1
|
Yang N, Jun BM, Choi JS, Park CM, Jang M, Son A, Nam SN, Yoon Y. Ultrasonic treatment of dye chemicals in wastewater: A review. CHEMOSPHERE 2024; 354:141676. [PMID: 38462187 DOI: 10.1016/j.chemosphere.2024.141676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
The existence of pollutants, such as toxic organic dye chemicals, in water and wastewater raises concerns as they are inadequately eliminated through conventional water and wastewater treatment methods, including physicochemical and biological processes. Ultrasonic treatment has emerged as an advanced treatment process that has been widely applied to the decomposition of recalcitrant organic contaminants. Ultrasonic treatment has several advantages, including easy operation, sustainability, non-secondary pollutant production, and saving energy. This review examines the elimination of dye chemicals and categorizes them into cationic and anionic dyes based on the existing literature. The objectives include (i) analyzing the primary factors (water quality and ultrasonic conditions) that influence the sonodegradation of dye chemicals and their byproducts during ultrasonication, (ii) assessing the impact of the different sonocatalysts and combined systems (with ozone and ultraviolet) on sonodegradation, and (iii) exploring the characteristics-based removal mechanisms of dyes. In addition, this review proposes areas for future research on ultrasonic treatment of dye chemicals in water and wastewater.
Collapse
Affiliation(s)
- Narae Yang
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Jong Soo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seong-Nam Nam
- Military Environmental Research Center, Korea Army Academy at Yeongcheon, 495 Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, 38900, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Shanmugam Ranjith K, Majid Ghoreishian S, Han S, Chodankar NR, Seeta Rama Raju G, Marje SJ, Huh YS, Han YK. Synergistic effects of layered Ti 3C 2T X MXene/MIL-101(Cr) heterostructure as a sonocatalyst for efficient degradation of sulfadiazine and acetaminophen in water. ULTRASONICS SONOCHEMISTRY 2023; 99:106570. [PMID: 37678067 PMCID: PMC10495666 DOI: 10.1016/j.ultsonch.2023.106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
In this work, different mass loadings of MXene-coupled MIL-101(Cr) (MXe/MIL-101(Cr)) nanocomposites were generated through a hydrothermal process in order to investigate the potential of this nanocomposite as a novel sonocatalyst for the elimination of sulfadiazine (SD) and acetaminophen (AAP) in aqueous media. The sonocatalytic activity of different MXe/MIL-101(Cr) compositions and surface functionalities was investigated. In addition, the sonocatalytic activities at various pH values, temperatures, pollutant concentrations, catalyst dosages, initial H2O2 concentrations, and organic matter contents were investigated. The experiments on the sonocatalytic elimination of SD and AAP revealed that MXe/MIL-101(Cr) exhibited a catalytic efficiency of ∼ 98% in 80 min when the MXene loading was 30 wt% in the nanocomposite. Under optimized reaction conditions, the degradation efficiency of MXe/MIL-101(Cr) reached 91.5% for SD and 90.6% for AAP in 60 min; these values were 1.2 and 1.8 times greater than those of MXene and MIL-101(Cr), respectively. The high surface area of the MXe/MIL-101(Cr) nanocomposite increased from 4.68 m2/g to 294.21 m2/g, and the band gap of the tagged MIL-101(Cr) on the MXene surface was minimized. The superior sonocatalytic activity of MXe/MIL-101(Cr) was attributed to the effective contact interface, the effective separation rate of e- - h+ pairs through the type II heterostructure interface, and the favorable high free •OH radical production rates that promoted the degradation of SD and AAP. The solid heterointerface between MIL-101(Cr) and MXene was confirmed through Raman and FTIR analysis and was found to promote accessible •OH radical production under sonication, thus maximizing the catalytic activity of nanocomposites. The present results present an effective strategy for the design of a highly efficient, low-cost, reliable sonocatalyst that can eradicate pharmaceutical pollutants in our environment.
