1
|
Ojo BO, Arotiba OA, Mabuba N. A review on reactive oxygen species generation, anode materials and operating parameters in sonoelectrochemical oxidation for wastewater remediation. CHEMOSPHERE 2024; 364:143218. [PMID: 39218257 DOI: 10.1016/j.chemosphere.2024.143218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The application of sonoelectrochemical (SEC) oxidation technique involving the incorporation of ultrasound irradiation into an electrochemical oxidation system has found enormous success for various purposes, especially for organic synthesis and water treatment. Although its industrial application towards the removal of organic contaminants in water is not popular, its success on the laboratory scale is often attributed to the physical and chemical effects. These effects arise from the influence of ultrasound irradiation, thus eliminating electrode passivation or fouling, improving mass transfer and enhancing reactive oxygen species (ROS) generation. The continuous activation of the electrode surface, improved reaction kinetics and other associated advantages are equally occasioned by acoustic streaming and cavitation. This review hereby outlines common ROS generated in SEC oxidation and pathways to their generation. Furthermore, classes of materials commonly employed as anodes and the influence of prominent operational parameters on the performance of the technique for the degradation of organic pollutants in water are extensively discussed. Hence, this study seeks to broaden the significant promises offered by SEC oxidation to environmentally sustainable technology advances in water treatment and pollution remediation.
Collapse
Affiliation(s)
- Babatope O Ojo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.
| |
Collapse
|
2
|
Xue Q, Chen Z, Xie W, Zhang S, Jiang J, Sun G. Impact of Condition Variations on Bioelectrochemical System Performance: An Experimental Investigation of Sulfamethoxazole Degradation. Molecules 2024; 29:2276. [PMID: 38792137 PMCID: PMC11124217 DOI: 10.3390/molecules29102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Bioelectrochemical systems (BESs) are an innovative technology for the efficient degradation of antibiotics. Shewanella oneidensis (S. oneidensis) MR-1 plays a pivotal role in degrading sulfamethoxazole (SMX) in BESs. Our study investigated the effect of BES conditions on SMX degradation, focusing on microbial activity. The results revealed that BESs operating with a 0.05 M electrolyte concentration and 2 mA/cm2 current density outperformed electrolysis cells (ECs). Additionally, higher electrolyte concentrations and elevated current density reduced SMX degradation efficiency. The presence of nutrients had minimal effect on the growth of S. oneidensis MR-1 in BESs; it indicates that S. oneidensis MR-1 can degrade SMX without nutrients in a short period of time. We also highlighted the significance of mass transfer between the cathode and anode. Limiting mass transfer at a 10 cm electrode distance enhanced S. oneidensis MR-1 activity and BES performance. In summary, this study reveals the complex interaction of factors affecting the efficiency of BES degradation of antibiotics and provides support for environmental pollution control.
Collapse
Affiliation(s)
- Qun Xue
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Zhihui Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Wenjing Xie
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Shuke Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Jie Jiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Guoxin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Ghosh S, Sahu M. Ultrasound for the degradation of endocrine disrupting compounds in aqueous solution: A review on mechanisms, influence of operating parameters and cost estimation. CHEMOSPHERE 2024; 349:140864. [PMID: 38061558 DOI: 10.1016/j.chemosphere.2023.140864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Availability of drinking water is one of the basic humanitarian goals but remains as a grand challenge that the world is facing today. Currently, water bodies are contaminated not only with conventional pollutants but also with numerous recalcitrant pollutants, such as PPCPs, endocrine disrupting compounds, etc. These emerging pollutants require special attention because of their toxicity to living organisms, bio-resistant and can sustain even after primary and secondary treatments of wastewater. Among different treatment technologies, sonolysis is found to be an innovative and promising technique for the treatment of emerging pollutants present in aqueous solution. Sonolysis is the use of ultrasound to enhance or alter chemical reactions by the formation of free radicals and shock waves which ultimately helps in degradation of pollutants. This review summarizes several studies in the sonochemical literature, including mechanisms of sonochemical process, physical and chemical effects of ultrasound, and the influence of several process variables such as ultrasound frequency, power density, temperature and pH of the medium on degradation performance for endocrine disrupting compounds. In addition, this review highlighted techno-economic perspectives focusing on the total cost required for translating the ultrasound-based processes on a large scale. Overall, the objective of this study is to exhibit a critical review of information available in the literature to encourage and promote future research on sonolysis for the degradation of Endocrine Disrupting Compounds (EDCs).
