1
|
Medeiros Leão G, Silva Ribeiro MD, Filho RLD, Saraiva LB, Peña-Garcia RR, Teixeira APDC, Lago RM, Freitas FA, de Sá Barros S, Junior SD, Ruiz YL, Nobre FX. The Synergic Effect of h-MoO 3, α-MoO 3, and β-MoO 3 Phase Mixture as a Solid Catalyst to Obtain Methyl Oleate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60103-60121. [PMID: 39467908 PMCID: PMC11551912 DOI: 10.1021/acsami.4c08804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Extensive research in the last few decades has conclusively demonstrated the significant influence of experimental conditions, surfactants, and synthesis methods on semiconductors' properties in technological applications. Therefore, in this study, the synthesis of molybdenum oxide (MoO3) was reported by the addition of 2.5 (MoO3_2.5), 5 (MoO3_5), 7.5 (MoO3_7.5), and 10 mL (MoO3_10) of nitric acid, obtaining the respective concentrations of 0.6, 1.10, 1.6, and 0.6 mol L-1. In this study, all samples were synthesized by the hydrothermal method at 160 °C for 6 h. The materials obtained were structurally characterized by X-ray diffraction (XRD) and structural Rietveld refinement, Raman spectroscopy, and infrared spectroscopy (FTIR), confirming the presence of all crystallographic planes and bands associated with active modes for the pure hexagonal phase (h-MoO3) when the solution's concentration was 0.6 mol L-1 of nitric acid. For concentrations of 1.10, 1.60, and 2.10 mol L-1, the presence of crystallographic planes and active modes associated with the formation of mixtures of molybdenum oxide polymorphs was confirmed, in this case, the orthorhombic, monoclinic, and hexagonal phases. X-ray photoelectron spectroscopy reveals the occurrence of the states Mo4+, Mo5+, and Mo6+, which confirm the predominance of the acid Lewis sites, corroborating the analysis by adsorption of pyridine followed by characterization by infrared spectroscopy. The images collected by scanning electron microscopy confirmed the information presented in the structural characterization, where microcrystals with hexagonal morphology were obtained for the MoO3_2.5 sample. In contrast, the MoO3_5, MoO3_7.5, and MoO3_10 samples exhibited hexagonal and rod-shaped microcrystals, where the latter morphology is characteristic of the orthorhombic phase. The catalytic tests carried out in the conversion of oleic acid into methyl oleate, using the synthesized samples as a heterogeneous catalyst, resulted in conversion percentages of 52.5, 58.6, 69.1, and 97.2% applying the samples MoO3_2.5, MoO3_5, MoO3_7.5, and MoO3_10, respectively. The optimization of the catalytic tests with the MoO3_10 sample revealed that the conversion of oleic acid into methyl oleate is a thermodynamically favorable process, with a variation in the Gibbs free energy between -67.3 kJ mol-1 and 83.4 kJ mol-1 as also, the energy value of activation of 24.6 kJ mol-1, for the temperature range from 80 to 140 °C, that is, from 353.15 to 413.15 K, respectively. Meanwhile, the catalyst reuse tests resulted in percentages greater than 85%, even after the ninth catalytic cycle. Therefore, the expressive catalytic performance of the mixture of h-MoO3 and α-MoO3 (MoO3_10) phases is confirmed, associated with the synergistic effect, mainly due to the increase in the surface area and available Lewis sites of these phases.
Collapse
Affiliation(s)
- Gabrielle
Sophie Medeiros Leão
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| | - Marcos Daniel Silva Ribeiro
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| | | | - Libertalamar Bilhalva Saraiva
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| | - Ramón R. Peña-Garcia
- Universidade
Federal Rural de Pernambuco, Programa de
Pós-Graduação em Engenharia Física, UFPE, Recife, PE 52171-900, Brazil
| | | | - Rochel Montero Lago
- Departamento
de Química, ICEx, Universidade Federal
de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil
| | - Flávio Augusto Freitas
- Núcleo
de Materiais e Energia − Centro de Bionegócios da Amazônia, Av. Gov. Danilo de Matos Areosa,
160 - Distrito Industrial I, Manaus, AM 69075-351, Brazil
| | - Silma de Sá Barros
- Programa
de Pós-graduação em Engenharia de materiais,
Escola de Engenharia de Lorena, Universidade
de São Paulo, Estrada Municipal Chiquito de Aquino, n° 1000 − Mondesir, Lorena, SP 12612-550, Brazil
| | - Sérgio Duvoisin Junior
- Curso de
Engenharia Química, Universidade do Estado do Amazonas, Escola Superior de Tecnologia, Av. Darcy Vagas, 1200, Parque Dez de Novembro, Manaus, AM 69050-020, Brazil
| | - Yurimiler Leyet Ruiz
- Departamento
de Engenharia de Materiais, Laboratório
de Processamento de Materiais Tecnológicos (LPMaT), Universidade
Federal do Amazonas, Instituto de Ciências Exatas, Rua Av. General Rodrigo Otávio
Jordão Ramos, 1200, Coroado I, Manaus 69067-005, Brazil
| | - Francisco Xavier Nobre
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| |
Collapse
|
2
|
Kamble BB, Sharma KK, Sonawane KD, Tayade SN, Grammatikos S, Reddy YVM, Reddy SL, Shin JH, Park JP. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv Colloid Interface Sci 2024; 333:103284. [PMID: 39226798 DOI: 10.1016/j.cis.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
Collapse
Affiliation(s)
- Bhagyashri B Kamble
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| | - Kiran Kumar Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Sotirios Grammatikos
- ASEMlab - Laboratory of Advanced and Sustainable Engineering Materials, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
| | - Y Veera Manohara Reddy
- Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway; Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110026, India.