Collapse
Affiliation(s)
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Supriya J Marje
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
3
|
Liu YC, Liu X, Zhang GH, Liu W, Wang JQ, Wang X, Chen CL, Wang Y, Xiang Z. Performance and mechanism of a novel S-scheme heterojunction sonocatalyst CuS/BaWO 4 for degradation of bisphenol A by ultrasonic activation. ENVIRONMENTAL RESEARCH 2023; 216:114720. [PMID: 36343719 DOI: 10.1016/j.envres.2022.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A novel CuS/BaWO4 heterojunction catalyst was prepared and characterized. Taking bisphenol A as the target pollutant for catalytic degradation, the sonocatalytic activity of CuS/BaWO4 composite was evaluated, and the combination with persulfate improved the sonocatalytic degradation of bisphenol A. The results showed that CuS/BaWO4 composite had good sonocatalytic degradation activity for bisphenol A, and the degradation rate was 70.99% ± 1.46%. After combined with persulfate, the degradation rate was further increased to 95.34% ± 0.10%, and the reaction time was relatively shortened. The results of the trapping experiment and calculated energy band positions showed that the formation of S-scheme heterojunction and the formation of hydroxyl radicals and holes were the key to the catalytic degradation of bisphenol A by CuS/BaWO4 composite. In this study, a new CuS/BaWO4 heterojunction sonocatalyst was synthesized. The catalyst can efficiently remove bisphenol A from the water environment and can be used as a potential solution for endocrine disruptor pollution in the water environment.
Collapse
Affiliation(s)
- Yang-Cheng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Xuan Liu
- Dezhou Xiangxuan Pharmaceutical Technology Co., Ltd, Dezhou, 253000, China
| | - Gui-Hong Zhang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Jia-Qi Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Chang-Lan Chen
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Yang Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
4
|
Ryu B, Wong KT, Choong CE, Kim JR, Kim H, Kim SH, Jeon BH, Yoon Y, Snyder SA, Jang M. Degradation synergism between sonolysis and photocatalysis for organic pollutants with different hydrophobicity: A perspective of mechanism and application for high mineralization efficiency. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125787. [PMID: 33862480 DOI: 10.1016/j.jhazmat.2021.125787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Despite extensive studies, the fundamental understanding of synergistic mechanisms between sonolysis and photocatalysis for the abatement of persistent organic pollutants (POPs) remains uncertain. As different phases formed under ultrasound irradiation, hydrophilic POPs, sulfamethoxazole (SMX, Kow: 0.89), predominantly resides in bulk liquid and is ineffectively degraded by sonolysis (kUS = 3.33 × 10-3 min-1) since <10% of hydroxyl radicals (·OH) formed at the gas-liquid interface of cavitation is diffused into the bulk, whereas the other fraction rapidly recombines into hydrogen peroxide (H2O2). This study provides a proof-of-concept for the mechanism by presenting various analytical results, endorsing the synergistic role of photoexcited electrons in splitting sonolysis-induced H2O2 into ·OH, particularly in the bulk phase. In a sonophotocatalytic system, the hydrophobic POPs such as bisphenol A (BPA) and atrazine (ATZ) were mainly degraded in gas-liquid interface indicated by the low synergistic values correlation compared to SMX [i.e., SMX has a higher synergistic factor, fsyn (3.26) than BPA (1.30) and ATZ (1.35)]. Also, fsyn was found linearly correlated with the contribution factor of photocatalysis to split H2O2. Three times of consecutive kinetics using an effluent of municipal (MP) wastewater spiked by POPs presented >98% POPs and >96% total organic carbon (TOC) removal.
Collapse
Affiliation(s)
- Baekha Ryu
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Kien Tiek Wong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jung-Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| | - Shane A Snyder
- Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
5
|
Wang Q, Ji S, Xu Q, Shen L, Shi W. Preparation of PEO-based Cu2O/Bi2O2CO3 electrospun fibrous membrane toward enhanced photocatalytic degradation of chloramphenicol. JOURNAL OF MATERIALS SCIENCE 2021; 56:4599-4614. [DOI: 10.1007/s10853-020-05564-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 06/21/2023]
|
6
|
Zhai XY, Zhao YF, Zhang GY, Wang BY, Mao QY. In situ construction of a direct Z-scheme AgBr/α-Ag 2WO 4 heterojunction with promoted spatial charge migration and photocatalytic performance. NEW J CHEM 2021. [DOI: 10.1039/d0nj05965j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A hierarchical AgBr/α-Ag2WO4 Z-scheme heterojunction was facially constructed for greatly improved photocatalytic activity towards pollutant elimination due to promoted spatial separation of carriers with high redox capacity.
