1
|
Ahmed R, Ul Ain Hira N, Wang M, Iqbal S, Yi J, Hemar Y. Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications. Food Chem 2024; 434:137498. [PMID: 37741231 DOI: 10.1016/j.foodchem.2023.137498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Natural cross-linkers are extensively employed due to their low toxicity and biocompatibility benefits. Genipin acts as a precursor for producing blue colorants. The formation of these colorants involves the cross-linking reaction between genipin and primary amines present in amino acids, peptides, and proteins. Genipin is extracted from Gardenia jasminoides and Genipa americana. This article explains the cross-linking mechanism of genipin with proteins/polysaccharides to provide an overall understanding of its properties. Furthermore, it explores new sources of genipin and innovative methodologies to make the genipin recovery process efficient. Genipin increases food products' texture, gel strength, stability, and shelf life. The antibacterial, anti-inflammatory, and antioxidant properties of chitosan, gelatin, alginate, and hyaluronic acid increased after genipin cross-linking. Lastly, drawbacks, toxicity, and directions regarding the genipin cross-linking have also been addressed. The review article covers how to recover and cross-link genipin with biopolymers for industrial applications.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Noor Ul Ain Hira
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shahid Iqbal
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yacine Hemar
- School of Natural Sciences, Massey University, Private Bag 11 222. Palmerston North, 4442, New Zealand
| |
Collapse
|
2
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|
3
|
Costa JM, Strieder MM, Saldaña MDA, Rostagno MA, Forster-Carneiro T. Recent Advances in the Processing of Agri-food By-products by Subcritical Water. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Liao J, Xue H, Li J. Extraction of phenolics and anthocyanins from purple eggplant peels by multi-frequency ultrasound: Effects of different extraction factors and optimization using uniform design. ULTRASONICS SONOCHEMISTRY 2022; 90:106174. [PMID: 36170772 PMCID: PMC9513698 DOI: 10.1016/j.ultsonch.2022.106174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this work, multi-frequency ultrasound (working modes for the single-, dual- and tri-frequency in simultaneous ways) was applied to extract bioactive compounds from purple eggplant peels. The single-factor experiments were performed by varying six independent variables. A six-level-five-factor uniform design (UD) was further employed to evaluate the interaction effects between different factors. It was found that extraction temperature and extraction time significantly affected the total phenolic content (TPC), whereas the total monomeric anthocyanins (TMA) was mainly influenced by ethanol concentration, extraction temperature and solid-liquid ratio. Based on partial least-squares (PLS) regression analysis, the optimal conditions for TPC extraction were: 53.6 % ethanol concentration, 0.336 mm particle size, 44.5 °C extraction temperature, 35.2 min extraction time, 1:43 g/mL solid-liquid ratio, and similar optimal conditions were also obtained for TMA. Furthermore, the TPC and TMA extraction were investigated by ultrasound in different frequencies and power levels. Compared with single-frequency (40 kHz) and dual-frequency ultrasound (25 + 40 kHz), the extraction yield of TPC and TMA with tri-frequency ultrasound (25 + 40 + 70 kHz) increased by 23.65 % and 18.76 % respectively, which suggested the use of multi-frequency ultrasound, especially tri-frequency ultrasound, is an efficient strategy to improve the TPC and TMA extracts in purple eggplant peels.
Collapse
Affiliation(s)
- Jianqing Liao
- College of Physical Science and Engineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China.