| | - S Lokeswara Reddy
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, TN, India
| | - Jae Hwan Shin
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Chen Y, Zhou Y, Wang Y, Wu Y, Xie Y, Zhao P, Hu X, Fei J. Ultra-sensitive electrochemical sensor based on in situ grown ultrafine HKUST-1 nanoparticles @ graphite nanosheets and core-shell structured MoO 3-polypyrrole nanowires for the detection of rutin in orange juice. Mikrochim Acta 2024; 191:393. [PMID: 38874794 DOI: 10.1007/s00604-024-06417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.
Collapse
Affiliation(s)
- Yuefan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yinzhi Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yuhe Zhou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yingjie Wu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
4
|
Ramadoss J, Govindasamy M, Sonachalam A, Huang CH, Alothman AA. CuMoO 4/Ti 3C 2Tx nanocomposite layers perform as an ultrasensitive electrochemical sensor for the detection of antioxidant rutin. Mikrochim Acta 2024; 191:226. [PMID: 38558261 DOI: 10.1007/s00604-024-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 04/04/2024]
Abstract
The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.
Collapse
Affiliation(s)
- Jagadeesh Ramadoss
- Centre for High-Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Mani Govindasamy
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 24303, Taiwan
| | - Arumugam Sonachalam
- Centre for High-Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Tamil Nadu Open University, Chennai, 600015, India.
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan.
- College of Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Yang C, Yan B. Dual-Function Platform Based on Postsynthetic Functionalization of a Water-Stable Hydrogen-Bonded Organic Framework: Ratiometric Sensing of Nicotine and Cotinine and Dynamic Anticounterfeiting for Information Encryption. Inorg Chem 2023; 62:20458-20466. [PMID: 38032229 DOI: 10.1021/acs.inorgchem.3c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nicotine and its major metabolite cotinine are widely used as markers of tobacco smoke abstinence as well as indicators of active smoking levels and the assessment of passive inhalation of tobacco smoke in nonsmokers. Therefore, using an easy-to-prepare sensing platform that can provide a rapid, highly sensitive response for the simultaneous detection of salivary nicotine levels and urinary cotinine levels is especially crucial for helping heavy cigarette smokers quit smoking and protecting public health. Hydrogen-bonded organic frameworks, as a novel class of porous crystalline materials, show immense potential for functional modification and optical sensing. Herein, a new HOF was prepared by a simple solvent evaporation method, and a dual-emitting material Eu(bpy)@HOF-215(1) was obtained by the postsynthetic modification of HOF by lanthanide luminescent complexes, which maintains favorable structural stability and introduces the characteristic emitting of Eu, allowing use as a ratiometric fluorescent sensor for salivary nicotine and urinary cotinine, with a limit of detection of nicotine of 0.045 μM in saliva and a limit of detection of cotinine of 0.591 μM in urine. Furthermore, luminescent inks based on HOF-215 have been fabricated based on the photoresponse variations of 1 to NIC and COT, which enables the multilevel encryption and decryption of information, in a dynamic and recyclable process. This work not only synthesizes a novel blue HOF but also provides a representative successful case of a dual-function platform for simultaneous application to ratiometric sensing and dynamic anticounterfeiting.
