1
|
Singh R, Samuel MS, Ravikumar M, Ethiraj S, Kumar M. Graphene materials in pollution trace detection and environmental improvement. ENVIRONMENTAL RESEARCH 2024; 243:117830. [PMID: 38056611 DOI: 10.1016/j.envres.2023.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Water scarcity is a pressing issue experienced in numerous countries and is expected to become increasingly critical in the future. Anthropogenic activities such as mining, agriculture, industries, and domestic waste discharge toxic contaminants into natural water bodies, causing pollution. Addressing these environmental crises requires tackling the challenge of removing pollutants from water. Graphene oxide (GO), a form of graphene functionalized with oxygen-containing chemical groups, has recently garnered renewed interest due to its exceptional properties. These properties include a large surface area, mechanical stability, and adjustable electrical and optical characteristics. Additionally, surface functional groups like hydroxyl, epoxy, and carboxyl groups make GO an outstanding candidate for interacting with other materials or molecules. Because of its expanded structural diversity and enhanced overall properties, GO and its composites hold significant promise for a wide range of applications in energy storage, conversion, and environmental protection. These applications encompass hydrogen storage materials, photocatalysts for water splitting, the removal of air pollutants, and water purification. Serving as electrode materials for various lithium batteries and supercapacitors. Graphene-based materials, including graphene, graphene oxide, reduced graphene oxide, graphene polymer nanocomposites, and graphene nanoparticle metal hybrids, have emerged as valuable tools in energy and environmental remediation technologies. This review article provides an overview of the significant impact of graphene-based materials in various areas. Regarding energy-related topics, this article explores the applications of graphene-based materials in supercapacitors, lithium-ion batteries, and catalysts for fuel cells. Additionally, the article investigates recent advancements in detecting and treating persistent organic pollutants (POPs) and heavy metals using nanomaterials. The article also discusses recent developments in creating innovative nanomaterials, nanostructures, and treatment methods for addressing POPs and heavy metals in water. It aims to present the field's current state and will be a valuable resource for individuals interested in nanomaterials and related materials.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Physics, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Melvin S Samuel
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical, Chennai, 602105, India.
| | | | - Selvarajan Ethiraj
- Department of Genetic Engineering, College of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
| |
Collapse
|
2
|
Madenli O, Akarsu C, Adigüzel AO, Altuntepe A, Zan R, Deveci EÜ. Synthesis of graphite/rGO-modified fungal hyphae for chromium (VI) bioremediation process. ENVIRONMENTAL TECHNOLOGY 2024; 45:811-826. [PMID: 36152299 DOI: 10.1080/09593330.2022.2128892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Bioremediation is a promising technology that can eliminate the drawbacks of conventional treatment methods in removing harmful toxic metals including chromium(VI). Therefore, in this study, fungal hyphae modified with graphite and reduced graphene oxide were synthesized and assessed for their potential to bioremediate heavy metals for the first time in the literature. The effects of the carbon-based materials on microbial structure were characterized using scanning electron microscopy analysis. Thermogravimetric, RAMAN, X-ray diffraction, and enzymatic analyzes were performed to determine the role of functional groups. In addition, batch adsorption experiments utilizing response surface methodology were conducted to optimize operating parameters such as time (1-11 h), chromium (10-50 mg/L), and graphite/reduced graphene oxide (0.1-1 g/L). The maximum adsorption capacity with the graphene fungal hyphae was determined to be 568 mg.g-1, which is 9.7 times that of the crude fungal hyphae. The Cr(VI) removal for fungal hyphae-graphite and fungal hyphae-reduced graphene oxide biocomposites was 98.25% and 98.49%, respectively. The isothermal and kinetic results perfectly matched the 2nd order pseudo-model and Langmuir model in terms of the nature of the adsorption process. The laboratory scale test results indicate that fungal hyphae modified with graphite and reduced graphene oxide have a high adsorption capacity, suitable for the removal of chromium (VI) from wastewater.
Collapse
Affiliation(s)
- Ozgecan Madenli
- Niğde Ömer Halisdemir University, Enviromental Engineering Deparment, Niğde, Turkey
| | - Ceyhun Akarsu
- Istanbul University-Cerrahpasa, Department of Environmental Engineering, Istanbul, Turkey
| | - Ali Osman Adigüzel
- Ondokuz Mayıs University, Moleculer Biology and Genetics, Samsun, Turkey
| | - Ali Altuntepe
- Niğde Ömer Halisdemir University, Nanotechnology Research Center, Niğde, Turkey
| | - Recep Zan
- Niğde Ömer Halisdemir University, Nanotechnology Research Center, Niğde, Turkey
- Niğde Ömer Halisdemir University, Faculty of Arts and Sciences Department, Niğde, Turkey
| | - Ece Ümmü Deveci
- Niğde Ömer Halisdemir University, Enviromental Engineering Deparment, Niğde, Turkey
| |
Collapse
|
3
|
Mahmoud R, Kotb NM, GadelHak Y, El-Ela FIA, Shehata AZ, Othman SI, Allam AA, Rudayni HA, Zaher A. Investigation of ternary Zn-Co-Fe layered double hydroxide as a multifunctional 2D layered adsorbent for moxifloxacin and antifungal disinfection. Sci Rep 2024; 14:806. [PMID: 38191628 PMCID: PMC10774404 DOI: 10.1038/s41598-023-48382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024] Open
Abstract
Layered double hydroxides have recently gained wide interest as promising multifunctional nanomaterials. In this work, a multifunctional ternary Zn-Co-Fe LDH was prepared and characterized using XRD, FTIR, BET, TEM, SEM, and EDX. This LDH showed a typical XRD pattern with a crystallite size of 3.52 nm and a BET surface area of 155.9 m2/g. This LDH was investigated, for the first time, as an adsorbent for moxifloxacin, a common fluoroquinolones antibiotic, showing a maximum removal efficiency and equilibrium time of 217.81 mg/g and 60 min, respectively. Its antifungal activity, for the first time, was investigated against Penicillium notatum, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Mucor fungi at various concentrations (1000-1.95 µg/mL). This LDH was found to be effective against a variety of fungal strains, particularly Penicillium and Mucor species and showed zones of inhibition of 19.3 and 21.6 mm for Penicillium and Mucor, respectively, with an inhibition of 85% for Penicillium species and 68.3% for Mucormycosis. The highest antifungal efficacy results were obtained at very low MIC concentrations (33.3 and 62 µg/ml) against Penicillium and Mucor, respectively. The results of this study suggest a promising multifunctional potential of this LDH for water and wastewater treatment and disinfection applications.
