1
|
Jadhav SP, Ayare SD, Gogate PR. Intensified degradation of tartrazine dye present in effluent using ultrasound combined with ultraviolet irradiation and oxidants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:431. [PMID: 38580863 DOI: 10.1007/s10661-024-12561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Effluent containing tartrazine can affect the environment and human health significantly prompting the current study into degradation using a sonochemical reactor operated individually and combined with advanced oxidation processes. The optimum conditions for ultrasound treatment were established as dye concentration of 10 ppm, pH of 3, temperature as 35 °C, and power as 90 W. The combination approach of H2O2/UV, H2O2/US, and H2O2/UV/US resulted in higher degradation of 25.44%, 57.4%, and 74.36% respectively. Use of ZnO/UV/US approach increased the degradation significantly to 85.31% whereas maximum degradation as 93.11% was obtained for the US/UV/Fenton combination. COD reduction was found maximum as 83.78% for the US/UV/Fenton combination. The kinetic analysis showed that tartrazine dye degradation follows pseudo first-order kinetics for all the studied processes. Combination of Fenton with UV and US was elucidated as the best approach for degradation of tartrazine.
Collapse
Affiliation(s)
- Sonali P Jadhav
- Department of Chemical Engineering, Gharda Institute of Technology, Lavel, Khed, Maharashtra, 415708, India
| | - Sudesh D Ayare
- Department of Chemical Engineering, Gharda Institute of Technology, Lavel, Khed, Maharashtra, 415708, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India.
| |
Collapse
|
2
|
Tang J, Cheng Z, Zhang X, Sun J, Liu Z, Zhang H, Tan S, Qiu F. Continuous ultrasonic ozone coupling technology-assisted control of ceramic membrane fouling coupled enhanced multiphase mixing to treat dye wastewater and CFD flow field simulation. ULTRASONICS SONOCHEMISTRY 2024; 104:106839. [PMID: 38452711 PMCID: PMC10924065 DOI: 10.1016/j.ultsonch.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
In this study, ozone catalysts (hydrogenation-modified red mud, HM-RM) successfully prepared by hydrogenation-modification of industrial hazardous solid waste red mud (RM) as a raw material in accordance with the viewpoint of treating waste with waste and using waste. Meanwhile, as for the common phenomenon of membrane fouling, uneven distribution of multiphase solid catalysts and ozone in liquids, the addition of ultrasound can not only disperse materials, but also play a role in online cleaning of ceramic membranes and catalysts. The optimum treatment conditions for Rhodamine B (RhB) solution with volume of 2 L and concentration of 40 mg/L were catalyst concentration of 0.4 mg/L, reaction temperature of 45 °C, ultrasonic time of 1 h, ultrasonic intensity of 600 W, removal rate of RhB was up to 90 %. In addition, the computational fluid dynamics (CFD) simulation method was used to investigate the fluid flow between the two gas-liquid phases and the effect of the negative pressure of the membrane pump on the fluid by the analysis of flow, pressure and ozone flux of the ceramic membrane(CM) reaction apparatus. The CFD simulation results showed that at the inlet gas-liquid flow rate of 3 m/s and the negative pressure of 20,000 Pa, the maximum flow rates of CM-1 were 3 m/s, 0.752 m/s for CM-2, and 0.228 m/s for CM-3, respectively. Vortices, which are beneficial to solid-liquid mixing and gas-liquid mass transfer, formed between the suction port CM-1 of CM-1 and the inlets of CM-2 and CM-3. This discovery is consistent with relevant experimental research results. Significantly higher concentrations of both •OH and dissolved ozone were observed in the US/HM-RM/O3 system compared to other systems, indicating the significant improvement in ozone utilization rate through the application of ultrasound. The superiority of the US/HM-RM/O3 device was demonstrated. The real dye effluent was tested under optimum operating conditions and the results showed that COD and TOC were reduced by 81.34 % and 60.23 % respectively after 180 min of treatment. The above research can provide technical support for the treatment of dye wastewater using Ultrasound-enhanced ozone oxidation ceramic membranes.