Collapse
Affiliation(s)
- Chunyu Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
6
|
Alshammari K, Alotaibi T, Alshammari M, Alhassan S, Alshammari AH, Taha TAM. Synthesis of Sulfur@g-C 3N 4 and CuS@g-C 3N 4 Catalysts for Hydrogen Production from Sodium Borohydride. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4218. [PMID: 37374402 DOI: 10.3390/ma16124218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
In this work, the S@g-C3N4 and CuS@g-C3N4 catalysts were prepared via the polycondensation process. The structural properties of these samples were completed on XRD, FTIR and ESEM techniques. The XRD pattern of S@g-C3N4 presents a sharp peak at 27.2° and a weak peak at 13.01° and the reflections of CuS belong to the hexagonal phase. The interplanar distance decreased from 0.328 to 0.319 nm that facilitate charge carrier separation and promoting H2 generation. FTIR data revealed the structural change according to absorption bands of g-C3N4. ESEM images of S@g-C3N4 exhibited the described layered sheet structure for g-C3N4 materials and CuS@g-C3N4 demonstrated that the sheet materials were fragmented throughout the growth process. The data of BET revealed a higher surface area (55 m2/g) for the CuS-g-C3N4 nanosheet. The UV-vis absorption spectrum of S@g-C3N4 showed a strong peak at 322 nm, which weakened after the growth of CuS at g-C3N4. The PL emission data showed a peak at 441 nm, which correlated with electron-hole pair recombination. The data of hydrogen evolution showed improved performance for the CuS@g-C3N4 catalyst (5227 mL/g·min). Moreover, the activation energy was determined for S@g-C3N4 and CuS@g-C3N4, which showed a lowering from 47.33 ± 0.02 to 41.15 ± 0.02 KJ/mol.
Collapse
Affiliation(s)
- Khulaif Alshammari
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Turki Alotaibi
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Majed Alshammari
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Sultan Alhassan
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Alhulw H Alshammari
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | | |
Collapse
|
7
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Nachimuthu S, Kuo Y, Khanh DH, Zhu Z, Jiang J. Density functional theory study on sensing properties of
g‐C
3
N
4
sheet to atmospheric gasses: Role of zigzag and armchair edges. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Yi‐Hui Kuo
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Dang Hoai Khanh
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Zhan‐Jun Zhu
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Jyh‐Chiang Jiang
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
| |
Collapse
|
9
|
Bhuvaneswari C, Elangovan A, Sharmila C, Sudha K, Arivazhagan G. Fabrication of cobalt tungstate/N-rGO nanocomposite: Application towards the detection of antibiotic drug-Furazolidone. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Keyan AK, Sakthinathan S, Vasu D, Yu CL, Vinothini S, Chiu TW. Gadolinium molybdate decorated graphitic carbon nitride composite: highly visualized detection of nitrofurazone in water samples. RSC Adv 2022; 12:34066-34079. [PMID: 36505718 PMCID: PMC9704353 DOI: 10.1039/d2ra05579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, a graphitic carbon nitride/gadolinium molybdate (g-C3N4/Gd2MoO6) composite manufactured glassy carbon electrode (GCE) was used to detect nitrofurazone (NFZ) at the trace level. A quick and inexpensive electrochemical sensor for NFZ analysis is described in this paper. The material structure and properties were determined by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. The GCE/g-C3N4/Gd2MoO6 electrode was studied using cyclic voltammetry and amperometry. The electrocatalytic studies of the GCE/g-C3N4/Gd2MoO6 electrode showed significantly improved detection of NFZ. The electrocatalytic studies of the GCE/g-C3N4/Gd2MoO6 electrode was significantly improved for the detection of NFZ than bare GCE, GCE/g-C3N4, and GCE/Gd2MoO6 modified electrodes. The linear response and the detection limit of NFZ were 0.006 μM (S/N = 3) and 0.02-2000 μM, respectively. The electrode sensitivity was identified as 2.057 μA μM-1 cm-2 under ideal experimental conditions. The modified electrode was able to detect NFZ even when there were 500-fold as many interfering ions present. The practical applicability of the electrode was tested in a variety of water samples, with satisfactory results. Overall, the NFZ sensor demonstrated satisfactory repeatability, stability, and reproducibility. Meanwhile, it has proven to be a reliable, stable, and practical platform for the analysis of NFZ in various water samples, with acceptable recoveries.