Collapse
Affiliation(s)
- Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nada M Kotb
- Hydrogeology and Environment Department, Faculty of Earth Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ayman Z Shehata
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Singh R, Samuel MS, Ravikumar M, Ethiraj S, Kirankumar VS, Kumar M, Arulvel R, Suresh S. A novel approach to environmental pollution management/remediation techniques using derived advanced materials. CHEMOSPHERE 2023; 344:140311. [PMID: 37769916 DOI: 10.1016/j.chemosphere.2023.140311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The carbon dioxide (CO2) crisis is one of the world's most urgent issues. Meeting the worldwide targets set for CO2 capture and storage (CCS) is crucial. Because it may significantly reduce energy consumption compared to traditional amine-based adsorption capture, adsorption dependant CO2 capture is regarded as one of the most hopeful techniques in this paradigm. The expansion of unique, critical edge adsorbent materials has received most of the research attention to date, with the main objective of improving adsorption capacity and lifespan while lowering the temperature of adsorption, thereby lowering the energy demand of sorbent revival. There are specific materials needed for each step of the carbon cycle, including capture, regeneration, and conversion. The potential and efficiency of metal-organic frameworks (MOFs) in overcoming this obstacle have recently been proven through research. In this study, we pinpoint MOFs' precise structural and chemical characteristics that have contributed to their high capture capacity, effective regeneration and separation processes, and efficient catalytic conversions. As prospective materials for the next generation of energy storage and conversion applications, carbon-based compounds like graphene, carbon nanotubes, and fullerenes are receiving a lot of interest. Their distinctive physicochemical characteristics make them suitable for these popular study topics, including structural stability and flexibility, high porosity, and customizable physicochemical traits. It is possible to precisely design the interior of MOFs to include coordinatively unsaturated metal sites, certain heteroatoms, covalent functionalization, various building unit interactions, and integrated nanoscale metal catalysts. This is essential for the creation of MOFs with improved performance. Utilizing the accuracy of MOF chemistry, more complicated materials must be built to handle selectivity, capacity, and conversion all at once to achieve a comprehensive solution. This review summarizes, the most recent developments in adsorption-based CO2 combustion capture, the CO2 adsorption capacities of various classes of solid sorbents, and the significance of advanced carbon nanomaterials for environmental remediation and energy conversion. This review also addresses the difficulties and potential of developing carbon-based electrodes for energy conversion and storage applications.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Physics, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Melvin S Samuel
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical, Chennai, 602105, India; Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI, 53233, United States.
| | - Madhumita Ravikumar
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical, Chennai, 602105, India
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, College of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - V S Kirankumar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
| | - R Arulvel
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical, Chennai, 602105, India
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Joya-Cárdenas DR, Rodríguez-Caicedo JP, Gallegos-Muñoz A, Zanor GA, Caycedo-García MS, Damian-Ascencio CE, Saldaña-Robles A. Graphene-Based Adsorbents for Arsenic, Fluoride, and Chromium Adsorption: Synthesis Methods Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3942. [PMID: 36432228 PMCID: PMC9698471 DOI: 10.3390/nano12223942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Water contamination around the world is an increasing problem due to the presence of contaminants such as arsenic, fluoride, and chromium. The presence of such contaminants is related to either natural or anthropogenic processes. The above-mentioned problem has motivated the search for strategies to explore and develop technologies to remove these contaminants in water. Adsorption is a common process employed for such proposals due to its versatility, high adsorption capacity, and lower cost. In particular, graphene oxide is a material that is of special interest due to its physical and chemical properties such as surface area, porosity, pore size as well as removal efficiency for several contaminants. This review shows the advances, development, and perspectives of materials based on GO employed for the adsorption of contaminants such as arsenite, arsenate, fluoride, and hexavalent chromium. We provided a detailed discussion of the synthesis techniques and their relationship with the adsorption capacities and other physical properties as well as pH ranges employed to remove the contaminants. It is concluded that the adsorption capacity is not proportional to the surface area in all the cases; instead, the synthesis method, as well as the functional groups, play an important role. In particular, the sol-gel synthesis method shows better adsorption capacities.
Collapse
Affiliation(s)
| | | | | | - Gabriela A. Zanor
- Graduate Program in Biosciences, University of Guanajuato, Irapuato 36500, Mexico
- Department of Environmental Engineering, University of Guanajuato, Irapuato 36500, Mexico
| | - Maya S. Caycedo-García
- Facultad de Ingenierías y Tecnologías, Instituto de Investigación Xerira, Universidad de Santander, Bucaramanga 680003, Colombia
| | | | - Adriana Saldaña-Robles
- Graduate Program in Biosciences, University of Guanajuato, Irapuato 36500, Mexico
- Department of Agricultural Engineering, University of Guanajuato, Irapuato 36500, Mexico
| |
Collapse
|
6
|
Batra S, Selakoti GS, Jain A, Malhotra S, Lodha A, Lamba N, Datta D. Ultrasound-assisted Aliquat 336 functionalized natural resin for improved removal of Bisphenol-A and Biochanin-A from aqueous solution. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2095265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sakshi Batra
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Govind Singh Selakoti
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Anusha Jain
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Shubham Malhotra
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Akshita Lodha
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Niksha Lamba
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Dipaloy Datta
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Samuel MS, Mohanraj K, Chandrasekar N, Balaji R, Selvarajan E. Synthesis of recyclable GO/Cu 3(BTC) 2/Fe 3O 4 hybrid nanocomposites with enhanced photocatalytic degradation of aflatoxin B1. CHEMOSPHERE 2022; 291:132684. [PMID: 34718022 DOI: 10.1016/j.chemosphere.2021.132684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the photocatalytic performance of the activated carbon assisted GO/Cu3(BTC)2/Fe3O4 photocatalyst for aflatoxin B1 (AFB1) degradation under ultraviolet light. The nanocomposite was characterized by Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption. The numerous factors influencing the degradation efficiency of AFB1 including catalyst dose, pH importance, and contact time were also probed. The elevated degradation performance of AFB1 by 99% was due to a larger surface area and improved GO/Cu3(BTC)2/Fe3O4 photocatalyst. The degradation process followed a pseudo-first-order kinetic model. Moreover, it is possible to quickly isolate the catalyst from the solution and retain successful operation. In the degradation of AFB1, the hole(h+) and the hydroxyl radicals(OH) were found to play a significant role. These studies showed that GO/Cu3(BTC)2/Fe3O4 has high capturing capacity and photoactivity synergy, thereby offering a quick effect, and green solution to AFB1 degradation.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 731 302, India
| | - K Mohanraj
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
8
|
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. NANOSCALE 2022; 14:2534-2571. [PMID: 35133391 DOI: 10.1039/d1nr08144f] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Siaw Fui Kiew
- Curtin Malaysia Research Institute, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
- Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Stephen Boakye-Ansah
- Rowan University, Henry M. Rowan College of Engineering, Department of Chemical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Ahmed Barhoum
- Nanostruc, Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Samuel MS, Datta S, Chandrasekar N, Balaji R, Selvarajan E, Vuppala S. Biogenic Synthesis of Iron Oxide Nanoparticles Using Enterococcus faecalis: Adsorption of Hexavalent Chromium from Aqueous Solution and In Vitro Cytotoxicity Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3290. [PMID: 34947639 PMCID: PMC8705913 DOI: 10.3390/nano11123290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022]