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Aerosol and Nanoparticle Technology Laboratory, Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Manoranjan Sahu
- Aerosol and Nanoparticle Technology Laboratory, Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India; Inter-Disciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Machine Intelligence and Data Science, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
4
|
Qi H, Shi X, Liu Z, Yan Z, Sun Z. An anode and cathode cooperative oxidation system constructed with Ee-GF as anode and CuFe 2O 4/Cu 2O/Cu@EGF as cathode for the efficient removal of sulfamethoxazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162645. [PMID: 36889393 DOI: 10.1016/j.scitotenv.2023.162645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to further improve the degradation efficiency of pollutants by electrochemical oxidation system and reduce the consumption of electric energy. A simple method of electrochemical exfoliation was used to modify graphite felt (GF) to prepare an anode material (Ee-GF) with high degradation performance. An anode and cathode cooperative oxidation system was constructed with Ee-GF as the anode and CuFe2O4/Cu2O/Cu@EGF as the cathode to efficiently degrade sulfamethoxazole (SMX). Complete degradation of SMX was achieved within 30 min. Compared with anodic oxidation system alone, the degradation time of SMX was reduced by half and the energy consumption was reduced by 66.8 %. The system displayed excellent performance for the degradation of different concentrations (10-50 mg L-1) of SMX, different pollutants, and under different water quality conditions. In addition, the system still maintained 91.7 % removal rate of SMX after ten consecutive runs. At least 12 degradation products and seven possible degradation routes of SMX were generated in the degradation process by the combined system. The eco-toxicity of degradation products of SMX was reduced after the proposed treatment. This study provided a theoretical basis for the safe, efficient, and low energy consumption removal of antibiotic wastewater.
Collapse
Affiliation(s)
- Haiqiang Qi
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Xuelin Shi
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhibin Liu
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zihao Yan
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Pirsaheb M, Moradi N, Hossini H. Sonochemical processes for antibiotics removal from water and wastewater: A systematic review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Ojo BO, Arotiba OA, Mabuba N. Sonoelectrochemical oxidation of sulfamethoxazole in simulated and actual wastewater on a piezo-polarizable FTO/BaZr x Ti (1-x)O 3 electrode: reaction kinetics, mechanism and reaction pathway studies. RSC Adv 2022; 12:30892-30905. [PMID: 36349008 PMCID: PMC9614641 DOI: 10.1039/d2ra04876k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/14/2022] Open
Abstract
The sonoelectrochemical (SEC) oxidation of sulfamethoxazole (SMX) in simulated and actual wastewater on FTO/BaZr(0.1)Ti(0.9)O3, FTO/BaZr(0.05)Ti(0.95)O3 and FTO/BaTiO3 electrodes is hereby presented. Electrodes from piezo-polarizable BaZr(0.1)Ti(0.9)O3, BaZr(0.05)Ti(0.95)O3, and BaTiO3 materials were prepared by immobilizing these materials on fluorine-doped tin dioxide (FTO) glass. Electrochemical characterization performed on the electrodes using chronoamperometry and electrochemical impedance spectroscopy techniques revealed that the FTO/BaZr(0.1)Ti(0.9)O3 anode displayed the highest sonocurrent density response of 2.33 mA cm-2 and the lowest charge transfer resistance of 57 Ω. Compared to other electrodes, these responses signaled a superior mass transfer on the FTO/BaZr(0.1)Ti(0.9)O3 anode occasioned by an acoustic streaming effect. Moreover, a degradation efficiency of 86.16% (in simulated wastewater), and total organic carbon (TOC) removal efficiency of 63.16% (in simulated wastewater) and 41.47% (in actual wastewater) were obtained upon applying the FTO/BaZr(0.1)Ti(0.9)O3 electrode for SEC oxidation of SMX. The piezo-polarizable impact of the FTO/BaZr(0.1)Ti(0.9)O3 electrode was further established by the higher rate constant obtained for the FTO/BaZr(0.1)Ti(0.9)O3 electrode as compared to the other electrodes during SEC oxidation of SMX under optimum operational conditions. The piezo-potential effect displayed by the FTO/BaZr(0.1)Ti(0.9)O3 electrode can be said to have impacted the generation of reactive species, with hydroxyl radicals playing a predominant role in the degradation of SMX in the SEC system. Additionally, a positive synergistic index obtained for the electrode revealed that the piezo-polarization effect of the FTO/BaZr(0.1)Ti(0.9)O3 electrode activated during sonocatalysis combined with the electrochemical oxidation process during SEC oxidation can be advantageous for the decomposition of pharmaceuticals and other organic pollutants in water.