Collapse
Affiliation(s)
- Arjunan Karthi Keyan
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Dhanabal Vasu
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Chung-Lun Yu
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Sivaramakrhishnan Vinothini
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| |
Collapse
|
11
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
Kaur H, Siwal SS, Chauhan G, Saini AK, Kumari A, Thakur VK. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. CHEMOSPHERE 2022; 304:135182. [PMID: 35667504 DOI: 10.1016/j.chemosphere.2022.135182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Foodborne-related infections due to additives and pollutants pose a considerable task for food processing enterprises. Therefore, the competent, cost-effective, and quick investigation of nutrition additives and contaminants is essential to reduce the threat of public fitness problems. The electrochemical sensor (ECS) shows facile and potent analytical approaches desirable for food protection and quality inspection over traditional methods. The consequence of a broad display of nanomaterials has paved the path for their relevance in designing high-performance ECSs appliances for medical diagnostics and conditions and food protection. This review article has discussed the importance of electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs). Initially, we have demonstrated the types of pharmaceutical and food/agriculture pollutants (such as pesticides, heavy metals, antibiotics and other medical drugs) present in water. Subsequently, we have compiled the information on electrochemical techniques (such as voltammetric and electrochemical impedance spectroscopy) and their crucial parameters for detecting pollutants. Further, the applications of CNMs for sensing pharmaceutical and food pollutants have been demonstrated in detail. Finally, the topic has been concluded with existing challenges and future prospects.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Gunjan Chauhan
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh Kumar Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Anita Kumari
- Department of Chemistry, GGDSD College Rajpur (Palampur), Himachal Pradesh University, Shimla, 176061, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
13
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Kateshiya MR, Malek NI, Kumar Kailasa S. Green fluorescent carbon dots functionalized MoO3 nanoparticles for sensing of hypochlorite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Srinithi S, Balakumar V, Chen SM. In-situ fabrication of polypyrrole composite with MoO 3: An effective interfacial charge transfers and electrode materials for degradation and determination of acetaminophen. CHEMOSPHERE 2022; 291:132977. [PMID: 34801570 DOI: 10.1016/j.chemosphere.2021.132977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical wastes, acetaminophen (AP) widely used in medical fields, is often discharged into water, causing harm to human health. Hence, there is an urgent need to effectively remove AP from wastewater systems. In this paper, polypyrrole (PPy) composite with MoO3 has been synthesized via an in-situ polymerization method. The as-prepared materials were thoroughly characterized by XRD, FT-IR, UV-DRS, SEM, TEM and mapping techniques. The as-prepared MoO3@PPy composite was utilized to removal of AP via photocatalytic degradation and electrochemical determination. Under optimized composite, MoO3@PPy (2) showed an excellent photocatalytic degradation and electrochemical determination of AP compared to pure MoO3 and all other composites. The higher catalytic activity was ascribed to the effective interfacial charges transfer, reduce the recombination and enhance the active surface area of electrode via a synergistic effect. The photocatalytic degradation mechanism, rate and kinetic of the reaction were investigated and discussed. The major active degradation species and an effective charge transfer properties were confirmed by trapping experiments and photocurrent spectra. In addition, the MoO3@PPy (2) modified GCE exhibit the AP determination activity by DPV with a linear range of 0.05-546 μM. The limit of detection and sensitivity of electrode were 0.0007 μM and 0.242 μM-1 cm-2 respectively. Moreover, the proposed electrode showed good selectivity, stability and reproducibility. This method was useful for the determination of AP in real samples.
Collapse
Affiliation(s)
- Subburaj Srinithi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan.
| |
Collapse
|
16
|
Anusha T, Bhavani KS, Shanmukha Kumar JV, Brahman PK, Hassan RYA. Fabrication of electrochemical immunosensor based on GCN-β-CD/Au nanocomposite for the monitoring of vitamin D deficiency. Bioelectrochemistry 2022; 143:107935. [PMID: 34637962 DOI: 10.1016/j.bioelechem.2021.107935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
Serum 25-hydroxyvitamin D (25(OH)D) has been clinically considered as a novel biomarker for vitamin D deficiency. The current standard technologies for the detection of 25(OH)D are performed in sophisticated laboratories exhibiting the practical limitations for onsite and affordable testing. Therefore, the development of a cost-effective device for Vitamin D is extremely necessary to provide an earlier diagnosis. Herein, for the first time, we propose a novel label-free impedimetric immunosensor for the detection and quantification of 25-hydroxyvitamin D3 (25(OH)D3) biomarker in serum samples based on the Au nanoparticles functionalized GCN-β-CD nanocomposite. To fabricate the sensing probe, Ab-25(OH)D3 antibodies were covalently immobilized on GCN-β-CD@Au/GCE using carbodiimide chemistry. The surface morphology and structural properties of constructed immunosensor were confirmed by different analytical techniques. Electrochemical impedance spectroscopy technique (EIS) has been selected as the main detection method to measure the Antibody (Ab) and Antigen (Ag) interaction at the immunosensor surface because it is label-free, less destructive to the activities of the biomolecule, and highly sensitive. The as-prepared immunosensor exhibited an excellent concentration range from 0.1 ng/ml to 500 ng/ml with the lowest limit of detection of 0.01 ng/ml. Furthermore, the sensing probe was validated in serum samples and obtained results were compared with the standard CLIA technique. The results have revealed that the sensing probe could be used for clinical diagnosis of Vitamin D deficiency in the clinical laboratories.