Abstract
The biological synthesis of nanoparticles is emerging as a potential method for nanoparticle synthesis due to its non-toxicity and simplicity. In the present study, a bacterium resistant to heavy metals was isolated from a metal-contaminated site and we aimed to report the synthesis of Fe3O4 nanoparticles via co-precipitation using bacterial exopolysaccharides (EPS) derived from Enterococcus faecalis_RMSN6 strains. A three-variable Box-Behnken design was used for determining the optimal conditions of the Fe3O4 NPs synthesis process. The synthesized Fe3O4 NPs were thoroughly characterized through multiple analytical techniques such as XRD, UV-Visible spectroscopy, FTIR spectroscopy and finally SEM analysis to understand the surface morphology. Fe3O4 NPs were then probed for the Cr(VI) ion adsorption studies. The important parameters such as optimization of initial concentration of Cr(VI) ions, effects of contact time, pH of the solution and contact time on quantity of Cr(VI) adsorbed were studied in detail. The maximum adsorption capacity of the nanoparticles was found to be 98.03 mg/g. The nanoparticles could retain up to 73% of their efficiency of chromium removal for up to 5 cycles. Additionally, prepared Fe3O4 NPs in the concentration were subjected to cytotoxicity studies using an MTT assay. The investigations using Fe3O4 NPs displayed a substantial dose-dependent effect on the A594 cells. The research elucidates that the Fe3O4 NPs synthesized from EPS of E. faecalis_RMSN6 can be used for the removal of heavy metal contaminants from wastewater.
Collapse
Affiliation(s)
- Melvin S. Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur 21302, West Bengal, India;
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India;
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore 641022, Tamil Nadu, India;
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India;
| | - Srikanth Vuppala
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 3220133 Milan, Italy
| |
Collapse
|
10
|
Samuel MS, Selvarajan E, Chidambaram R, Patel H, Brindhadevi K. Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: Present research and future perspective. CHEMOSPHERE 2021; 284:131368. [PMID: 34225115 DOI: 10.1016/j.chemosphere.2021.131368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 05/25/2023]
Abstract
Chromium is an insidious ecological pollutant that is of huge value for its toxicity. The existing ecological objective to lower the heights of toxic materials in marine systems and to stimulate the existing water to recycle after suitable treatment of wastewater. Chromium is a hazard element that appears in discharges of numerous industries that must be diminished to accomplish the goals. Nearly all of the findings described in the literature related to the usage of various materials such as fungal, algal, bacterial biomass, and nanomaterials for chromium adsorption. The current work evaluates the findings of research commenced in the preceding on the use of a variety of adsorbents to decrease chromium concentrations in contaminated waters. This review article focuses on the issue of chromium contamination, its chemistry, causes, consequences, biological agent remediation techniques, and the detailed process of chromium detoxification in microbial cells. It also lists a description of the in situ and ex situ chromium bioremediation methods used. This can help design more effective Cr(VI) removal methods, thus bridging the difference between laboratory discoveries and industrial chromium remediation applications.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, United States
| | - E Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Himanshu Patel
- Applied Science and Humanities Department, Pacific School of Engineering, Kadodara, Palasana Road, Surat, 394305, Gujarat, India
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
Samuel MS, Jeyaram K, Datta S, Chandrasekar N, Balaji R, Selvarajan E. Detection, Contamination, Toxicity, and Prevention Methods of Ochratoxins: An Update Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13974-13989. [PMID: 34783556 DOI: 10.1021/acs.jafc.1c05994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ochratoxins (OTs) with nephrotoxic, immunosuppressive, teratogenic, and carcinogenic properties are thermostable fungal subordinate metabolites. OTs contamination can occur before or after harvesting, during the processing, packing, distribution, and storage of food. Mold development and mycotoxin contamination can occur in any crop or cereal that has not been stored properly for long periods of time and is subjected to high levels of humidity and temperature. Ochratoxin A (OTA) presents a significant health threat to creatures and individuals. There is also a concern of how human interaction with OTA will also express the remains of OTA from feedstuffs into animal-derived items. Numerous approaches have been studied for the reduction of the OTA content in agronomic products. These methods can be classified into two major classes: inhibition of OTA adulteration and decontamination or detoxification of food. A description of the various mycotoxins, the organism responsible for the development of mycotoxins, and their adverse effects are given. In the current paper, the incidence of OTA in various fodder and food materials is discussed, which is accompanied by a brief overview of the OTA mode of synthesis, physicochemical properties, toxic effects of various types of ochratoxins, and OTA decontamination adaptation methods. To our knowledge, we are the first to report on the structure of many naturally accessible OTAs and OTA metabolism. Finally, this paper seeks to be insightful and draw attention to dangerous OTA, which is too frequently neglected and overlooked in farm duplication from the list of discrepancy studies.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Kanimozhi Jeyaram
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore 641022, Tamil Nadu, India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan 106, ROC
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
12
|
Samuel MS, Savunthari KV, Ethiraj S. Synthesis of a copper (II) metal-organic framework for photocatalytic degradation of rhodamine B dye in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40835-40843. [PMID: 33772468 DOI: 10.1007/s11356-021-13571-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/16/2021] [Indexed: 05/25/2023]
Abstract
The Cu(II) metal-organic frameworks (MOFs) based on 1,3,5-benzenetricarboxylic acid (Cu3(BTC)2) was synthesized by the hydrothermal method. The synthesized Cu3(BTC)2 exhibited pyramid-shaped morphology and showing an average specific area of 32.16 m2 g-1. The Cu3(BTC)2 photocatalysts were characterized using Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDX), UV-Vis diffusive reflectance spectra, and Brunauer-Emmett-Teller (BET). The photocatalytic activity of Cu3(BTC)2 was examined on Rhodamine B (RhB) degradation under visible light irradiation. The outcomes displayed exceedingly enhanced photocatalytic activity under visible light. In addition, its recyclability was also confirmed for multiple cycles. The easiness of construction and high photocatalytic performance of Cu3(BTC)2 photocatalysts can be capable in environmental applications to treat water contamination.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721 302, India
| | - Kirankumar Venkat Savunthari
- Nano & Green Analyical Lab, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
13
|
Zhang S, Weng Y, Ma C. Quantitative Nanomechanical Mapping of Polyolefin Elastomer at Nanoscale with Atomic Force Microscopy. NANOSCALE RESEARCH LETTERS 2021; 16:113. [PMID: 34216298 PMCID: PMC8254710 DOI: 10.1186/s11671-021-03568-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Elastomeric nanostructures are normally expected to fulfill an explicit mechanical role and therefore their mechanical properties are pivotal to affect material performance. Their versatile applications demand a thorough understanding of the mechanical properties. In particular, the time dependent mechanical response of low-density polyolefin (LDPE) has not been fully elucidated. Here, utilizing state-of-the-art PeakForce quantitative nanomechanical mapping jointly with force volume and fast force volume, the elastic moduli of LDPE samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 up to 2 k Hz. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young's modulus was discovered with increasing acquisition frequency. It was measured 11.7 ± 5.2 MPa at 0.1 Hz and increased to 89.6 ± 17.3 MPa at 2 kHz. Moreover, creep compliance experiment showed that instantaneous elastic modulus E1, delayed elastic modulus E2, viscosity η, retardation time τ were 22.3 ± 3.5 MPa, 43.3 ± 4.8 MPa, 38.7 ± 5.6 MPa s and 0.89 ± 0.22 s, respectively. The multiparametric, multifunctional local probing of mechanical measurement along with exceptional high spatial resolution imaging open new opportunities for quantitative nanomechanical mapping of soft polymers, and can potentially be extended to biological systems.