Collapse
Affiliation(s)
- Jinshan Tang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhiliang Cheng
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Xuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jinyu Sun
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhaoqiang Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Shengmei Tan
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Facheng Qiu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
3
|
Dey A, Gogate PR. Comparative study of different ultrasound based hybrid oxidation approaches for treatment of real effluent from coke oven plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120095. [PMID: 38266523 DOI: 10.1016/j.jenvman.2024.120095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
The present study investigates the treatment of real coke plant effluent utilising several ultrasound-based hybrid oxidation approaches including Ultrasound (US) alone, US + catalyst, US + H2O2, US + Fenton, US + Ozone, and US + Peroxone, with main objective as maximizing the reduction of chemical oxygen demand (COD). Ultrasonic horn at power of 130 W, frequency as 20 kHz and duty cycle as 70% was applied. Study with varying catalyst (TiO2) dose from 0.5 g/L - 2 g/L revealed 1 g/L as the optimum dose resulting in 65.15% reduction in COD. A 40 ml/L dose of H2O2 was shown to be optimal, giving an 81.96% reduction in COD, based on the study of varied doses of H2O2 from 20 ml/L to 60 ml/L. US + Fenton reagent combination at optimum Fe2+/H2O2 (w/v) ratio of 1:1 resulted in a COD reduction of 85.29% whereas reduction of COD as 81.75% was obtained at the optimum flow rate of ozone as 1 LPM for US + Ozone approach. US + Peroxone demonstrated the best efficiency (90.48%) for COD reduction. To find the toxicity effects, the treated (US + peroxone) and non-treated samples were tested for the growth of bacterial cultures. It was observed that the toxicity of the treated sample increased only marginally after treatment. High-resolution liquid chromatography mass spectrometry (HR-LCMS) analysis was also performed to establish intermediate compounds. Overall, the coupling of ultrasound with oxidation processes produced better results with US + Peroxone established as best treatment approach for coke plant effluent.
Collapse
Affiliation(s)
- Ananya Dey
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India.
| |
Collapse
|
4
|
Momin RF, Gogate PR. Degradation of Procion Brilliant Purple H-3R using ultrasound coupled with advanced oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119642. [PMID: 38016239 DOI: 10.1016/j.jenvman.2023.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The complexity of wastewater matrix poses a challenge for conventional processes especially due to the presence of refractory compounds such as dyes. The present work focuses on utilizing ultrasound-induced cavitation in conjunction with different oxidants such as hydrogen peroxide, Fenton's reagent and potassium persulfate to treat Procion Brilliant Purple H-3R dye containing wastewater. The impact of various operating parameters as pH, frequency, and power on degradation levels has been studied with the aim of optimizing degradation. The optimal conditions for the degradation of Procion Brilliant Purple H-3R were determined as pH of 12, frequency of 22 kHz, and power of 250 W, resulting in a maximum degradation of 70.25%. Combination of a cavitation reactor with hydrogen peroxide, Fenton reagent, and KPS was then applied at optimized conditions, which confirmed a notable enhancement in degradation compared to the only ultrasound based process. Specifically, the degradation extent was 95.99% for combination with H2O2 at 0.5 g/L loading, 99.79% for combination with Fenton at H2O2/Fe2+ ratio of 50:1, and 99.05% for combination with KPS at loading of 0.75 g/L. The kinetic rate constant for the combined approach of US + Fenton was also maximum at 7.47 × 10-1 L mg-1 min-1. Toxicity analysis was conducted on two bacterial strains, Escherichia coli and Staphylococcus aureus, using the wastewater in native form and after treatment. The various processes were evaluated in terms of the cavitational yield and overall treatment cost and it was determined that US + Fenton process is the most efficient treatment method for fully degrading Procion Brilliant Purple H-3R, particularly at larger scales of operation and cost efficiently as demonstrated in the work.