Collapse
Affiliation(s)
- Tummala Anusha
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
| | - Kalli Sai Bhavani
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
| | - J V Shanmukha Kumar
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
| | - Pradeep Kumar Brahman
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India.
| | - Rabeay Y A Hassan
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt; Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| |
Collapse
|
17
|
Alaghmandfard A, Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C 3N 4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:294. [PMID: 35055311 PMCID: PMC8779993 DOI: 10.3390/nano12020294] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
g-C3N4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile synthesis, and interesting layered structure. However, to improve some of the properties of g-C3N4, such as photochemical stability, electrical band structure, and to decrease charge recombination rate, and towards effective light-harvesting, g-C3N4-metal oxide-based heterojunctions have been introduced. In this review, we initially discussed the preparation, modification, and physical properties of the g-C3N4 and then, we discussed the combination of g-C3N4 with various metal oxides such as TiO2, ZnO, FeO, Fe2O3, Fe3O4, WO3, SnO, SnO2, etc. We summarized some of their characteristic properties of these heterojunctions, their optical features, photocatalytic performance, and electrical band edge positions. This review covers recent advances, including applications in water splitting, CO2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and supercapacitors. We show that metal oxides can improve the efficiency of the bare g-C3N4 to make the composites suitable for a wide range of applications. Finally, this review provides some perspectives, limitations, and challenges in investigation of g-C3N4-metal-oxide-based heterojunctions.
Collapse
Affiliation(s)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
18
|
Ranjith KS, Ezhil Vilian AT, Ghoreishian SM, Umapathi R, Hwang SK, Oh CW, Huh YS, Han YK. Hybridized 1D-2D MnMoO 4-MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126775. [PMID: 34358971 DOI: 10.1016/j.jhazmat.2021.126775] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Hydroquinone (HQ) and catechol (CC) are the two major dihydroxybenzene isomers, are considered one of the toxic pollutants in wastewater, which often coexisted and impede each other during sample identification. For practical analysis and simultaneous detection of HQ and CC in wastewater, we fabricate a hybrid electrochemical sensor with electrospun one-dimensional (1D) MnMoO4 nanofibers coupled with a few-layered exfoliated two-dimensional (2D) MXene. The facilitated abundant defective edges of 1D MnMoO4 and 2D MXene nanoarchitecture accelerated the effect of synergistic signal amplification and exhibited high electrocatalytic activity towards the oxidation of hydroquinone and catechol. MnMoO4-MXene-GCE showed oxidation potentials of 0.102 V and 0.203 V for hydroquinone and catechol, respectively. It revealed the distinguished and simultaneous detection range of 0.101 V with a strong anodic peak current. Noteworthily, the proposed 1D-2D hybridized MnMoO4-MXene-GCE sensor exhibited a wide linear response from 5 nM to 65 nM for hydroquinone and catechol. Moreover, it showed a low detection limit of 0.26 nM and 0.30 nM for HQ and CC with high stability, respectively. The feasible 1D-2D MnMoO4-MXene nanocomposite-based biosensor effectively detected hydroquinone and catechol in hazardous water pollutants using the differential pulse voltammetric technique with recovery values.
Collapse
Affiliation(s)
- Kugalur Shanmugam Ranjith
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Seyed Majid Ghoreishian
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Reddicherla Umapathi
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Kyu Hwang
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Cheol Woo Oh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
| |
Collapse
|
19
|
Bhuvaneswari C, Ganesh Babu S. Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C3N4 nanostructure: An ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Hydrothermally synthesized a pyrochlore-type bismuth stannate (Bi2Sn2O7): Efficient electrochemical detection of nitroxoline. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Vinoth S, Govindasamy M, Wang SF, ALOthman ZA, Alshgari RA, Ouladsmane M. Fabrication of Strontium Molybdate Incorporated with Graphitic Carbon Nitride Composite: High-sensitive Amperometric Sensing Platform of Food Additive in Foodstuffs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Vinoth S, Shalini Devi K, Pandikumar A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116274] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Molybdenum oxide modified montmorillonite K10 clay as novel solid acid for flow synthesis of ionone isomers. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Rajakumaran R, Krishnapandi A, Chen SM, Balamurugan K, Chang FM, Sakthinathan S. Electrochemical investigation of zinc tungstate nanoparticles; a robust sensor platform for the selective detection of furazolidone in biological samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Alagumalai K, Shanmugam R, Chen SM, Balamurugan M. Facile synthesis of Co( ii)-doped cobalt oxide nanostructures: their application in the sensitive determination of the prophylactic drug furazolidone. NEW J CHEM 2021. [DOI: 10.1039/d1nj01261d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrochemical detection of prophylactic drug furazolidone through Co–Co2O4 modified GCE.