Collapse
Affiliation(s)
- Shuting Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Yihui Weng
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chunhua Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
14
|
Rajnish KN, Samuel MS, John J A, Datta S, Chandrasekar N, Balaji R, Jose S, Selvarajan E. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. Int J Biol Macromol 2021; 182:1793-1802. [PMID: 34058212 DOI: 10.1016/j.ijbiomac.2021.05.176] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/02/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Cellulose is a very abundant polymer that is found in nature. Cellulose has been used as a raw material for production of biofuels for many years. However, there are multiple processing steps that are required so that cellulose can be used as a raw material for biofuel production. One of the most important steps is the breakdown of cellulose into intermediate sugars which can then be a viable substrate for biofuel production. Cellulases are enzymes which play a role in the catalysis of the breakdown of cellulose into glucose. Nanomaterials and micromaterials have been gaining a lot of attention over the past few years for its potential in immobilizing enzymes for industrial procedures. Immobilization of enzymes on these nanomaterials has been observed to be of great value due to the improvement in thermal stability, pH stability, regenerative capacity, increase in activity and the reusability of enzymes. Similarly, there have been multiple reports of cellulase enzymes being immobilized on various nanoparticles. The immobilization of these cellulase enzymes have resulted in very efficient processing and provide a great and economic solution for the processing of cellulose for biofuel production. Hence in this paper, we review and discuss the various advantages and disadvantages of enzymes on various available nanomaterials.
Collapse
Affiliation(s)
- K Narayanan Rajnish
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Melvin S Samuel
- School of Environmental Science and Engineering, School of Bioengineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Ashwini John J
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taiwan
| | - Sujin Jose
- School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.
| |
Collapse
|
15
|
Haq AU, Saeed M, Usman M, Zahoor AF, Anjum MN, Maqbool T, Naheed S, Kashif M. Mechanisms of halosulfuron methyl pesticide biosorption onto neem seeds powder. Sci Rep 2021; 11:9960. [PMID: 33976253 PMCID: PMC8113480 DOI: 10.1038/s41598-021-88929-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
The current investigation was designed to remove halosulfuron methyl from aqueous media by means of neem seed powder (NSP) in batch modes. Characterizations of NSP were carried out by using EDX, SEM, FTIR, point of zero charge and surface analysis. Optimum operation conditions were scrutinized by studying the influence of different factors like solution pH, dose of NSP, contact time, initial halosulfuron methyl concentration and temperature. Result indicates the dependency of the removal of halosulfuron methyl on solution pH and maximal removal (54%) was achieved in acidic medium (i.e. pH 3.0). To identify the chemical surface of NSP, point of zero charge of NSP was determined and was found to be 6.5 which imply that the surface of NSP is positively charged below pH 6.6 and favored the anionic sorption. Kinetics of halosulfuron methyl were demonstrated well by pseudo second order due to highest R2 (0.99) owing to the nearness between experimental and calculated sorption capacities. Isotherm results imply that Langmuir was found to the principal model to explain the removal of halosulfuron methyl and maximum monolayer sorption capacity was determined to be 200 mg g-1. Thermodynamic parameters like ΔH°, ΔG° and ΔS° were calculated from van't Hoff plot and were found negative which suggest that removal of halosulfuron methyl is exothermic and spontaneous at low temperature. These outcomes insinuate that neem seed power may be a valuable, inexpensive and ecofriendly biosorbent for the removal of pesticides.