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| | - Junling Li
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| |
Collapse
|
5
|
Gao Y, Meng Z. Crystallization of lipids and lipid emulsions treated by power ultrasound: A review. Crit Rev Food Sci Nutr 2022; 64:1882-1893. [PMID: 36073738 DOI: 10.1080/10408398.2022.2119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The actual food system with fat is always complex and fat crystal and fat crystal networks have important effects on the physical properties of food. Recently, power ultrasound (PU) had been widely recognized as an auxiliary technology of fat crystallization to modify food properties. This review expounded on the mechanism of ultrasonic crystallization, and summarized effects of various factors in the process of ultrasonic treatment on fat crystallization. Based on the above, combined with the application of ultrasound in emulsions, the ultrasonic fat crystallization effect in the emulsion system was judged and described. Research results indicated that PU could shorten the induction time of crystallization, accelerate the formation of crystal nuclei, and change the polymorphism of fat crystals. The product treated by PU formed smaller and more uniform crystals to produce a more viscoelastic fat crystal network. In emulsion systems, ultrasonic treatments showed the same effect, but the effect of ultrasonic crystallization on the emulsion stability was different due to fat crystals in different emulsion systems. Meanwhile, the importance of ultrasonic crystallization in lipid emulsions was emphasized, thus ultrasonic crystallization had great potential in emulsion systems.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Urango ACM, Neves MIL, Meireles MAA, Silva EK. Whey Beverage Emulsified System as Carrying Matrix of Fennel Seed Extract Obtained by Supercritical CO2 Extraction: Impact of Thermosonication Processing and Addition of Prebiotic Fibers. Foods 2022; 11:foods11091332. [PMID: 35564055 PMCID: PMC9101487 DOI: 10.3390/foods11091332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Whey beverages that were enriched with fructooligosaccharides (FOS) and xylooligosaccharides (XOS) were used for carrying Foeniculum vulgare extract that was obtained by the supercritical CO2 extraction technique to produce novel functional products. Fennel-based whey beverages were subjected to thermosonication processing (100, 200, and 300 W at 60 °C for 15 min) to verify the performance of the dairy colloidal system for protecting the bioactive fennel compounds. The impacts of thermosonication processing on the quality attributes of the functional whey beverages were examined according to their droplet size distribution, microstructure, kinetic stability, color parameters, browning index, total phenolic content (TPC), and antioxidant capacity by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-Azino-bis-(3-ethylbenzothiazoline)-6-sulphonic acid) assays. The enrichment of the whey beverages with FOS and XOS did not affect their kinetic stability. However, the addition of prebiotic dietary fibers contributed to reducing the mean droplet size due to the formation of whey protein–FOS/XOS conjugates. The thermosonication treatments did not promote color changes that were discernible to the human eye. On the other hand, the thermosonication processing reduced the kinetic stability of the beverages. Overall, the colloidal dairy systems preserved the antioxidant capacity of the fennel seed extract, regardless of thermosonication treatment intensity. The whey beverages enriched with FOS and XOS proved to be effective carrying matrices for protecting the lipophilic bioactive fennel compounds.
Collapse
|
7
|
Urango ACM, Strieder MM, Silva EK, Meireles MAA. Impact of Thermosonication Processing on Food Quality and Safety: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
da Silva LC, Viganó J, de Souza Mesquita LM, Dias ALB, de Souza MC, Sanches VL, Chaves JO, Pizani RS, Contieri LS, Rostagno MA. Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. FOOD CHEMISTRY-X 2021; 12:100133. [PMID: 34632369 PMCID: PMC8493574 DOI: 10.1016/j.fochx.2021.100133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Apple by-products are a source of phenolic compounds associated with bioactivities. Apple processing industries generate by-products that could be better used. This work provides an up-to-date literature overview on extraction techniques. Gaps and future trends related to apple by-products are critically presented.
Apple is one of the most consumed fruits worldwide and has recognized nutritional properties. Besides being consumed fresh, it is the raw material for several food products, whose production chain generates a considerable amount of by-products that currently have an underestimated use. These by-products are a rich source of chemical compounds with several potential applications. Therefore, new ambitious platforms focused on reusing are needed, targeting a process chain that achieves well-defined products and mitigates waste generation. This review covers an essential part of the apple by-products reuse chain. The apple composition regarding phenolic compounds subclasses is addressed and related to biological activities. The extraction processes to recover apple biocompounds have been revised, and an up-to-date overview of the scientific literature on conventional and emerging extraction techniques adopted over the past decade is reported. Finally, gaps and future trends related to the management of apple by-products are critically presented.