Collapse
Affiliation(s)
- Krishnapandi Alagumalai
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ragurethinam Shanmugam
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Muthukutty Balamurugan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
26
|
Chouhan RS, Jerman I, Heath D, Bohm S, Gandhi S, Sadhu V, Baker S, Horvat M. Emerging tri‐s‐triazine‐based graphitic carbon nitride: A potential signal‐transducing nanostructured material for sensor applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Ivan Jerman
- National Institute of Chemistry Ljubljana Slovenia
| | - David Heath
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Sivasambu Bohm
- Royal Society Industry Fellow Molecular Science Research Hub Imperial College London London UK
| | - Sonu Gandhi
- DBT‐National Institute of Animal Biotechnology (DBT‐NIAB) Hyderabad Telangana India
| | - Veera Sadhu
- School of Physical Sciences Kakatiya Institute of Technology & Science (KITS) Warangal Telangana India
| | - Syed Baker
- Department of Microbiology Prof. V.F. Voino‐Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Siberia Russian Federation
| | - Milena Horvat
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
27
|
Nasri A, Jaleh B, Khazalpour S, Nasrollahzadeh M, Shokouhimehr M. Facile synthesis of graphitic carbon nitride/chitosan/Au nanocomposite: A catalyst for electrochemical hydrogen evolution. Int J Biol Macromol 2020; 164:3012-3024. [DOI: 10.1016/j.ijbiomac.2020.08.143] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
|
28
|
Balasubramanian P, He SB, Jansirani A, Peng HP, Huang LL, Deng HH, Chen W. Bimetallic AgAu decorated MWCNTs enable robust nonenzyme electrochemical sensors for in-situ quantification of dopamine and H2O2 biomarkers expelled from PC-12 cells. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Molybdenum trioxide incorporated in a carbon paste as a sensitive device for bisphenol A monitoring. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Sriram B, Baby JN, Wang SF, Govindasamy M, George M, Jothiramalingam R. Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Mikrochim Acta 2020; 187:654. [PMID: 33179119 DOI: 10.1007/s00604-020-04590-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
A nanorod-like structured CoMoO4 embedded on boron doped-graphitic carbon nitride composite (CoMoO4/BCN) has been developed by a simple sonochemical method for electrochemical detection of furazolidone (FUZ). Interestingly, the impedance of CoMoO4/BCN fabricated screen-printed carbon electrode (SPCE) possesses a lower resistance charge transfer (Rct), which favors superior electrochemical detection of FUZ. Such CoMoO4/BCN/SPCE exhibits an ultralow detection limit of 1.6 nM with a concentration range of 0.04-408.9 μM, and high sensitivity of 11.6 μA μM-1 cm-2 by DPV method. In addition, biological and water samples were used for demonstration of practical application of CoMoO4/BCN/SPCE towards electrochemical detection of FUZ, and the result exhibits a satisfactory recovery.Graphical abstract.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600086, Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600086, Tamil Nadu, India.
| | - R Jothiramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Abinaya M, Muthuraj V. Bi-functional catalytic performance of silver manganite/polypyrrole nanocomposite for electrocatalytic sensing and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Graphitic carbon nitride nanosheets (g-C 3N 4 NS) as dual responsive template for fluorescent sensing as well as degradation of food colorants. Food Chem 2020; 343:128451. [PMID: 33129619 DOI: 10.1016/j.foodchem.2020.128451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
In this work, fluorescent g-C3N4 NS with laminar morphology and ultrathin thickness were fabricated. The as synthesized NS were well characterized by UV-Visible and Fluorescence spectroscopy, FT-IR, XRD and HR-TEM. The bright blue fluorescent suspension of g-C3N4 NS was utilized for efficient detection of food colorant; tartrazine (Tz) and sunset yellow (SY). Both food colorant were able to quench fluorescence of NS efficiently were able to detect them selectively over other interfering analytes. The chemosensor showed linear range response for low concentration of Tz and SY with limit of detection for Tz and SY as 0.0325 μM (32.5 nM) and 0.221 μM (221 nM), respectively. They served as non-toxic and low cost photocatalyst. The catalytic degradation process was confirmed by mass and UV-Visible spectra analysis. The g-C3N4 NS served dual role of detection as well as photocatalytic degradation of food colorant.