Collapse
Affiliation(s)
- Atta Ul Haq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahir Maqbool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
16
|
Zhang Q, Wang W, Shen H, Tao H, Wu Y, Ma L, Yang G, Chang R, Wang J, Zhang H, Wang C, Zhang F, Qi J, Mi C. Low-Intensity Focused Ultrasound-Augmented Multifunctional Nanoparticles for Integrating Ultrasound Imaging and Synergistic Therapy of Metastatic Breast Cancer. NANOSCALE RESEARCH LETTERS 2021; 16:73. [PMID: 33928450 PMCID: PMC8085141 DOI: 10.1186/s11671-021-03532-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/19/2021] [Indexed: 05/06/2023]
Abstract
The metastasis of breast cancer is believed to have a negative effect on its prognosis. Benefiting from the remarkable deep-penetrating and noninvasive characteristics, sonodynamic therapy (SDT) demonstrates a whole series of potential leading to cancer treatment. To relieve the limitation of monotherapy, a multifunctional nanoplatform has been explored to realize the synergistic treatment efficiency. Herein, we establish a novel multifunctional nano-system which encapsulates chlorin e6 (Ce6, for SDT), perfluoropentane (PFP, for ultrasound imaging), and docetaxel (DTX, for chemotherapy) in a well-designed PLGA core-shell structure. The synergistic Ce6/PFP/DTX/PLGA nanoparticles (CPDP NPs) featured with excellent biocompatibility and stability primarily enable its further application. Upon low-intensity focused ultrasound (LIFU) irradiation, the enhanced ultrasound imaging could be revealed both in vitro and in vivo. More importantly, combined with LIFU, the nanoparticles exhibit intriguing antitumor capability through Ce6-induced cytotoxic reactive oxygen species as well as DTX releasing to generate a concerted therapeutic efficiency. Furthermore, this treating strategy actives a strong anti-metastasis capability by which lung metastatic nodules have been significantly reduced. The results indicate that the SDT-oriented nanoplatform combined with chemotherapy could be provided as a promising approach in elevating effective synergistic therapy and suppressing lung metastasis of breast cancer.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wen Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongyuan Shen
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongyu Tao
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yating Wu
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Liyuan Ma
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ruijiao Chang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiaxing Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hanfei Zhang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Chenyu Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Furong Zhang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiaojiao Qi
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Chengrong Mi
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
17
|
Ikram M, Inayat T, Haider A, Ul-Hamid A, Haider J, Nabgan W, Saeed A, Shahbaz A, Hayat S, Ul-Ain K, Butt AR. Graphene Oxide-Doped MgO Nanostructures for Highly Efficient Dye Degradation and Bactericidal Action. NANOSCALE RESEARCH LETTERS 2021; 16:56. [PMID: 33825981 PMCID: PMC8026802 DOI: 10.1186/s11671-021-03516-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/24/2021] [Indexed: 05/30/2023]
Abstract
Various concentrations (0.01, 0.03 and 0.05 wt ratios) of graphene oxide (GO) nanosheets were doped into magnesium oxide (MgO) nanostructures using chemical precipitation technique. The objective was to study the effect of GO dopant concentrations on the catalytic and antibacterial behavior of fixed amount of MgO. XRD technique revealed cubic phase of MgO, while its crystalline nature was confirmed through SAED profiles. Functional groups presence and Mg-O (443 cm-1) in fingerprint region was evident with FTIR spectroscopy. Optical properties were recorded via UV-visible spectroscopy with redshift pointing to a decrease in band gap energy from 5.0 to 4.8 eV upon doping. Electron-hole recombination behavior was examined through photoluminescence (PL) spectroscopy. Raman spectra exhibited D band (1338 cm-1) and G band (1598 cm-1) evident to GO doping. Formation of nanostructure with cubic and hexagon morphology was confirmed with TEM, whereas interlayer average d-spacing of 0.23 nm was assessed using HR-TEM. Dopants existence and evaluation of elemental constitution Mg, O were corroborated using EDS technique. Catalytic activity against methyl blue ciprofloxacin (MBCF) was significantly reduced (45%) for higher GO dopant concentration (0.05), whereas bactericidal activity of MgO against E. coli was improved significantly (4.85 mm inhibition zone) upon doping with higher concentration (0.05) of GO, owing to the formation of nanorods.
Collapse
Affiliation(s)
- M Ikram
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - T Inayat
- Physics Department, Lahore Garrison University, Lahore, 54000, Punjab, Pakistan
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - A Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - W Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - A Shahbaz
- Department of Physics, Government College University Lahore, 54000, Lahore, Pakistan
| | - S Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - K Ul-Ain
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - A R Butt
- Physics Department, Lahore Garrison University, Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
18
|
Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Su R, Song Y, Wang Y. Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143871. [PMID: 33293086 DOI: 10.1016/j.scitotenv.2020.143871] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Layer-structured graphene oxide excellent carrier for modifications; however, its poor recoverability and stability preclude its application in wastewater treatment fields. Herein, three-dimensional magnetic fungal hyphal/graphene oxide nanofibers (MFHGs) were assembled by a reductive self-assembly (RSA) strategy for the efficient capture of Co(II) and Ni(II) from high-salinity aqueous solution. The RSA strategy is inexpensive, eco-friendly and easy to scale up. The obtained MFHGs enhanced the dispersity and stability of graphene oxide and exhibited excellent magnetization and large coercivity, leading to satisfactory solid-liquid separation performance and denser sediment. The results of batch removal experiments showed that the maximum removal capacity of MFHGs for Ni(II) and Co(II) was 97.44 and 104.34 mg/g, respectively, in 2 g/L Na2SO4 aqueous solution with a pH of 6.0 at 323 K, and the effects of initial pH and ionic strength on Co(II) and Ni(II) removal were explored. Yield residue analysis indicated that the high porosity and oxygen-containing functional groups of MFHGs remarkably improved their Co(II)- and Ni(II)-removal capacities. According to the analysis, hydroxyl groups and amine groups participated in the chemical reaction of Co(II) and Ni(II) removal, and cation-exchange chemical adsorption was dominant during the Co(II)- and Ni(II)-removal process. Based on the attributes of MFHGs, a continuous-flow recycle reactor (CFRR) was proposed for emergency aqueous solution treatment and exhibited satisfactory removal efficiency and regeneration performance. The combination of MFHGs and the proposed CFRR is a promising water treatment strategy for rapid treatment applications.
Collapse
Affiliation(s)
- Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuying Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Si Wan
- Hunan Research Institute for Nonferrous Metals, Changsha 410100, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shunhong Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuxia Song
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China.
| |
Collapse
|
19
|
Zhou Q, Li D, Wang T, Hu X. Leaching of graphene oxide nanosheets in simulated soil and their influences on microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124046. [PMID: 33035906 DOI: 10.1016/j.jhazmat.2020.124046] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
With the wide use of graphene-like nanosheets, especially in agriculture, their release into the environment, it is crucial to grasp the fate of nanosheets in soil and minimum ecological risks. The present work discovered that leaching and migration of nanosheets (rGO) in soil is affected by soil porosity and adsorption processes. And the contents of rGO-Pd in soil layers and leachate increased and then decreased with the decreased of soil porosity. Moreover, physicochemical properties of rGO-Pd nanosheets changed by leaching processes, especially the changes of morphology, thickness and oxygen functional groups. Leaching of rGO-Pd also interfered the soil microbial homeostasis accompanied by the increase of microbial species richness and community diversity. In addition, rGO-Pd altered the usage of carbon sources by edaphon. The utilization of carbon sources by soil microbes, such as polymers, sugars, phenolic acids, carboxylic acids, amino acids, and amines, was also reduced by nanosheets. These findings provide new insights into environmental behaviors of nanomaterials and nanogeochemistry.
