1
|
Su K, Li B, Wu J, Xin P, Qian S. Joint effects of gas bubbles and solid particles on sonochemical inhibition in sonicated aqueous solutions. ULTRASONICS SONOCHEMISTRY 2023; 101:106717. [PMID: 38086127 PMCID: PMC10726247 DOI: 10.1016/j.ultsonch.2023.106717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Wastewater is a multicomponent and multiphase mixture. Gas bubbles and solid particles in the dispersed phase influence sonochemical efficiency during ultrasonic treatment of wastewater, sometimes unfavorably; however, the influencing factors and mechanisms remain unclear. In this paper, the influence of argon gas bubbles (1.2 mm) and monodisperse silica particles (0.1 mm) on sonochemical effects in an aqueous system using a horn-type reactor (20 kHz) is reported. Triiodide formation decreased with an increase in the volume fraction of either or both phases. The two phases started inhibiting sonoreactions as the total volume fraction approached 3.0-4.0 vol% compared to pure water. The effect of the gas-to-solid ratio is also considered. We propose an acoustic attenuation model, which incorporates the scattering effect of solid particles and the thermal effect of gas bubbles. The agreement between the modeling and experimental results demonstrates that the two phases are jointly responsible for sonochemical inhibition by increasing ultrasound attenuation. This enhances the understanding of sonochemistry in gas-solid-liquid systems and helps regulate gases and solids in sonochemical reactors.
Collapse
Affiliation(s)
- Kunpeng Su
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Binghui Li
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Jianhua Wu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China.
| | - Pei Xin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Shangtuo Qian
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Choi J, Yoon S, Son Y. Effects of alcohols and dissolved gases on sonochemical generation of hydrogen in a 300 kHz sonoreactor. ULTRASONICS SONOCHEMISTRY 2023; 101:106660. [PMID: 37924613 PMCID: PMC10656218 DOI: 10.1016/j.ultsonch.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
The sonochemical generation of hydrogen (H2) was investigated using various water/alcohol solutions under argon (Ar) 100 % in a 300 kHz sonoreactor. Five types of alcohols-methanol, ethanol, isopropanol, n-propanol, and n-butanol-were used at various concentrations (0 - 100 % v/v). The H2 generation rate in water was 0.31 μmol/min in the absence of alcohols. The H2 generation rate increased, peaked, and then decreased as the alcohol concentration increased. The concentrations used for the peak H2 generation were 5 %, 1 %, 0.5 %, 0.5 %, and 0.1 % for methanol, ethanol, isopropanol, n-propanol, and n-butanol, respectively. The highest generation rate (5.46 μmol/min) was obtained for methanol 5 % among all conditions in this study, and no H2 was detected for 100 % alcohol concentrations. The reason for the enhancement of the sonochemical H2 generation by the addition of alcohols might be due to strong scavenging effect of alcohols for sonochemically generated oxidizing radicals and vigorous reactions of alcohol molecules and their derivatives with H radicals. No significant correlations were found between the H2 generation rates and physicochemical properties of the alcohols in any of the data in this study. As alcohol concentration increased, the calorimetric power decreased. This indicates that the calorimetric power does not represent the degree of sonochemical reactions in the water/alcohol mixtures. The effect of oxygen (O2) content in the dissolved gases on the generation of H2O2 (representing sonochemical oxidation activity) and H2 (representing sonochemical reduction activity) was investigated using Ar/O2 mixtures for water, methanol 5 % and n-propanol 0.5 %. In water, the highest H2O2 generation was obtained for Ar/O2 (50:50), which is similar to previous research results. However, the H2O2 generation increased as the O2 content increased. In addition, H2 generation decreased as the O2 content increased under all liquid conditions (water, methanol, and n-propanol).