Collapse
|
33
|
Zribi R, Neri G. Mo-Based Layered Nanostructures for the Electrochemical Sensing of Biomolecules. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5404. [PMID: 32967188 PMCID: PMC7571038 DOI: 10.3390/s20185404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Mo-based layered nanostructures are two-dimensional (2D) nanomaterials with outstanding characteristics and very promising electrochemical properties. These materials comprise nanosheets of molybdenum (Mo) oxides (MoO2 and MoO3), dichalcogenides (MoS2, MoSe2, MoTe2), and carbides (MoC2), which find application in electrochemical devices for energy storage and generation. In this feature paper, we present the most relevant characteristics of such Mo-based layered compounds and their use as electrode materials in electrochemical sensors. In particular, the aspects related to synthesis methods, structural and electronic characteristics, and the relevant electrochemical properties, together with applications in the specific field of electrochemical biomolecule sensing, are reviewed. The main features, along with the current status, trends, and potentialities for biomedical sensing applications, are described, highlighting the peculiar properties of Mo-based 2D-nanomaterials in this field.
Collapse
Affiliation(s)
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
34
|
Jesu Amalraj AJ, Umesh NM, Wang SF. Synthesis of core-shell-like structure SnS2-SnO2 integrated with graphene nanosheets for the electrochemical detection of furazolidone drug in furoxone tablet. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Noby SZ, Wong KK, Ramadoss A, Siroky S, Hagner M, Boldt K, Schmidt-Mende L. Rapid synthesis of vertically aligned α-MoO 3 nanostructures on substrates. RSC Adv 2020; 10:24119-24126. [PMID: 35517361 PMCID: PMC9055125 DOI: 10.1039/d0ra01281e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023] Open
Abstract
We report a new procedure for large scale, reproducible and fast synthesis of polycrystalline, dense, vertically aligned α-MoO3 nanostructures on conducting (FTO) and non-conducting substrates (Si/SiO2) by using a simple, low-cost hydrothermal technique. The synthesis method consists of two steps, firstly formation of a thermally evaporated Cr/MoO3 seed layer, and secondly growth of the nanostructures in a highly acidic precursor solution. In this report, we document a growth process of vertically aligned α-MoO3 nanostructures with varying growth parameters, such as pH and precursor concentration influencing the resulting structure. Vertically aligned MoO3 nanostructures are valuable for different applications such as electrode material for organic and dye-sensitized solar cells, as a photocatalyst, and in Li-ion batteries, display devices and memory devices due to their high surface area.
Collapse
Affiliation(s)
- Sohaila Z Noby
- Department of Physics, University of Konstanz 78457 Konstanz Germany
- National Research Centre NRC, Department of Solid State of Physics 12622 Cairo Egypt
| | - Ka Kan Wong
- Department of Physics, University of Konstanz 78457 Konstanz Germany
| | - Ananthakumar Ramadoss
- SARP-LARPM, Central Institute of Plastic Engineering and Technology (CIPET) 751024 Bhubaneswar India
| | - Stephan Siroky
- Department of Chemistry, University of Konstanz 78457 Konstanz Germany
| | - Matthias Hagner
- Department of Physics, University of Konstanz 78457 Konstanz Germany
| | - Klaus Boldt
- Department of Chemistry & Zukunftskolleg, University of Konstanz 78457 Konstanz Germany
| | | |
Collapse
|
36
|
Jiang H, Li Y, Wang D, Hong X, Liang B. Recent Advances in Heteroatom Doped Graphitic Carbon Nitride (g-C3N4) and g-C3N4/Metal Oxide Composite Photocatalysts. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200309151648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Industrial wastewater contains abundant organic dyes, antibiotics, pesticides,
chemical fertilizers or heavy metal ions, which seriously deteriorate the ecological environment.
Among the practical techniques for reducing water pollution, photocatalysis is a
kind of sustainable solar energy conversion technique for removing organic contaminants.
In this review, the advances in the preparation, modification, and doping of graphitic carbon
nitride (g-C3N4), including non-metal doping, metal doping, dual- or tri-doping, are
introduced firstly. Then, we systematically reviewed the recent progress of g-C3N4/metal
oxide composite photocatalysts, including a g-C3N4/n-type metal oxide, such as TiO2,
ZnO, SnO2, WO3, FexOy, CeO2, V2O5, MoO3, MnO2, Nb2O5, In2O3, and a g-C3N4/p-type
metal oxide, such as Co3O4, Bi2O3, NiO and Cu2O. At last, we summarized the design
principles for preparing heteroatom doped g-C3N4 and g-C3N4/metal oxide composites, and
forecast the promising research directions. The main objective is to provide a guideline for designing highperformance
heteroatom doped g-C3N4 and g-C3N4/metal oxide photocatalysts.