Collapse
Affiliation(s)
- Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Göçenoğlu Sarıkaya A. Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. ENVIRONMENTAL TECHNOLOGY 2021; 42:72-80. [PMID: 31107633 DOI: 10.1080/09593330.2019.1620867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In the present study, biomass of Agaricus campestris was tested to evaluate its effectivity as a biosorbent for the removal of Cr (VI) ions from aqueous solutions. The influence of various process parameters such as pH, temperature, contact time, biosorbent dosage and desorption were studied. Pseudo-first order, pseudo-second order, Ritchies and intraparticle diffusion model were used to present the adsorption kinetics. Results obtained indicate that the adsorption process is fast and spontaneous within the first 60 min. The experimental data supports pseudo-second order model. The sorption data conformed well to the Langmuir isotherm model. The maximum adsorption capacity (q max) onto A. campestris was 56.21 mg g-1 for Cr(VI) at 45°C when 0.1 g biomass was used. In addition, the mean values of thermodynamic parameters of standard free energy (ΔG0 = -1.635 kJ mol-1 at 45°C), standard enthalpy (ΔH0 = -9.582 kJ mol-1) and standard entropy (ΔS0 = -24.992 J mol-1K-1) of the adsorption mechanism were determined.
Collapse
|
21
|
Green synthesis of cobalt-oxide nanoparticle using jumbo Muscadine (Vitis rotundifolia): Characterization and photo-catalytic activity of acid Blue-74. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:112011. [PMID: 32892070 DOI: 10.1016/j.jphotobiol.2020.112011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/09/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
In the recent years, plant and microbial extract based nanoparticles (NPs) have become a sophisticated technology serving as an alternative strategy for the purpose of developing materials functionalized by structural diversity and enhanced energy efficiencies. Cobalt oxide nanoparticles (GCoO-NPs) have wide applications in several sectors due to their high resistance to corrosion as well as oxidation, ecofriendly nature, cost effectiveness and nontoxic potential. Plant based particles are credible alternatives as they reduce the burden of complicated and laborious protocols of physiochemical reliance. In this study, GCoO-NPs were synthesized using the grape Jumbo Muscadine (Vitis rotundifolia) using co-precipitation. The synthesized GCoO-NPs were characterized by UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), Powder X-ray diffraction (PXRD) and Scanning electron microscopy (SEM). The photocatalytic activity of the GCoO-NPs was estimated by the degradation of Acid Blue-74 (AB-74) dye and the complete degradation of 98% was accomplished at the reaction time of 150 min at pH 10 and 60 mg/100 mL concentration. The outcomes of this study indicated the excellent performance of the GCoO-NPs on par with some of the earlier findings and this can be an appealing aspirant of extreme potential to be employed as a catalyst alternative to the conventional wastewater treatment methods.
Collapse
|
22
|
Abd Elkodous M, El-Sayyad GS, Youssry SM, Nada HG, Gobara M, Elsayed MA, El-Khawaga AM, Kawamura G, Tan WK, El-Batal AI, Matsuda A. Carbon-dot-loaded Co xNi 1-xFe 2O 4; x = 0.9/SiO 2/TiO 2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Sci Rep 2020; 10:11534. [PMID: 32661303 PMCID: PMC7358215 DOI: 10.1038/s41598-020-68173-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Water scarcity is now a serious global issue resulting from population growth, water decrease, and pollution. Traditional wastewater treatment plants are insufficient and cannot meet the basic standards of water quality at reasonable cost or processing time. In this paper we report the preparation, characterization and multiple applications of an efficient photocatalytic nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2/C-dots) synthesized by a layer-by-layer method. Then, the photocatalytic capabilities of the synthesized nanocomposite were extensively-studied against aqueous solutions of chloramine-T trihydrate. In addition, reaction kinetics, degradation mechanism and various parameters affecting the photocatalytic efficiency (nanocomposite dose, chloramine-T initial concentration, and reaction pH) were analyzed in detail. Further, the antimicrobial activities of the prepared nanocomposite were tested and the effect of UV-activation on the antimicrobial abilities of the prepared nanocomposite was analyzed. Finally, a comparison between the antimicrobial abilities of the current nanocomposite and our previously-reported nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2) had been carried out. Our results revealed that the prepared nanocomposite possessed a high degree of crystallinity, confirmed by XRD, while UV-Vis. recorded an absorption peak at 299 nm. In addition, the prepared nanocomposite possessed BET-surface area of (28.29 ± 0.19 m2/g) with narrow pore size distribution. Moreover, it had semi-spherical morphology, high-purity and an average particle size of (19.0 nm). The photocatalytic degradation efficiency was inversely-proportional to chloramine-T initial concentration and directly proportional to the photocatalyst dose. In addition, basic medium (pH 9) was the best suited for chloramine-T degradation. Moreover, UV-irradiation improved the antimicrobial abilities of the prepared nanocomposite against E. coli, B. cereus, and C. tropicalis after 60 min. The observed antimicrobial abilities (high ZOI, low MIC and more efficient antibiofilm capabilities) were unique compared to our previously-reported nanocomposite. Our work offers significant insights into more efficient water treatment and fosters the ongoing efforts looking at how pollutants degrade the water supply and the disinfection of water-borne pathogenic microorganisms.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, 16453, Giza, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Sally M Youssry
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Hanady G Nada
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Gobara
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Ahmed I El-Batal
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
23
|
Cai D, Han C, Liu C, Ma X, Qian J, Zhou J, Li Y, Sun Y, Zhang C, Zhu W. Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery. NANOSCALE RESEARCH LETTERS 2020; 15:123. [PMID: 32488526 PMCID: PMC7266918 DOI: 10.1186/s11671-020-03351-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/11/2020] [Indexed: 06/06/2023]
Abstract
An enzyme-responsive colon-specific delivery system was developed based on hollow mesoporous silica spheres (HMSS) to which biodegradable chitosan (CS) was attached via cleavable azo bonds (HMSS-N=N-CS). Doxorubicin (DOX) was encapsulated in a noncrystalline state in the hollow cavity and mesopores of HMSS with the high loading amount of 35.2%. In vitro drug release proved that HMSS-N=N-CS/DOX performed enzyme-responsive drug release. The grafted CS could increase the biocompatibility and stability and reduce the protein adsorption on HMSS. Gastrointestinal mucosa irritation and cell cytotoxicity results indicated the good biocompatibility of HMSS and HMSS-N=N-CS. Cellular uptake results indicated that the uptake of DOX was obviously increased after HMSS-N=N-CS/DOX was preincubated with a colonic enzyme mixture. HMSS-N=N-CS/DOX incubated with colon enzymes showed increased cytotoxicity, and its IC50 value was three times lower than that of HMSS-N=N-CS/DOX group without colon enzymes. The present work lays the foundation for subsequent research on mesoporous carriers for oral colon-specific drug delivery.