Collapse
Affiliation(s)
- Laise C da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Arthur L Baião Dias
- Laboratory of High Pressure in Food Engineering, School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil
| | - Mariana C de Souza
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Jaisa O Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Rodrigo S Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Leticia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| |
Collapse
|
9
|
Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aimed to examine the impact of the combination of acoustic energy at the nominal powers of 100, 200, 300, and 400 W with moderate heat processing at 40, 50, and 60 °C on the extraction of phytochemical compounds from Foeniculum vulgare. Thermosonication processing, based on high-intensity ultrasound combined with an external heat source, can potentialize the extraction of soluble solids from plant material. However, the excessive temperature increase generated by the two energy sources during thermosonication treatment may degrade the thermolabile bioactive compounds. Regardless of the temperature condition, fennel extracts obtained at 400 W presented lower total phenolic content (TPC) than those obtained at 300 W. The cavitation heat and mechanical stress provided at 400 W may have degraded the phenolic compounds. Thereby, the best extraction condition was 300 W and 60 °C. The fennel extract presented the highest content of TPC (3670 ± 67 µg GAE/g) and antioxidant activity determined by DPPH and ABTS methods (1195 ± 16 µg TE/g and 2543.12 ± 0.00 µg TE/g, respectively) using this treatment. Thermosonication can be an innovative technique for extracting phytochemicals because it provides good results in shorter processing times, with 73% and 88% less energy consumption than Percolation and Soxhlet techniques, respectively.
Collapse
|
10
|
|
11
|
Zabot GL, Viganó J, Silva EK. Low-Frequency Ultrasound Coupled with High-Pressure Technologies: Impact of Hybridized Techniques on the Recovery of Phytochemical Compounds. Molecules 2021; 26:5117. [PMID: 34500551 PMCID: PMC8434444 DOI: 10.3390/molecules26175117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical fluid extraction, pressurized liquids extraction, and gas-expanded liquids extraction, can enhance the recovery yields of phytochemicals due to their different action mechanisms. Therefore, this paper reviewed and discussed the current scenario in this field where ultrasound-related technologies are coupled with high-pressure techniques. The main findings, gaps, challenges, advances in knowledge, innovations, and future perspectives were highlighted.
Collapse
Affiliation(s)
- Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul 96508-010, Brazil;
| | - Juliane Viganó
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil;
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Eric Keven Silva
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| |
Collapse
|
12
|
Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.023%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Qi Y, Yu F, Wang X, Wan N, Yang M, Wu Z, Li Y. Drying of wolfberry fruit juice using low-intensity pulsed ultrasound. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Scudino H, Silva EK, Gomes A, Guimarães JT, Cunha RL, Sant'Ana AS, Meireles MAA, Cruz AG. Ultrasound stabilization of raw milk: Microbial and enzymatic inactivation, physicochemical properties and kinetic stability. ULTRASONICS SONOCHEMISTRY 2020; 67:105185. [PMID: 32474185 DOI: 10.1016/j.ultsonch.2020.105185] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the effects of non-thermal and thermal high-intensity ultrasound (HIUS) treatment on the microbial and enzymatic inactivation, physicochemical properties, and kinetic stability of the raw milk by applying different energy densities (1, 3, 5, and 7 kJ/mL). Two HIUS treatments were evaluated based on different nominal powers, named HIUS-A and HIUS-B, using 100 W and 475 W, respectively. HIUS-A treatment was non-thermal processing while HIUS-B was a thermal treatment only for the energy densities of 5 and 7 kJ/mL since the final temperature was above 70 °C. The HIUS-B treatment showed to be more efficient. Log reductions up to 3.9 cycles of aerobic mesophilic heterotrophic bacteria (AMHB) were achieved. Significant reductions of the fat globule size, with diameters lower than 1 µm, better color parameters, and kinetic stability during the storage were observed. Also, HIUS-B treatment inactivated the alkaline phosphatase and lactoperoxidase. The HIUS-B treatment at 3 kJ/mL worked below 57 °C being considered a border temperature since it did not cause unwanted physicochemical effects. Furthermore, a microbial inactivation of 1.8 ± 0.1 log cycles of AMHB was observed. A proper inactivation of only the Alkaline phosphatase and a significant reduction of the fat globules sizes, which kept the milk kinetically stable during storage was achieved.
Collapse
Affiliation(s)
- Hugo Scudino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Eric Keven Silva
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M Angela A Meireles
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Simulations of different power intensity inputs towards pressure, velocity & cavitation in ultrasonic bath reactor. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.sajce.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|