Collapse
Affiliation(s)
- Babatope O. Ojo
- Department of Chemical Sciences, University of JohannesburgDoornfontein 2028JohannesburgSouth Africa
| | - Omotayo A. Arotiba
- Department of Chemical Sciences, University of JohannesburgDoornfontein 2028JohannesburgSouth Africa,Centre for Nanomaterials Science Research, University of JohannesburgSouth Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, University of JohannesburgDoornfontein 2028JohannesburgSouth Africa,Centre for Nanomaterials Science Research, University of JohannesburgSouth Africa
| |
Collapse
|
7
|
Zhao Y, Sun M, Zhao Y, Wang L, Lu D, Ma J. Electrified ceramic membrane actuates non-radical mediated peroxymonosulfate activation for highly efficient water decontamination. WATER RESEARCH 2022; 225:119140. [PMID: 36167000 DOI: 10.1016/j.watres.2022.119140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Electrified ceramic membranes (ECMs) achieve high water decontamination efficiency mainly through implementing in situ radical-mediated oxidation in membrane filtration, whereas ECMs leveraging non-radical pathways are rarely explored. Herein, we demonstrated a Janus ECM realizing ultra-efficient micropollutant (MP) removal via electro-activating peroxymonosulfate (PMS) in a fast, flow-through single-pass electro-filtration. The Janus ECM features two separate palladium (Pd) functionalized electrocatalytic reaction zones engineered on its two sides. We confirmed that the PMS/electro-filtration system induced non-radical pathways for MP degradation, including singlet oxygenation and mediating direct electron transfer (DET) from MP to PMS. Under the design of the ECM featuring dual electrocatalytic reaction zones in the ceramic membrane intrapores, the Janus ECM showed over one-fold increase in micropollutant removal rate as 94.5% and lower electric energy consumption as 1.78 Wh g-1 MP in the PMS electro-activation process, as compared with the conventional ECM assembly implementing only half-cell reaction. This finding manifested the Janus ECM configuration advantage for maximizing the PMS electro-activation efficiency via singlet oxygenation intensification and direct usage of cathode for DET mediation. The Janus ECM boosted the PMS electro-activation and water decontamination efficiency by enhancing the convective mass transfer and the spatial confinement effect. Our work demonstrated a high-efficiency PMS electro-activation method based on electro-filtration and maximized the non-radical mediated PMS oxidation for MP removal, expanding the ECM filtration strategies for water decontamination.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Ojo BO, Arotiba OA, Mabuba N. Evaluation of FTO-BaTiO3/NiTiO3 electrode towards sonoelectrochemical degradation of emerging pharmaceutical contaminants in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lozano I, Pérez-Guzmán CJ, Mora A, Mahlknecht J, Aguilar CL, Cervantes-Avilés P. Pharmaceuticals and personal care products in water streams: Occurrence, detection, and removal by electrochemical advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154348. [PMID: 35257780 DOI: 10.1016/j.scitotenv.2022.154348] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are part of the emerging contaminants (ECs) in the environment due to their known or suspected adverse effects in aquatic and terrestrial organisms, as well as in human health. Presence of PPCPs in aquatic and terrestrial ecosystems has been mainly attributed to the effluents of wastewater treatment plants (WWTPs). Although several PPCPs have been detected in wastewater, their removal from wastewater via biological processes is limited. Removal of PPCPs depends on their chemical structure, concentration, solubility, and technology used to treat the wastewater. Electrochemical Advanced Oxidation Processes (EAOPs) are some of the most sought-after methods for dealing with organic pollutants in water including PPCPs, due to generation of strong oxidants such as •OH, H2O2 and O3- by using directly or indirectly electrochemical technology. This review is focused on the removal of main PPCPs via EAOPs