Collapse
Affiliation(s)
- Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Chang Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xiaoxing Ma
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jiayi Qian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jianwen Zhou
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yue Li
- Department of Andrology, HeiLongJiang Hospital of Traditional Chinese Medicine, Harbin, 150036, China
| | - Yiming Sun
- Department of Andrology, HeiLongJiang Hospital of Traditional Chinese Medicine, Harbin, 150036, China
| | - Changting Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
24
|
Synthesized β-cyclodextrin modified graphene oxide (β-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Mashreghi M, Zamani P, Moosavian SA, Jaafari MR. Anti-Epcam Aptamer (Syl3c)-Functionalized Liposome for Targeted Delivery Of Doxorubicin: In Vitro And In Vivo Antitumor Studies in Mice Bearing C26 Colon Carcinoma. NANOSCALE RESEARCH LETTERS 2020; 15:101. [PMID: 32383027 PMCID: PMC7206479 DOI: 10.1186/s11671-020-03334-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/24/2020] [Indexed: 05/30/2023]
Abstract
In this study, we have surface-functionalized PEGylated-nanoliposomal doxorubicin (DOX) with anti-EpCAM (epithelial cell adhesion molecule) aptamer via post-insertion of anti-EpCAM aptamer-conjugated DSPE-mPEG2000 into Caelyx® (ED-lip). The size, charge, release profile, and cytotoxicity and cellular uptake of formulation were determined. The characterization of the ED-lip demonstrated the slightly increase in size and PDI along with the decrease in zeta potential which indicated that post-insertion efficiently done. The results of flow cytometry and fluorescent microscopy have shown that ED-lip enhanced the rate of cell uptake on C26 cell line compared to Caelyx®. The ED-lip also had more cytotoxic effects than Caelyx® which indicated the efficacy of anti-EpCAM aptamer as targeting ligand. The pharmacokinetic and tissue biodistribution of formulations in mice bearing C26 tumors demonstrated that ED-lip did not affect the distribution profile of DOX compared to Caelyx® in animal model. In addition, ED-lip effectively improved the tumor accumulation of DOX and promoted survival of animals compared to Caelyx®. These results suggest that the functionalization of Caelyx® with anti-EpCAM aptamer is promising in cancer treatment and merits further investigation.
Collapse
Affiliation(s)
- Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Guo B, Li M, Li S. The comparative study of a homogeneous and a heterogeneous system with green synthesized iron nanoparticles for removal of Cr(VI). Sci Rep 2020; 10:7382. [PMID: 32355322 PMCID: PMC7193580 DOI: 10.1038/s41598-020-64476-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/16/2020] [Indexed: 11/18/2022] Open
Abstract
Green iron nanoparticles (G-nZVI) were synthesized in situ by adding grape-seed extracts and Fe2+ solution simultaneously. The performances for the removal of Cr(VI) were compared in a homogeneous system by original G-nZVI (in suspension) with in a heterogeneous system by treated G-nZVI. The characterization of TEM, SEM, XRD, FTIR and XPS show that G-nZVI is the formation of Fe°-iron oxide core-shell nanoparticles with organic matters in the extracts as capping/stabilizing agents. The same excellent performances on the removal of Cr(VI) were observed in the both systems and the adsorption capacity was from 78.3 to 166.7 mg (Cr)·g-1 (Fe) with the increase of initial Fe2+ concentrations. The pseudo second-order model described the adsorption process excellently and both pseudo first-order and pseudo second-order models fit the reduction process well. It illustrated that the reaction included prompt adsorption and simultaneous redox process. Moreover, the results of thermodynamics study (ΔG° < 0, ΔH° > 0, ΔS° > 0) revealed that the adsorption was a spontaneous and endothermic process. It is obvious that the systhesis of original G-nZVI in the homogeneous system is more simple, rapid, cost-effective and suitable for in situ uses. It holds a great potential for remediation of soil and water.
Collapse
Affiliation(s)
- Bo Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China.
| | - Meiling Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China
| | - Sai Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China
| |
Collapse
|
27
|
Ahmadi A, Foroutan R, Esmaeili H, Tamjidi S. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14044-14057. [PMID: 32036528 DOI: 10.1007/s11356-020-07756-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
In this investigation, bentonite clay (BC) and bentonite clay@MnFe2O4 composite (BCMFC) were applied as efficient adsorbents for adsorbing Cr(III) and Cr(VI) ions from aqueous media. Different analyses such as FTIR, SEM, EDX, Map, BET, and XRD were used to characterize the adsorbents. The results showed that the removal efficiency of Cr(III) and Cr(VI) using BC were found to be 95.21 and 95.74%, while the corresponding values to the BCMFC were 97.37 and 98.65%, respectively. Also, the equilibrium and kinetic studies showed that the Freundlich isotherm model and the quasi-second-order kinetic model could better describe the equilibrium and kinetic behaviors of the adsorption process. The maximum adsorption capacity of the BC for the adsorption of Cr(III) and Cr(VI) ions were evaluated as 151.5 mg/g (25oC, pH 6, 90 min, and 1 g/L) and 161.3 mg/g (25oC, pH 3, 90 min, and 1 g/L), respectively, while the BCMFC showed the maximum capacities of 175.4 mg/g (25oC, pH 6, 60 min, and 1.5 g/L) and 178.6 mg/g (25oC, pH 3, 60 min, and 1.5 g/L) for Cr(III) and Cr(VI) ions, respectively, which were remarkable amounts. In addition, the thermodynamic study indicated that the adsorption process was physical, spontaneous, and exothermic. High removal efficiency, high chromium adsorption capacity, and low-cost magnetic adsorbent were significant features of the BCMFC for removal of Cr (III) and Cr (VI).