Collapse
Affiliation(s)
- Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Seokho Yoon
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
3
|
Lee D, Kang J, Son Y. Effect of violent mixing on sonochemical oxidation activity under various geometric conditions in 28-kHz sonoreactor. ULTRASONICS SONOCHEMISTRY 2023; 101:106659. [PMID: 39491264 PMCID: PMC10630164 DOI: 10.1016/j.ultsonch.2023.106659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The effects of violent mixing and reactor geometric conditions were investigated using the overhead stirrer and high-speed homogenizer in 28-kHz sonoreactors. The sonochemical oxidation activity was quantified using the KI dosimetry method, and the sonochemical active zone was visually observed using the luminol method. Higher mixing rates resulted in a significant enhancement of the sonochemical oxidation activity, primarily due to a significant change in the sonochemical active zone. When using the overhead stirrer (0-2,000 rpm), the highest activity for 2λ and 3λ occurred at 500 rpm, whereas the highest activity for 4λ was obtained at 250 rpm. For the high-speed homogenizer (0-12,000 rpm), the highest activity was consistently obtained at 3,500 rpm across all liquid height conditions. The impact of mixing position (Top, Mid, and Bot positions) on sonochemical activity was analyzed. The results revealed that the lowest activity was obtained for the bottom position, likely attributed to significant ultrasound attenuation. The reactor size effect was investigated using the high-speed homogenizer in five cylindrical sonoreactors with different diameters (12-27 cm). It was found that very low activity could be observed due to unexpected geometric conditions, and the application of mixing (3,500 rpm in this study) could result in high sonochemical activity regardless of geometric conditions.
Collapse
Affiliation(s)
- Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jumin Kang
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
4
|
Manickam S, Camilla Boffito D, Flores EMM, Leveque JM, Pflieger R, Pollet BG, Ashokkumar M. Ultrasonics and sonochemistry: Editors' perspective. ULTRASONICS SONOCHEMISTRY 2023; 99:106540. [PMID: 37542752 PMCID: PMC10430610 DOI: 10.1016/j.ultsonch.2023.106540] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Ultrasonic waves can induce physical and chemical changes in liquid media via acoustic cavitation. Various applications have benefitted from utilizing these effects, including but not limited to the synthesis of functional materials, emulsification, cleaning, and processing. Several books and review articles in the public domain cover both fundamental and applied aspects of ultrasonics and sonochemistry. The Editors of the Ultrasonics Sonochemistry journal possess diverse expertise in this field, from theoretical and experimental aspects of acoustic cavitation to materials synthesis, environmental remediation, and sonoprocessing. This article provides Editors' perspectives on various aspects of ultrasonics and sonochemistry that may benefit students and early career researchers.
Collapse
Affiliation(s)
- Sivakumar Manickam
- University of Technology Brunei, Faculty of Engineering, Gadong, Brunei Darussalam.
| | | | | | - Jean-Marc Leveque
- University Savoie Mont Blanc, Department of Sciences and Mountain Training, Le Bourget du Lac, France
| | - Rachel Pflieger
- Université Montpellier, Marcoule Institute in Separation Chemistry (ICSM), Marcoule, France
| | - Bruno G Pollet
- Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | | |
Collapse
|
5
|
Lee S, Son Y. Effects of gas saturation and sparging on sonochemical oxidation activity under different liquid level and volume conditions in 300-kHz sonoreactors: Zeroth- and first-order reaction comparison using KI dosimetry and BPA degradation. ULTRASONICS SONOCHEMISTRY 2023; 98:106521. [PMID: 37473616 PMCID: PMC10371822 DOI: 10.1016/j.ultsonch.2023.106521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