such as, anodic oxidation, electro-Fenton, photoelectron-Fenton, solar photoelectron-Fenton, photoelectrocatalysis and sonoelectrochemical processes. Although more than 40 PPCPs have been identified through different analytical approaches, antibiotics, anti-inflammatory and antifungal are the main categories of PPCPs detected in different water matrices. Application of EAOPs has been centered in the removal of antibiotics and analgesics of high consumption by using model media, e.g. Na2SO4. Photoelectrocatalysis and Electro-Fenton processes have been the most versatile EAOPs applied for PPCPs removal under a wide range of operating conditions and a variety of electrodes. Although EAOPs have gained significant scientific interest due to their effectiveness, low environmental impact, and simplicity, further research about the removal of PPCPs and their by-products under realistic concentrations and media is needed. Moreover, mid-, and long-term experiments that evaluate EAOPs performance will provide knowledge about key parameters that allow these technologies to be scaled and reduce the potential risk of PPCPs in aquatic and terrestrial ecosystem.
Collapse
Affiliation(s)
- Iván Lozano
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Carlos J Pérez-Guzmán
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64149, Nuevo León, Mexico
| | - Claudia López Aguilar
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio, Ciudad Universitaria, Puebla 72570, Puebla, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico.
| |
Collapse
|
10
|
Hassani A, Malhotra M, Karim AV, Krishnan S, Nidheesh PV. Recent progress on ultrasound-assisted electrochemical processes: A review on mechanism, reactor strategies, and applications for wastewater treatment. ENVIRONMENTAL RESEARCH 2022; 205:112463. [PMID: 34856168 DOI: 10.1016/j.envres.2021.112463] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 05/26/2023]
Abstract
The electrochemical advanced oxidation processes (EAOPs) have received significant attention among the many other water and wastewater treatment technologies. However, achieving a desirable removal effect with a single technique is frequently difficult. Therefore, the integration of ultrasound technique with other processes such as electrocoagulation, electro-Fenton, and electrooxidation is a critical way to achieve effective organic pollutants decomposition from wastewater. This review paper is focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants. Emphasis was given to recently published articles for discussing the results and trends in this research area. The use of ultrasound and integration with electrochemical processes has a synergistic impact owing to the physical and chemical consequences of cavitation, resulting in enhancing the mineralization of organic pollutants. Various types of sonoelectrochemical reactors (batch and continuous) employed in the US/electrochemical processes were reviewed. In addition, the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect are reviewed. Finally, concluding remarks and future perspectives on this research topic are also explored and recommended.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Sukanya Krishnan
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
11
|
Suzuki N, Okazaki A, Takagi K, Serizawa I, Hirami Y, Noguchi H, Pitchaimuthu S, Terashima C, Suzuki T, Ishida N, Nakata K, Katsumata KI, Kondo T, Yuasa M, Fujishima A. Complete decomposition of sulfamethoxazole during an advanced oxidation process in a simple water treatment system. CHEMOSPHERE 2022; 287:132029. [PMID: 34474387 DOI: 10.1016/j.chemosphere.2021.132029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
A simple water treatment system consisting of a deep UV light (λ = 222 nm) source, a mesoporous TiO2/boron-doped diamond (BDD) photocatalyst, and a BDD electrode was prepared and used to decompose sulfamethoxazole (SMX) in an advanced oxidation process. The mesoporous TiO2/BDD photocatalyst used with the electrochemical treatment promoted SMX decomposition, but the mesoporous TiO2/BDD photocatalyst alone had a similar ability to decompose SMX as photolysis. Fragments produced through photocatalytic treatment were decomposed during the electrochemical treatment and fragments produced during the electrochemical treatment were decomposed during the photocatalytic treatment, so performing the electrochemical and photocatalytic treatments together effectively decomposed SMX and decrease the total organic carbon concentration to a trace.