Collapse
Affiliation(s)
- Xiao-Ya Zhai
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Yi-Fan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Guo-Ying Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Bing-Yu Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Qi-Yun Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
7
|
Talukdar K, Jun BM, Yoon Y, Kim Y, Fayyaz A, Park CM. Novel Z-scheme Ag 3PO 4/Fe 3O 4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123025. [PMID: 32768835 DOI: 10.1016/j.jhazmat.2020.123025] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 05/23/2023]
Abstract
A novel solid-state Z-scheme heterostructure, Ag3PO4/Fe3O4 co-doped bamboo-derived activated biochar (Ag-Fe@BAB), was synthesized as an efficient photocatalyst via a co-precipitation method. Ag-Fe@BAB was used as a magnetically recoverable photocatalyst to generate free radical species with peroxydisulfate (PDS) activation under visible-LED-light illumination. The successful synthesis of Ag-Fe@BAB was confirmed by various characterization techniques. Bisphenol A (BPA) was used as a model pollutant to evaluate the photocatalytic activities of the Vis/Ag-Fe@BAB/PDS system. To confirm the photocatalytic performance of the Vis/Ag-Fe@BAB/PDS system, the effects of significant operating parameters such as the contact time, concentration of oxidant, photocatalyst dosage, and solution pH on the degradation of BPA were evaluated. We confirmed that 95.6% BPA was degraded within 60 min in the Vis/Ag-Fe@BAB/PDS system under 1.0 g/L photocatalyst, pH 6.5, and 0.5 mM PDS. The degradation mechanism of BPA in the Vis/Ag-Fe@BAB/PDS system was mainly attributed to O2‾ owing to its photocatalytic performances in the presence of p-benzoquinone as a scavenger. Furthermore, the radical species produced in the Vis/Ag-Fe@BAB/PDS system were identified by electron spin resonance. Finally, we demonstrated the recyclability of the Ag-Fe@BAB photocatalyst through its excellent magnetic property.
Collapse
Affiliation(s)
- Kristy Talukdar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia 29208, 300 Main Street, SC, USA.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia 29208, 300 Main Street, SC, USA.
| | - Yejin Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Aqsa Fayyaz
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Degradation of Bisphenol A by CeCu Oxide Catalyst in Catalytic Wet Peroxide Oxidation: Efficiency, Stability, and Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234675. [PMID: 31771209 PMCID: PMC6926835 DOI: 10.3390/ijerph16234675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
The CeCu oxide catalyst CC450 was prepared by citric acid complex method and the catalytic wet peroxide oxidation (CWPO) reaction system was established with bisphenol A (BPA) as the target pollutant. By means of characterization, this research investigated the phase structure, surface morphology, reducibility, surface element composition, and valence of the catalyst before and after reuse. The effects of catalyst dosage and pH on the removal efficiency of BPA were also investigated. Five reuse experiments were carried out to investigate the reusability of the catalyst. In addition, this research delved into the changes of pH value, hydroxyl radical concentration, and ultraviolet-visible spectra of BPA in CWPO reaction system. The possible intermediate products were analyzed by gas chromatography-mass spectrometry (GC-MS). The catalytic mechanism and degradation pathway were also discussed. The results showed that after reaction of 65 min, the removal of BPA and total organic carbon (TOC) could reach 87.6% and 77.9%, respectively. The catalyst showed strong pH adaptability and had high removal efficiency of BPA in the range of pH 1.6-7.9. After five reuses, the removal of BPA remained above 86.7%, with the structure of the catalyst remaining stable to a large extent. With the reaction proceeding, the pH value of the reaction solution increased, the concentration of OH radicals decreased, and the ultraviolet-visible spectrum of BPA shifted to the short wavelength direction, that is, the blue shift direction. The catalysts degraded BPA rapidly in CWPO reaction system and the C-C bond or O-H bond in BPA could be destroyed in a very short time. Also, there may have been two main degradation paths of phenol and ketone.
Collapse
|
9
|
Zhu L, Gu W, Zou W, Liu H, Zhang Y, Wu Q, Fu Z, Lu Y. Enhancing the Sonolysis Efficiency of SrTiO3 Particles with Cr-Doping. Catal Letters 2019. [DOI: 10.1007/s10562-019-03008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Ponnaiah SK, Prakash P, Muthupandian S. Ultrasonic energy-assisted in-situ synthesis of Ru 0/PANI/g-C 3N 4 nanocomposite: Application for picomolar-level electrochemical detection of endocrine disruptor (Bisphenol-A) in humans and animals. ULTRASONICS SONOCHEMISTRY 2019; 58:104629. [PMID: 31450371 DOI: 10.1016/j.ultsonch.2019.104629] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical which resembles structurally the hormone estrogen. Even a trace amount of BPA can bind estrogen receptors resulting in the inducement of reproductive disorders, cancers and problems related to sexual growth such as manliness in female and womanliness in male. So the determination of BPA in human and animal bodies is very essential. For this purpose, a new nanocomposite composed of ruthenium nanoparticles, polyaniline and graphitic carbon nitride (Ru0/PANI/g-C3N4) has been synthesized ultrasonically (40 ± 3 kHz, 200 W). A modification on glassy carbon electrode (GCE) with the nanocomposite detects BPA in human and animal urine samples with wide linear range (0.01-1.1 µM) and the limit of detection is pico molar-level. The synthesized nanocomposite was characterized by Ultraviolet-Visible and Fourier Transform-Infra Red spectroscopies, thermo gravimetric analysis, transmission electron microscopy, X-ray diffraction study, energy dispersive X-ray analysis, and elemental mapping analysis. This sensing system is selective, stable and reusable, by which the detection of BPA in various physiological fluids is very much possible.