Collapse
Affiliation(s)
- Amir Ahmadi
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Sajad Tamjidi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
28
|
Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111809. [DOI: 10.1016/j.jphotobiol.2020.111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 11/21/2022]
|
29
|
Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 2020; 10:314. [PMID: 31941935 PMCID: PMC6962342 DOI: 10.1038/s41598-019-57210-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022] Open
Abstract
Heavy metal pollution is one of the most serious environmental and human health risk problem associated with industrial progress. The present study was conducted with the goal of isolation and characterization of metal-resistant lactic acid bacteria (LAB) from the Alexandrian Mediterranean Seacoast, Egypt, with their possible exploitation in metal remediation. Lactobacillus plantarum MF042018 exhibited high degree of resistance, up to 500 and 100 ppm, to both nickel and chromium, respectively, with multiple antibiotic resistance (MAR) index above 0.5. In an attempt to improve chromium removal by L. plantarum MF042018, Plackett-Burman followed by Box-Behnken statistical designs were applied. An initial Cr2+ concentration of 100 ppm and inoculum size of 3% presented the best conditions for the accumulation of chromium by L. plantarum MF042018. The study was also navigated to assess the biosorption capacity of L. plantarum MF042018, the maximum uptake capacity (q) of both Cd2+ and Pb2+ was recorded at pH 2.0 and a temperature of 22 °C after 1 hr. The biosorption process of Cd2+ and Pb2+ was well explained by the Langmuir isotherm model better than the Freundlich isotherm. Furthermore, the results revealed that the use of L. plantarum MF042018 is an effective tool for the treatment of hazardous metal-polluted battery-manufacturing effluent. Therefore, the present study implies that L. plantarum MF042018 can be applied as a promising biosorbent for the removal of heavy metals from industrial wasterwaters.
Collapse
|
30
|
Jin L, Chai L, Yang W, Wang H, Zhang L. Two-Dimensional Titanium Carbides (Ti 3C 2T x) Functionalized by Poly(m-phenylenediamine) for Efficient Adsorption and Reduction of Hexavalent Chromium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010167. [PMID: 31881705 PMCID: PMC6982338 DOI: 10.3390/ijerph17010167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Titanium carbides (MXenes) are promising multifunctional materials. However, the negative surface charge and layer-by-layer restacking of MXenes severely restrict their application in the field of anionic pollutants, including in hexavalent chromium (Cr(VI)). Herein, Ti3C2Tx MXenes was functionalized through in situ polymerization and intercalation of poly(m-phenylenediamine) (PmPD), then Ti3C2Tx/PmPD composites were obtained. Delightedly, Ti3C2Tx/PmPD composites exhibited positive surface charge, expanded interlayer spacing, and enhanced hydrophobicity. Furthermore, the specific surface area of Ti3C2Tx/PmPD composite was five and 23 times that of Ti3C2Tx and PmPD, respectively. These advantages endowed Ti3C2Tx/PmPD composite with an excellent adsorption capacity of Cr(VI) (540.47 mg g-1), which was superior to PmPD (384.73 mg g-1), Ti3C2Tx MXene (137.45 mg g-1), and the reported MXene-based adsorbents. The Cr(VI) removal mechanism mainly involved electrostatic adsorption, reduction, and chelation interaction. This study developed a simple functionalization strategy, which would greatly explore the potential of MXenes in the field of anionic pollutants.
Collapse
Affiliation(s)
- Linfeng Jin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
- Correspondence: (H.W.); (L.Z.); Tel.: +86-731-8883-0875 (H.W.); Fax: +86-731-8871-0171 (H.W.)
| | - Liyuan Zhang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Correspondence: (H.W.); (L.Z.); Tel.: +86-731-8883-0875 (H.W.); Fax: +86-731-8871-0171 (H.W.)
| |
Collapse
|
31
|
Synthesis and characterization of phosphorylated Aspergillus niger for effective adsorption of uranium(VI). J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06917-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Bonyadi Z, Kumar PS, Foroutan R, Kafaei R, Arfaeinia H, Farjadfard S, Ramavandi B. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: Application for real wastewater. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0373-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Maitlo HA, Kim KH, Kumar V, Kim S, Park JW. Nanomaterials-based treatment options for chromium in aqueous environments. ENVIRONMENT INTERNATIONAL 2019; 130:104748. [PMID: 31252168 DOI: 10.1016/j.envint.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 05/27/2023]
Abstract
Sustainable development and the restoration of ecosystems are the important goals for civilization. Currently, heavy metal contamination of aquatic environments has become a serious issue. Chromium (Cr) is simultaneously an essential metallic element and one of 20 chemicals posing a maximum threat to living beings. To mitigate that threat, various treatment methods have been developed, including adsorption, electrocoagulation, photoelectrocatalysis, fuel cells, bioremediation, chemical precipitation, ultrafiltration, ion exchange, and co-precipitation. However, selection of the most energy- and cost-efficient wastewater treatment option has proven challenging, as each approach is subject to shortcomings involving energy consumption, treatment capacity, and efficiency. This review describes the potential role of diverse functional nanomaterials (e.g., iron/iron oxide nanoparticles, carbon nanostructures, metal organic frameworks, and their commercial counterparts) in treatment of Cr in aqueous environments with respect to key figure of merits, such as, adsorption capacity, removal efficiency, and partition coefficient. In addition, their performance was compared with the most common treatment options. The results of this study will help determine the most effective and economical options for control of Cr in aquatic environments.
Collapse
Affiliation(s)
- Hubdar Ali Maitlo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India.
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Woo Park
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| |
Collapse
|
34
|
Samuel MS, Bhattacharya J, Raj S, Santhanam N, Singh H, Pradeep Singh N. Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int J Biol Macromol 2019; 121:285-292. [DOI: 10.1016/j.ijbiomac.2018.09.170] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/02/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022]
|
35
|
Samuel MS, Bhattacharya J, Parthiban C, Viswanathan G, Pradeep Singh ND. Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight. ULTRASONICS SONOCHEMISTRY 2018; 49:215-221. [PMID: 30150024 DOI: 10.1016/j.ultsonch.2018.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 05/21/2023]
Abstract
In this study, the metal organic framework MOF [Zn(BDC)(DMF)] crystal was synthesized via ultrasonic irradiation and solvothermal method. The synthesized MOF [Zn(BDC)(DMF)] crystal was characterized by PXRD, FTIR, FESEM-EDX, TGA, UV-DRS and BET. The catalytic activity of MOF [Zn(BDC)(DMF)] was investigated by 4-nitrophenol (4-NP) degradation under direct sunlight irradiation. The influence of various degradation parameters such as initial 4-NP concentration, dosage, pH and H2O2 concentration were investigated. The results indicated that the synthesized MOF [Zn(BDC)(DMF)] exhibited strong photocatalytic activity in the presence of NaBH4 under sunlight irradiation and the reduction of 4-NP to 4-aminophenol (4-AP) completed within 10 min. The study provides the synthesized MOF [Zn(BDC)(DMF)] crystal can be used as a high performance catalyst for the treatment of dyes in wastewater.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Jayanta Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - C Parthiban
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Gayathri Viswanathan
- Department of Cardiology, Duke University Health System, North Carolina, United States
| | - N D Pradeep Singh
- Department of Cardiology, Duke University Health System, North Carolina, United States.
| |
Collapse
|