Collapse
Affiliation(s)
- Norihiro Suzuki
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Akihiro Okazaki
- ORC Manufacturing Co., Ltd, 4896 Tamagawa, Chino, Nagano, 391-0011, Japan
| | - Kai Takagi
- ORC Manufacturing Co., Ltd, 4896 Tamagawa, Chino, Nagano, 391-0011, Japan
| | - Izumi Serizawa
- ORC Manufacturing Co., Ltd, 4896 Tamagawa, Chino, Nagano, 391-0011, Japan
| | - Yuki Hirami
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroya Noguchi
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Sudhagar Pitchaimuthu
- Materials Research Center, College of Engineering, Swansea University, Swansea SA1 8EN, Wales, UK
| | - Chiaki Terashima
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomonori Suzuki
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Naoya Ishida
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuya Nakata
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ken-Ichi Katsumata
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1, Niijyuku, Katsushika, Tokyo, 125-8585, Japan
| | - Takeshi Kondo
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Makoto Yuasa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akira Fujishima
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
12
|
Kuang C, Xu Y, Xie G, Pan Z, Zheng L, Lai W, Ling J, Talawar M, Zhou X. Preparation of CeO 2-doped carbon nanotubes cathode and its mechanism for advanced treatment of pig farm wastewater. CHEMOSPHERE 2021; 262:128215. [PMID: 33182126 DOI: 10.1016/j.chemosphere.2020.128215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The effluent from conventional treatment process (including anaerobic digestion and anoxic-oxic treatment) for pig farm wastewater was difficult to treat due to its low ratio of biochemical oxygen demand to chemical oxygen demand (BOD5/CODCr) (<0.1). In the present study, electro-Fenton (EF) was used to improve the biodegradability of the mentioned effluent and the properties of self-prepared CeO2-doped multi-wall carbon nanotubes (MWCNTs) electrodes were also studied. An excellent H2O2 production (165 mg L-1) was recorded, after an 80-min electrolysis, when the mass ratio of MWCNTs, CeO2 and pore-forming agent (NH4HCO3) was 6:1:1. Results of scanning electron microscopy (SEM), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS) showed that addition of NH4HCO3 and the doping of CeO2 could increase the superficial area of the electrode as well as the oxygen reduction reaction (ORR) electro-catalytic performance. The BOD5/CODCr of the wastewater from the first stage AO process increased from 0.08 to 0.45 and CODCr reduced 71.5% after an 80-min electrolysis, with 0.3 mM Fe2+ solution. The non-biodegradable chemical pollutants from the first stage AO process were degraded by EF. The non-biodegradable pollutants identified by LC-MS/MS in the effluent from AO process including aminopyrine, oxadixyl and 3-methyl-2-quinoxalinecarboxylic acid could be degraded by EF process, with the removal rates of 81.86%, 34.39% and 7.13% in 80 min, and oxytetracycline with the removal rate of 100% in 20 min. Therefore, electro-Fenton with the new CeO2-doped MWCNTs cathode electrode will be a promising supplement for advanced treatment of pig farm wastewater.