Collapse
Affiliation(s)
| | | | - Saravanan Muthupandian
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| |
Collapse
|
11
|
Han J, Jun BM, Heo J, Kim S, Yoon Y, Park CM. Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109396. [PMID: 31276888 DOI: 10.1016/j.ecoenv.2019.109396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
We report herein the sonochemical synthesis of a lanthanum dioxide carbonate (La2O2CO3) and zinc ferrite (ZnFe2O4)-loaded reduced graphene oxide (LZF-rGO) nanoheterostructure for ultrasound (US)-assisted degradation of methyl orange (MO) from water. The MO was chosen as a model organic dye due to its toxicological and biodegradable-resistant properties. The LZF-rGO catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results of characterizations confirmed successful synthesis of sonocatalyst. Among different removal systems, US/LZF-rGO displayed outstanding sonodegradation performance for degradation of MO. The maximum removal efficiency of 75.9% was achieved using 0.2 g/L sonocatalyst, 20 mg/L MO, and 0.71 W/cm2 US power intensity for 65 min. MO can be partially adsorbed on LZF-rGO but mostly sonodegraded by reactive radical species. The reaction conditions were optimized by investigating the effect of key operating parameters, including the sonocatalyst dosage, initial MO concentration, US power intensity, presence of inorganic salts, and use of an enhancer, on the decolorization of MO. The degradation intermediates produced from MO during the sonocatalytic process were identified by UPLC®/MS-MS, and possible mechanism and pathway for the degradation of MO in the US/LZF-rGO system were also proposed. Reusability experiments with this sonocatalyst revealed a less than 10% drop in the degradation efficiency after four adsorption-desorption cycles.
Collapse
Affiliation(s)
- Jonghun Han
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeongcheon, 495 Hogook-ro, Gokyungmeon, Yeongcheon, Gyeongbuk, 38900, Republic of Korea.
| | - Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeongcheon, 495 Hogook-ro, Gokyungmeon, Yeongcheon, Gyeongbuk, 38900, Republic of Korea.
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Nejadshafiee V, Naeimi H, Islami MR. Sonochemical synthesis of library benzodiazepines using highly efficient molecular ionic liquid supported on Fe‐MCM‐41 nanocomposites as a recyclable catalyst. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vajihe Nejadshafiee
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Kashan Kashan 87317 I.R. Iran
- Chemistry DepartmentShahid Bahonar University of Kerman Kerman 76169 I.R. Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Kashan Kashan 87317 I.R. Iran
| | | |
Collapse
|
13
|
Dükkancı M. Heterogeneous sonocatalytic degradation of Bisphenol-A and the influence of the reaction parameters and ultrasonic frequency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:386-397. [PMID: 30865610 DOI: 10.2166/wst.2019.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, the sonocatalytic oxidation of Bisphenol-A (BPA) was investigated in the presence of a LaFeO3 perovskite catalyst. The effects of the reaction temperature, initial pH, catalyst loading, presence of inorganic anions and sonication source (power and frequency) on the removal of BPA using heterogeneous sonocatalytic process were investigated. Under the studied temperature range of 288-318 K, 308 K was selected as the optimum temperature and the highest BPA removal and total oxygen demand (TOC) reduction of, 95.8% and 30.4% were achieved at that temperature. The thermodynamic parameters were calculated in the studied temperature range of 288-308 K. It was seen that an acidic pH of 3.0 was favorable for the BPA oxidation with the highest BPA removal and TOC reduction of 95.4% and 31.5%, respectively. Doubling the catalyst amount from 0.25 g/L to 0.5 g/L increased the BPA removal degree from 81.6% to 90.8%. However, further increase in catalyst amount has no remarkable positive effect on the removal of BPA. The removal of BPA was described by the first order kinetics with an activation energy of 14.9 kJ/mol. The results obtained from this study showed that the LaFeO3 perovskite catalyst was a good sonocatalyst giving high oxidation rates of BPA.
Collapse
Affiliation(s)
- Meral Dükkancı
- Engineering Faculty, Chemical Engineering Department, Ege University, 35100, Bornova, Izmir, Turkey E-mail:
| |
Collapse
|