Collapse
Affiliation(s)
- Rahat F Momin
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India.
| |
Collapse
|
5
|
Shokoohi R, Rahmani A, Asgari G, Ashrafi M, Ghahramani E. The effect of the combined system of hydrodynamic cavitation, ozone, and hydrogen peroxide on chlorophyll a and organic substances removal in the raw water. Sci Rep 2023; 13:10102. [PMID: 37344539 DOI: 10.1038/s41598-023-37167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Increased levels of nutrients and algae can cause drinking water problems in communities. Harmful algal blooms affect humans, fish, marine mammals, birds, and other animals. In the present study, we investigated the use of a combined system [Hydrodynamic Cavitation, Ozone (O3), and Hydrogen Peroxide (H2O2)] on the removal of Chlorophyll a and Organic substances in the raw water was investigated. The Effect of different operating conditions such as pH, cavitation time, pressure, distance, flow rate, ozone dose, and hydrogen peroxide concentration was studied. Utilizing the Taguchi design method, experiments were planned and optimized. The combined system treatment yielded a maximum reduction in Chlorophyll a and Total Organic Carbon (TOC) at an optimum condition of pH 5, cavitation pressure 5 bar, flow rate of 1 m3/h, a distance of 25 cm from the orifice plate, O3 3 g/h and 2 g/l of H2O2 concentrations. The most efficient factor in the degradation of TOC and Chlorophyll a, was cavitation pressure based on the percentage contributions of each parameter (38.64 percent and 35.05 percent, respectively). H2O2 was found to have the most negligible impact on degradation efficiency (4.24 percent and 4.11 percent, respectively).
Collapse
Affiliation(s)
- Reza Shokoohi
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Rahmani
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghorban Asgari
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maysam Ashrafi
- Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Esmaeil Ghahramani
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
- Research Institute for Health Department, Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
6
|
Chen J, Zeng X, Chai J, Zhou G, Xu X. Improvement of the emulsifying properties of mixed emulsifiers by optimizing ultrasonic-assisted processing. ULTRASONICS SONOCHEMISTRY 2023; 95:106397. [PMID: 37044021 PMCID: PMC10119801 DOI: 10.1016/j.ultsonch.2023.106397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Optimizing ultrasound (ULD)-assisted flavonoid modification is an important component of enhancing its application potential. In this work, diverse flavonoids, such as quercetin (Que), apigenin (Api), and morin (Mor), were used to modify protein in myofibrillar protein (MP)/cellulose nanocrystal (CN) complexes using ULD-assisted method. Compared with the MP/CNs group, the triiodide contents of MP-Que/CNs, MP-Api/CNs, and MP-Mor/CNs increased by 1175.84%, 479.05%, and 2281.50% respectively. The findings revealed that the actual intensity of ULD was drastically reduced by the molecular weight decrease of these flavonoids. For olive oil emulsions prepared with mixed emulsifiers, the low interfacial diffusion rates (0.03 mN·m·s-1/2) and weak emulsifying activity (8.33 m2/g) of the MP/CN complexes were significantly improved by the flavonoids after ULD-assisted treatment. Notably, the emulsions prepared using MP-Api/CNs contained smaller oil droplets and exhibited better emulsifying properties, compared to emulsions prepared with MP-Mor/CNs or MP-Que/CNs. This study is essential for ULD-assisted treatment since the processing impact may be increased by choosing the most suitable flavonoid.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Sabbouh M, Nikitina A, Rogacheva E, Nebalueva A, Shilovskikh V, Sadovnichii R, Koroleva A, Nikolaev K, Kraeva L, Ulasevich S, Skorb E. Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy. ULTRASONICS SONOCHEMISTRY 2023; 92:106247. [PMID: 36508894 PMCID: PMC9763737 DOI: 10.1016/j.ultsonch.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
At present research, we highlight ultrasonic treatment as a new way to create materials with a gradient change of chemical or physical properties. We demonstrate the possibility to fabricate novel materials with biocide activity based on simple and cheap Cu-Zn alloy. In this research, we propose a green preparative technique for the sonication of an alloy in an alkali solution. The method leads to a significant visual change and differentiation of particles into three different fractions. Due to the chemical micro gradients in media near the solid surface under intensive sonication, fast formation of specific functional groups occurs on the particles' surface. The particles were studied X-ray diffraction analysis (XRD) analysis, the field-emission scanning electron microscope (SEM) as well as electron backscatter diffraction (EBSD) mode, X-ray Photoelectron Spectroscopy (XPS), the differential pulse anodic stripping voltammetry (DPASV) technique. A strong correlation of both methods proves a redistribution of copper ions from Fraction I to Fraction III that influence for the antibacterial properties of the prepared material. The different biocidal activity was demonstrated for each separated Fraction that could be related to their different phase content and ability to release the different types of ions.