Collapse
Affiliation(s)
- Haiyan Jiang
- School of Environmental Science and Engineering, Fuxin 123000, China
| | - Yang Li
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Daohan Wang
- School of Environmental Science and Engineering, Fuxin 123000, China
| | - Xiaodong Hong
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Bing Liang
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
37
|
Balakumar V, Ryu JW, Kim H, Manivannan R, Son YA. Ultrasonic synthesis of α-MnO 2 nanorods: An efficient catalytic conversion of refractory pollutant, methylene blue. ULTRASONICS SONOCHEMISTRY 2020; 62:104870. [PMID: 31806556 DOI: 10.1016/j.ultsonch.2019.104870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
In this work, uniform α-MnO2 nanorods were synthesized via a simple hydrothermal followed by ultrasonication method using ultrasonic bath (20 kHz, 100 W) without using any surfactant and template. The crystallographic phases and surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transition electron microscopy (TEM) analysis, respectively. Functional group identification and chemical states of α-MnO2 nanorods were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The as-synthesized uniform nanorods of α-MnO2 exhibit excellent catalytic conversion of toxic organic contaminant (methylene blue (MB)) in the presence of NaBH4 as reductant. The α-MnO2 exhibits excellent stability up to four repeated catalytic cycles with nearly 92% conversion. The kinetic rate constant (k), and turnover frequency (TOF) were 0.736 min-1 and 0.02 mmol mg-1 min-1, respectively. In addition, the fast electron transfer mechanism were investigated and discussed. These results open a new avenue for developing various metal oxide catalysts, which are expected to be very useful catalytic conversions.
Collapse
Affiliation(s)
- Vellaichamy Balakumar
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ji Won Ryu
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Hyungjoo Kim
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
38
|
Annalakshmi M, Kumaravel S, Chen SM, Chen TW. FeMn layered double hydroxides: an efficient bifunctional electrocatalyst for real-time tracking of cysteine in whole blood and dopamine in biological samples. J Mater Chem B 2020; 8:8249-8260. [DOI: 10.1039/d0tb01324b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peculiar clock-regulated design of FeMn-LDHs (FMH) with specific physiochemical attributes has been developed and used for highly sensitive detection of cysteine (CySH) and dopamine (DA).
Collapse
Affiliation(s)
- Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Sakthivel Kumaravel
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
- Institute of Biochemical and Biomedical Engineering
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Tse-Wei Chen
- Department of Materials
- Imperial College London
- London
- UK
| |
Collapse
|
39
|
Muthukutty B, Krishnapandi A, Chen SM. The facile co-precipitation synthesis of strontium tungstate anchored on a boron nitride (SrWO4/BN) composite as a promising electrocatalyst for pharmaceutical drug analysis. NEW J CHEM 2020. [DOI: 10.1039/c9nj05673d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Strontium tungstate/boron nitride (SrWO4/BN) composite considered efficient electrocatalysts in the area of electrochemical sensors.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Alagumalai Krishnapandi
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
40
|
Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Balamurugan TST. Ultrasonic energy-assisted preparation of β-cyclodextrin-carbon nanofiber composite: Application for electrochemical sensing of nitrofurantoin. ULTRASONICS SONOCHEMISTRY 2019; 52:391-400. [PMID: 30591361 DOI: 10.1016/j.ultsonch.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/01/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
A simple ultrasonic energy assisted synthesis of β-cyclodextrin (β-CD) supported carbon nanofiber composite (CNF) and its potential application in electrochemical sensing of antibiotic nitrofurantoin (NFT) is reported. The elemental composition and surface morphology of the β-CD/CNF composite was validated through Field emission scanning electron microscopy, energy dispersive X-ray microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The uniform enfolding of hydrophilic β-CD over CNF enhance the aqueous dispersion and offer abundant active surface to the β-CD/CNF composite. Further, the electrocatalytic efficacy of the β-CD/CNF composite is utilized to fabricate an electrochemical sensor for the high sensitive quantitative detection of NFT. Under optimized analytical conditions, the sensor displays a broad working range of 0.004-308 µM and calculated detection limit of 1.8 nM, respectively. In addition, the sensor showcased a good selectivity, storage, and working stability, with amiable reproducibility. The point-of-care applicability of the sensor was demonstrated with NFT spiked human blood serum and urine sample with reliable analytical performance. The simple, cost-effective NFT sensor based on β-CD/CNF offered outstanding analytical performance in real-world samples with higher reliability.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Tamilarasan Sathesh
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - T S T Balamurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
41
|
Hwa KY, Sharma TSK, Karuppaiah P. Development of an electrochemical sensor based on a functionalized carbon black/tungsten carbide hybrid composite for the detection of furazolidone. NEW J CHEM 2019. [DOI: 10.1039/c9nj02531f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, the simple sonochemical synthesis of functionalized carbon black (f-CB) anchored with tungsten carbide (WC) is used to prepare a novel electrocatalyst for the electrochemical detection of furazolidone (FU) by modifying screen-printed carbon electrodes (SPCE).
Collapse
Affiliation(s)
- Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Palpandi Karuppaiah
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| |
Collapse
|