The sonochemical oxidation activity was investigated for gas saturation and gas sparging under various liquid levels and volumes in 300 kHz sonoreactors. The liquid levels and volumes ranged from 5λ (25 mm, 0.47 L) to 50λ (250 mm, 4.30 L) and two gas mixtures, Ar:O2 (75:25) and N2:O2 (75:25), were used. Two types of reaction kinetics were observed to quantitatively analyze the sonochemical oxidation reactions: zero-order (KI dosimetry: C0 = 60.2 mM) and first-order (Bisphenol A (BPA) degradation: C0 = 0.043 mM). The masses of the sonochemical oxidation reactions were calculated and compared rather than the concentrations to more accurately compare the sonochemical oxidation activity under different liquid volume conditions. First, as the liquid level or volume increased for the zero-order reactions, the concentration of I3- ions representing the volume-averaged activity decreased substantially for gas saturation owing to the increase in liquid volume. However, gas sparging substantially enhanced sonochemical oxidation activity, and the mass of I3- ions representing the total activity remained constant as the liquid level increased from 20λ because of the improved liquid mixing and a shift in the sonochemical active zone. Second, as evidenced by the zero-order reactions, the concentration of BPA decreased considerably as the liquid level or volume increased in the first-order reactions. When gas sparging was used, higher reaction constants were obtained for both gas mixtures, ranging from 40λ to 50λ. However, a comparison of the sonochemical oxidation activity in terms of the degraded mass of BPA was inapplicable as the concentration of BPA decreased substantially and a lack of reactants occurred for the lower liquid level and volume conditions as the irradiation time elapsed. Instead, using the first-order reaction constant, a comparison of the required reaction times for a specific removal efficiency (30%, 60%, and 90%) was proposed. Gas sparging can substantially reduce the reaction time required for a liquid level of 40λ or higher.
Collapse
Affiliation(s)
- Seongeun Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
6
|
Choi J, Son Y. Effect of dissolved gases on sonochemical oxidation in a 20 kHz probe system: Continuous monitoring of dissolved oxygen concentration and sonochemical oxidation activity. ULTRASONICS SONOCHEMISTRY 2023; 97:106452. [PMID: 37245263 DOI: 10.1016/j.ultsonch.2023.106452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Dissolved gases have a substantial influence on acoustic cavitation and sonochemical oxidation reactions. Little research on the changes in dissolved gases and the resultant changes in sonochemical oxidation has been reported, and most studies have focused only on the initial dissolved gas conditions. In this study, the dissolved oxygen (DO) concentration was measured continuously during ultrasonic irradiation using an optical sensor in different gas modes (saturation/open, saturation/closed, and sparging/closed modes). Simultaneously, the resulting changes in sonochemical oxidation were quantified using KI dosimetry. In the saturation/open mode using five gas conditions of Ar and O2, the DO concentration decreased rapidly when O2 was present because of active gas exchange with the atmosphere, and the DO concentration increased when 100% Ar was used. As a result, the order of the zero-order reaction constant for the first 10 min (k0-10) decreased in the order Ar:O2 (75:25) > 100% Ar ≈ Ar:O2 (50:50) > Ar:O2 (25:75) > 100% O2, whereas that during the last 10 min (k20-30) when the DO concentration was relatively stable, decreased in the order 100% Ar > Ar:O2 (75:25) > Ar:O2 (50:50) ≈ Ar:O2 (20:75) > 100% O2. In the saturation/closed mode, the DO concentration decreased to approximately 70-80% of the initial level because of ultrasonic degassing, and there was no influence of gases other than Ar and O2. Consequently, k0-10 and k20-30 decreased in the order Ar:O2 (75:25) > Ar:O2 (50:50) > Ar:O2 (25:75) > 100% Ar > 100% O2. In the sparging/closed mode, the DO concentration was maintained at approximately 90% of the initial level because of the more active gas adsorption induced by gas sparging, and the values of k0-10 and k20-30 were almost the same as those in the saturation/closed mode. In the saturation/open and sparging/closed modes, the Ar:O2 (75:25) condition was most favorable for enhancing sonochemical oxidation. However, a comparison of k0-10 and k20-30 indicated that there would be an optimal dissolved gas condition that was different from the initial gas condition. In addition, the mass-transfer and ultrasonic-degassing coefficients were calculated using changes in the DO concentration in the three modes.