Collapse
Affiliation(s)
- Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Zhanchang Pan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Manjunatha Talawar
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Xiao Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| |
Collapse
|
13
|
Zhao Y, Sun M, Wang X, Wang C, Lu D, Ma W, Kube SA, Ma J, Elimelech M. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat Commun 2020; 11:6228. [PMID: 33277500 PMCID: PMC7718259 DOI: 10.1038/s41467-020-20071-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
The importance of singlet oxygen (1O2) in the environmental and biomedical fields has motivated research for effective 1O2 production. Electrocatalytic processes hold great potential for highly-automated and scalable 1O2 synthesis, but they are energy- and chemical-intensive. Herein, we present a Janus electrocatalytic membrane realizing ultra-efficient 1O2 production (6.9 mmol per m3 of permeate) and very low energy consumption (13.3 Wh per m3 of permeate) via a fast, flow-through electro-filtration process without the addition of chemical precursors. We confirm that a superoxide-mediated chain reaction, initiated by electrocatalytic oxygen reduction on the cathodic membrane side and subsequently terminated by H2O2 oxidation on the anodic membrane side, is crucial for 1O2 generation. We further demonstrate that the high 1O2 production efficiency is mainly attributable to the enhanced mass and charge transfer imparted by nano- and micro-confinement effects within the porous membrane structure. Our findings highlight a new electro-filtration strategy and an innovative reactive membrane design for synthesizing 1O2 for a broad range of potential applications including environmental remediation.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Chi Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
- School of Environment, Northeast Normal University, Changchun, 130024, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wen Ma
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Sebastian A Kube
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| |
Collapse
|
14
|
Teng J, You S, Ma F, Chen X, Ren N. Enhanced electrochemical decontamination and water permeation of titanium suboxide reactive electrochemical membrane based on sonoelectrochemistry. ULTRASONICS SONOCHEMISTRY 2020; 69:105248. [PMID: 32652485 DOI: 10.1016/j.ultsonch.2020.105248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Reactive electrochemical membrane (REM) allows electrochemical oxidation (EO) water purification under flow-through operation, which improves mass transfer on the anode surface significantly. However, O2 evolution reaction (OER) may cause oxygen bubbles to be trapped in small-sized confined flow channels, and thus degrade long-term filterability and treatability of REM. In this study, ultrasound (ultrasonic vibrator, 28 kHz, 180 W) was applied to EO system (i. e. sonoelectrochemistry) containing titanium suboxide-REM (TiSO-REM) anode for enhanced oxidation of 4-chlorophenol (4-CP) target pollutant. Both experimental and modeling results demonstrated that ultrasound could mitigate the retention of O2 bubbles in the porous structures by destructing large-size bubbles, thus not only increasing permeate flux but also promoting local mass transfer. Meanwhile, oxidation rate of 4-CP for EO with ultrasound (EO-US, 0.0932 min-1) was 216% higher than that for EO without ultrasound (0.0258 min-1), due to enhanced mass transfer and OH production under the cavitation effect of ultrasound. Density functional theory (DFT) calculations confirmed the most efficient pathway of 4-CP removal to be direct electron transfer of 4-CP to form [4-CP]+, followed by subsequent oxidation mediated by OH produced from anodic water oxidation on TiSO-REM anode. Last, the stability of TiSO-REM could be improved considerably by application of ultrasound, due to alleviation of electrode deactivation and fouling, indicated by cyclic test, scan electron microscopy (SEM) observation and Fourier transform infrared spectroscopy (FT-IR) characterization. This study provides a proof-of-concept demonstration of ultrasound for enhanced EO of recalcitrant organic pollutants by REM anode, making decentralized wastewater treatment more efficient and more reliable.
