inserted inside three adult human skulls submerged in 0.9% NaCl. A 2.5 MHz linear array delivered US pulses through the transtemporal window and focused near the contacts on the lead, while a custom amplifier and acquisition system recorded the acoustoelectric (AE) interaction used to generate images. MAIN RESULTS tAEI detected monopolar current with stimulation pulses as short as 100 µs with an SNR ranging from 10-27 dB when using safe US pressure (mechanical indices <0.78) and injected current of ~2 mA peak amplitude. Adjacent contacts were discernable along the length and within each ring of the lead with a mean radial separation between contacts of 2.10 and 1.34 mm, respectively. SIGNIFICANCE These results demonstrate the feasibility of tAEI for high resolution mapping of directional DBS currents using clinically-relevant stimulation parameters. This new modality may improve the accuracy for placing the DBS leads, guide calibration and programming, and monitor long-term performance of DBS for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chet Preston
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
| | - Alexander M Alvarez
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
| | - Andres Barragan
- Department of Computer Science, University of Arizona, Tucson, AZ, United States of America
| | - Jennifer Becker
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | - Willard S Kasoff
- Department of Surgery, University of Arizona, Tucson, AZ, United States of America
| | - Russell S Witte
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|