Collapse
Affiliation(s)
- Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
7
|
Son Y, Seo J. Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, Part I: H 2O 2 generation. ULTRASONICS SONOCHEMISTRY 2022; 90:106214. [PMID: 36327919 PMCID: PMC9636189 DOI: 10.1016/j.ultsonch.2022.106214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 06/01/2023]
Abstract
Cavitational/sonochemical activity can be significantly enhanced or reduced depending on the gases dissolved in the liquid. Although many researchers have suggested the order of importance of dissolved gas conditions that affect the degree of sonoluminescence (SL), sonochemiluminescence (SCL), and compound degradation, the most suitable gas condition for sonochemical oxidation reactions is currently unknown. In this study (Part I), the effects of gas saturation and sparging on the generation of H2O2 were investigated in a 28-kHz sonoreactor system. Four gas modes, saturation/closed, saturation/open, sparging/closed, and sparging/open, were applied to Ar, O2, N2, and binary gas mixtures. The change in dissolved oxygen (DO) concentration during ultrasonic irradiation was measured and was used as an indicator of whether the gaseous exchange between liquid and air altered the gas content of the liquid. Considerable difference in the DO concentration was observed for the gas saturation/open mode, ranging from -11.5 mg/L (O2 100 %) to +4.3 mg/L (N2 100 %), while no significant difference was observed in the other gas modes. The change in the gas content significantly reduced the linearity for H2O2 generation, which followed pseudo-zero-order kinetics, and either positively or negatively affected H2O2 generation. Ar:O2 (75:25) and Ar:O2 (50:50) resulted in the highest and second-highest H2O2 generation for both gas saturation and sparging, respectively. In addition, gas sparging resulted in much higher H2O2 generation for all gas conditions compared to gas saturation; this was because of the significant change in the cavitational active zone and concentrated ultrasonic energy, which formed a bulb-shaped active zone, especially for the Ar/O2 mixtures adjacent to the transducer at the bottom. The sparging flow rate and position also significantly affected H2O2 generation; the highest H2O2 generation was obtained when the sparger was placed at the bottom adjacent to the transducer, with a flow rate of 3 L/min. In Part II, the generation of nitrogen oxides, including nitrite (NO2-) and nitrate (NO3-), was investigated using the same ultrasonic system with three gas modes: saturation/open, saturation/closed, and sparging/closed.
Collapse
Affiliation(s)
- Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| | - Jieun Seo
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Environment Research Division, Gyeongsangbuk-do Government Public Institute of Health & Environment, Yeongcheon 38874, Republic of Korea
| |
Collapse
|
8
|
Amin NK, Nosier SA, Abdel-Aziz MH, Hassan MS, Sedahmed GH, El-Naggar MA. Electrochemical regeneration of hexavalent chromium from aqueous solutions in a gas sparged parallel plate reactor. ENVIRONMENTAL TECHNOLOGY 2022; 43:2405-2417. [PMID: 33494654 DOI: 10.1080/09593330.2021.1881827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In this study anodic oxidation of Cr2(SO4)3 was carried out in an air-sparged divided parallel plate cell. Variables studied were current density, Cr2(SO4)3 concentration, and superficial air velocity. The rate constant of Cr2(SO4)3 oxidation was found to increase with increasing current density and Cr2(SO4)3 concentration. The effect of air sparging was found to depend on Cr2(SO4)3 concentrations, at high Cr2(SO4)3 concentration (> 0.1 M) air sparging does not affect the rate constant of the reaction denoting that the reaction is charge transfer controlled. As Cr2(SO4)3 concentration decreases below 0.1 M the reaction becomes under mixed diffusion and chemical control and the rate constant increases with increasing air superficial velocity, the lower Cr2(SO4)3 concentration the higher the contribution of diffusion to the reaction rate. The current efficiency of the process ranged from 20 to 85% depending on current density and Cr2(SO4)3 concentration. Electrical energy consumption which ranged from 1.8 to 14.4 kW h/kg of Cr6+ was found to increase with increasing current density and decreases with increasing Cr2(SO4)3 concentration. Air sparging was found to decrease electrical energy consumption in the case of dilute solutions << 0.1 M Cr2(SO4)3.