Collapse
Affiliation(s)
- Jie Teng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Patidar R, Srivastava VC. Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: Multi-response optimization and cost analysis. CHEMOSPHERE 2020; 257:127121. [PMID: 32512327 DOI: 10.1016/j.chemosphere.2020.127121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a hybrid advanced oxidation process of sonoelectrochemical, in which ultrasound and electrochemical are applied simultaneously, has been used for the degradation of ofloxacin (bio-recalcitrant pharmaceutical pollutant). Response surface methodology based central composite design was applied to understand the parametric effects of ultrasonic power, current density, initial pH, and electrolyte dose. Enhanced ofloxacin degradation was obtained using sonoelectrochemical (≈95%) process in comparison to the electrochemical (≈60.6%) and sonolysis alone (≈7.2%) after 120 min treatment time. Multi-response optimization was used so as to maximize COD removal (70.12%) and minimize specific energy consumption (11.92 kWh (g COD removed)-1)at the optimized parametric condition of pH = 6.3 (natural pH), ultrasonic power = 54 W, current density = 213 A m-2, and Na2SO4 electrolyte dose = 2.0 g L-1. It was revealed that •OH radicals contribute major to the ofloxacin degradation reaction among the other oxidizing agents. Degradation of the ofloxacin followed pseudo-first-order kinetics with a higher reaction rate, which confirmed the synergistic effect of 34% between ultrasound and electrochemical approaches. The degradation pathway of ofloxacin removal was elucidated at optimum condition by the temporal evolution of the intermediate compounds and final products using gas chromatography coupled with mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), high-resolution mass spectroscopy (HR-MS), and Fourier transform infrared spectroscopy (FTIR). Atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) coupled with energy dispersed X-ray (EDX) were used to determine the morphology of electrodes. Operational cost analysis was done based on the reactor employed in the present study.
Collapse
Affiliation(s)
- Ritesh Patidar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
16
|
Hybrid sonocatalysis/electrolysis process for intensified decomposition of amoxicillin in aqueous solution in the presence of magnesium oxide nanocatalyst. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.03.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Huang T, Zhou L, Liu L, Xia M. Ultrasound-enhanced electrokinetic remediation for removal of Zn, Pb, Cu and Cd in municipal solid waste incineration fly ashes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:226-235. [PMID: 29395736 DOI: 10.1016/j.wasman.2018.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Low-frequency ultrasound generated by a transducer was investigated to activate the raw municipal solid waste incineration (MSWI) fly ashes in the electrokinetic process, aiming at enhancing heavy metal (HM) removal and achieving better remedial efficacy. The maximum removal efficiencies of 69.84%, 64.24%, 67.74% and 59.93% were obtained in the orthogonal tests of ultrasonication for Zn, Pb, Cu and Cd, respectively. The acoustic time of 30 min and controlling temperature of 45 °C in the operating parameters were quantitatively determined to optimize the ultrasonication of the MSWI fly ash matrices. The changes of acoustic time had a significant effect on the extraction efficiencies of all the four heavy metal elements in the sonication optimal experiments. The longer running time was preferred for the pretreatment of the fly ashes in according to the marginal mean removal results. The voltage gradient of 2 V/cm was most likely to improve the removals of four HMs during the electrokinetics in the range of 0.5-2 V/cm. The synergetic application of acidification and ultrasonication for the media treatment was demonstrated to be most effective in enhancing the remedial efficiencies in the further electrokinetic experiments compared with the other activation systems. Correspondingly, the leaching concentrations of Zn, Pb, Cu and Cd in the samples were reduced by 85.92%, 98.22%, 88.53% and 98.34%, respectively. The contaminants were continuously extracted from the solid grains of the fly ashes by the protonic attack and bubble implosion. The obtained risk-assessment-code values indicated the adoption of AUS-EKR system reduced the environmental toxicity for the fly ashes to the maximum extent.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China; State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, 400044, China; School of Resource and Environmental Science, Chongqing University, Chongqing 400044, China.
| | - Lulu Zhou
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Longfei Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Ming Xia
- State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, 400044, China; School of Resource and Environmental Science, Chongqing University, Chongqing 400044, China
| |
Collapse
|