Collapse
Affiliation(s)
- N K Amin
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - S A Nosier
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - M H Abdel-Aziz
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
- Chemical and Materials Engineering Department, King Abdulaziz University, Rabigh, Saudi Arabia
| | - M S Hassan
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - G H Sedahmed
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - M A El-Naggar
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Choi J, Son Y. Quantification of sonochemical and sonophysical effects in a 20 kHz probe-type sonoreactor: Enhancing sonophysical effects in heterogeneous systems with milli-sized particles. ULTRASONICS SONOCHEMISTRY 2022; 82:105888. [PMID: 34953385 PMCID: PMC8799613 DOI: 10.1016/j.ultsonch.2021.105888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
Even though acoustic cavitation has been widely investigated, only few researchers focused on the relationship between sonochemical and sonophysical activities and on the enhancement of sonophysical activity. In this study, sonochemical and sonophysical activities were investigated in a heterogeneous system to understand the relationship between these two activities and to suggest optimal conditions for ultrasonic desorption/extraction processes comprising milli-sized glass beads. The sonochemical activity was quantitatively analyzed using potassium iodide dosimetry in homogeneous and heterogeneous systems. Sonophysical activity was quantitatively and qualitatively analyzed using paint-coated bead desorption tests and aluminum foil erosion tests under three probe positions of "T" (1 cm below the liquid surface), "B" (1 cm above the vessel bottom), and "M" (midpoint between "T" and "B"). Three different sizes of glass beads (diameter: 0.2, 1.0, and 4.0 mm) were used in this study. The highest sonochemical activity was obtained at "B" in both homogeneous and heterogeneous systems. However, three times lower sonochemical activity was observed in the heterogeneous system than in the homogeneous system because significant attenuation and unstable reflection of ultrasound occurred in the bead layer and suspension. Higher sonophysical activity was observed, when the bead size decreased and the probe approached the bottom. However, no significant sonophysical activity was detected when the beads were attached to the bottom. Therefore, the sonophysically active region was the zone around the probe body, opposite to the ultrasound irradiation tip, and only suspended beads could undergo severe cavitational actions. This was confirmed via aluminum foil tests. Several erosion marks on the foil were observed in the area around the probe body, whereas no severe damage was observed at the bottom. Moreover, the degree of sonophysical activity did not change for various saturating gases. This might be due to the different thresholds of sonochemical and sonophysical activities.
Collapse
Affiliation(s)
- Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
10
|
Lee D, Na I, Son Y. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor. CHEMOSPHERE 2022; 286:131780. [PMID: 34358887 DOI: 10.1016/j.chemosphere.2021.131780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/14/2023]
Abstract
Sonochemical oxidation activity may be significantly enhanced by optimizing the geometric factors of a sonoreactor and implementing additional physical actions, such as mechanical mixing and gas sparging. This study investigates the effects of liquid recirculation flow on sonochemical oxidation reactions. This was carried out through experimental testing with a 28 kHz bath-type sonoreactor under various liquid heights and flow rates, ranging from 1λ to 4.0λ and 1.5-6.0 L/min, respectively. The potassium iodide (KI) dosimetry and sonochemiluminescence methods were used in the experiment. With an increase in the liquid height/volume, the pseudo zero-order kinetic constant and the mass of triiodide (I3-) ions fluctuated. The optimal liquid height was 2.0λ, 2.5λ, and 3.0λ, based on the appropriate formation of a cavitation active zone in the reactor. The introduction of a liquid recirculation flow led to a large reduction in sonochemical activity due to the shrinkage of the cavitation active zone. However, the sonochemical activity increased at higher flow rates through the capture of ultrasonic energy at the bottom zone. This increase was attributed to the formation of a strong and expanded active zone limited to the reactor bottom to the height of the recirculation flow. The results demonstrate that applying a high rate liquid flow adjacent to the transducer module may be beneficial for enhanced sonochemical activity.
Collapse
Affiliation(s)
- Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Iseul Na
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea.
| |
Collapse
|
11
|
Liu H, Li H, Du K, Xu H. Photocatalytic activity study of ZnO modified with nitrogen–sulfur co-doped carbon quantum dots under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02562k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced degradation rate of RhB under visible light by N,S-CQDs-modified ZnO.
Collapse
Affiliation(s)
- Huadong Liu
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hewei Li
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kezhen Du
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haoxuan Xu
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Su K, Wu J, Xia D, Zhang X. Clarification of regimes determining sonochemical reactions in solid particle suspensions. ULTRASONICS SONOCHEMISTRY 2022; 82:105910. [PMID: 35016056 PMCID: PMC8799742 DOI: 10.1016/j.ultsonch.2022.105910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 05/21/2023]
Abstract
Although there has been extensive research on the factors that influence sonochemical reactions in solid particle suspensions, the role that solid particles play in the process remains unclear. Herein, the effect of monodisperse silica particles (10-100 μm, 0.05-10 vol%) on the sonochemical activity (20 kHz) was investigated using triiodide formation monitoring and luminol tests. The results demonstrate that, in the particle size range considered, the sonochemical yields were enhanced in dilute suspensions (0.05-1 vol%), while further particle addition in semi-dilute suspensions (1-10 vol%) decreased the yields. Two regimes, namely the site-increasing regime and sound-damping regime, are identified in respect of the enhancing and inhibiting effects of the particles, respectively, and their dependence on particle characteristics is analyzed. Both regimes are confirmed based on the cavitation erosion test results or cavitation noise analysis. The clarification of the two regimes provides a better understanding of the dominant factors controlling sonochemistry in the presence of solid particles, as well as a guide for sonochemical efficiency prediction.
Collapse
Affiliation(s)
- Kunpeng Su
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| | - Jianhua Wu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China.
| | - Dingkang Xia
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| | - Xinming Zhang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
13
|
Xu Q, Zhang H, Leng H, You H, Jia Y, Wang S. Ultrasonic role to activate persulfate/chlorite with foamed zero-valent-iron: Sonochemical applications and induced mechanisms. ULTRASONICS SONOCHEMISTRY 2021; 78:105750. [PMID: 34544014 PMCID: PMC8455865 DOI: 10.1016/j.ultsonch.2021.105750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The novel system, consisting of composite oxidants (persulfate/chlorite, S2O82-/ClO2-) and stationary phase activator (zero-valent-iron foam, Fe0f) driven by ultrasonic (US) field, was applied to treat the triphenylmethane derivative effectively even at low temperature (≈ 289 K). By comparisons of sub-systems, the US roles to S2O82-, ClO2-, and Fe0f were seriatim analyzed. US made the reaction order of multi-component system tend to within 1 (leading to de-order reaction), and widened pH activating range of the Fe0f by sonicate-polishing during the process of ClO2- co-activating S2O82-. US and Fe0f were affected by fluid eddy on activating S2O82-/ClO2-. The Fe0f had slight effect on the temperature of US bubble-water interface but the addition of ClO2- lowered it. The partitioning capacity of the above US reactive zone increased during the reaction. US and ClO2- could enrich the kinds of degradation intermediates. The contributions of free radicals (ClOx-based radicals, sulfate radicals (SO4-), and hydroxyl radicals (OH)) and non-free radicals (ClO2, and O = FeIV/V from ionic Fe under "-O-O-" of S2O82- and cyclic adjustment reaction of ClO2-) processes by sonochemical induction were equally important by corresponding detection means. Especially, real-time and online high-resolution mass spectrum by self-developing further confirmed the chain transfers of different free radicals due to US role. The findings expanded the application of sono-persulfate-based systems and improved understanding on activation mechanism.
Collapse
Affiliation(s)
- Qihui Xu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Haoran Leng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shutao Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Choi J, Lee D, Son Y. Ultrasound-assisted soil washing processes for the remediation of heavy metals contaminated soils: The mechanism of the ultrasonic desorption. ULTRASONICS SONOCHEMISTRY 2021; 74:105574. [PMID: 33975185 PMCID: PMC8122358 DOI: 10.1016/j.ultsonch.2021.105574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 05/13/2023]
Abstract
Ultrasound-assisted soil washing processes were investigated for the removal of heavy metals (Cu, Pb, and Zn) in real contaminated soils using HCl and EDTA. The ultrasound-assisted soil washing (US/Mixing) process was compared with the conventional soil washing (Mixing) process based on the mechanical mixing. High removal efficiency (44.8% for HCl and 43.2% for EDTA) for the metals was obtained for the most extreme conditions (HCl 1.0 M or EDTA 0.1 M and L:S = 10:1) in the Mixing process. With the aide of ultrasound, higher removal efficiency (57.9% for HCl and 50.0% for EDTA) was obtained in the same extreme conditions and similar or higher removal efficiency (e.g., 54.7% for HCl 0.5 M and L:S = 10:1 and 50.5% for EDTA 0.05 M and L:S = 5:1) was achieved even in less extreme conditions (lower HCl or EDTA concentration and L:S ratio). Therefore, it was revealed that the US/Mixing was advantageous over the conventional Mixing processes in terms of metal removal efficiency, consumption of chemicals, amount of generated washing leachate, and volume/size of washing reactor. In addition, the heavy metals removal was enhanced for the smaller soil particles in the US/Mixing process. It was due to more violent movement of smaller particles in slurry phase and more violent sonophysical effects. In order to understand the mechanism of ultrasonic desorption, the desorption test was conducted using the paint-coated beads with three sizes (1, 2, and 4 mm) for the free and attached conditions. It was found that no significant desorption/removal of paint from the beads was observed without the movement of beads in the water including floatation, collision, and scrubbing. Thus, it was suggested that the simultaneous application of the ultrasound and mechanical mixing could enhance the physical movement of the particles significantly and the very high removal/desorption could be attained.
Collapse
Affiliation(s)
- Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
15
|
Lee Y, Lee S, Cui M, Kim J, Ma J, Han Z, Khim J. Improving sono-activated persulfate oxidation using mechanical mixing in a 35-kHz ultrasonic reactor: Persulfate activation mechanism and its application. ULTRASONICS SONOCHEMISTRY 2021; 72:105412. [PMID: 33316732 PMCID: PMC7803812 DOI: 10.1016/j.ultsonch.2020.105412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 05/03/2023]
Abstract
This study investigated the degradation of ibuprofen (IBP), an activated persulfate (PS), when subjected to ultrasonic (US) irradiation and mechanical mixing (M). The effects of several critical factors were evaluated, including the effect of rpm on M, PS concentration, and initial pH, and that of temperature on IBP degradation kinetics and the PS activation mechanism. The resulting IBP oxidation rate constant was significantly higher at 400 rpm. As the PS load increased, the IBP oxidation rate constant increased. The value of the IBP reaction rate increased with decreasing pH; below pH 4.9, there was no significant difference in the IBP oxidation rate constant. The IBP oxidation activation energy when using the US/M-PS system was 18.84 kJ mol-1. In the US/M-PS system, PS activation was the primary effect of temperature at the interface during the explosion of cavitation bubbles. These encouraging results suggest that the US-PS/M process is a promising strategy for the treatment of IBP-based water pollutants.
Collapse
Affiliation(s)
- Yonghyeon Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seojoon Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mingcan Cui
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jeonggwan Kim
- Korea Environmental Industry and Technology, 215 Jinheung-no, Eunpyeong-gu, Seoul 03367, Republic of Korea
| | - Junjun Ma
- Nanjing Green-water Environment Engineering Limited by Share Ltd, C Building No. 606 Ningliu Road, Chemical Industrial Park, Nanjing, China
| | - Zhengchang Han
- Nanjing Green-water Environment Engineering Limited by Share Ltd, C Building No. 606 Ningliu Road, Chemical Industrial Park, Nanjing, China
| | - Jeehyeong Khim
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|