Collapse
Affiliation(s)
- Mirna Sabbouh
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Anna Nikitina
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg 197101, Russia
| | - Anna Nebalueva
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Vladimir Shilovskikh
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia; Saint-Petersburg State University, Russia
| | | | | | | | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg 197101, Russia
| | | | - Ekaterina Skorb
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| |
Collapse
|
8
|
Mapping of cavitation intensity in a novel dual-frequency ultrasonic reactor of capacity 10 L. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Cintas P, Cravotto G, Gondrexon N, Leveque JM. Special Issue on "Ultrasound hybridized technologies: A new breathing for sonochemistry". ULTRASONICS SONOCHEMISTRY 2022; 86:105995. [PMID: 35418337 PMCID: PMC9171233 DOI: 10.1016/j.ultsonch.2022.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
10
|
Chen J, Chen X, Zhou G, Xu X. New insights into the ultrasound impact on covalent reactions of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2022; 84:105973. [PMID: 35272240 PMCID: PMC8913343 DOI: 10.1016/j.ultsonch.2022.105973] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
In this work, two different covalent reactions, namely, alkaline reaction and free radical oxidation, were selected to compare the difference in the strengthening effects of ultrasound treatment (UDT). The grafting effects were verified by protein electrophoresis and bound gallic acid (GA) assay. Furthermore, non-covalent interactions between myofibrillar protein (MPN) aggregates were destroyed by UDT, as proved by the lower particle sizes and higher ζ-potential. Comparatively, the results from tertiary structure index and circular dichroism revealed UDT-assisted free radical oxidation could lead to better conjugates with greater structural properties. The atomic force microscope (AFME) and protein flexibility showed that MPNs appeared to display as irregular spherical particles after alkaline reaction, however, maintained fibrous structure during the free radical oxidation. Consequently, the combination of UDT and free radical oxidation were more effectively for strengthening the influence of acoustic cavitation on MPNs, of which mechanism was the changes in viscosity properties, microstructure and acoustic cavitation radicals.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Banitaba SH. Collaboration of Ultrasonic Irradiation and Silica Nanoparticles in the Diastereoselective Synthesis of Trans-2,3-Dihydrofuran Derivatives: An Exceptional Catalytic Activity of Sound Cavities and SiO 2 Nanoparticles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2042335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Seyed Hossein Banitaba
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- Research Center of Environmental Chemistry, Payame Noor University, Ardakan, Yazd, Iran
| |
Collapse
|
12
|
Omri A, Benzina M. Sono-activation of persulfate by Fe-expanded perlite catalyst for oxidative degradation of Orange G: synergy study, influence of parameters and phytotoxicity tests. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04673-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Coupling of acoustic/hydrodynamic cavitation with ozone (O3), hydrogen peroxide (H2O2), magnesium oxide (MgO) and manganese dioxide (MnO2) for the effective treatment of CETP effluent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Agarkoti C, Thanekar PD, Gogate PR. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113786. [PMID: 34649311 DOI: 10.1016/j.jenvman.2021.113786] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/28/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Acoustic cavitation (AC) and hydrodynamic cavitation (HC) coupled with advanced oxidation processes (AOPs) are prominent techniques used for industrial wastewater treatment though most studies have focused on simulated effluents. The present review mainly focuses on the analysis of studies related to real industrial effluent treatment using acoustic and hydrodynamic cavitation operated individually and coupled with H2O2, ozone, ultraviolet, Fenton, persulfate and peroxymonosulfate, and other emerging AOPs. The necessity of using optimum loadings of oxidants in the various AOPs for obtaining maximum COD reduction of industrial effluent have been demonstrated. The review also presents critical analysis of designs of various HCRs that have been or can be used for the treatment of industrial effluents. The impact of operating conditions such as dilution, inlet pressure, ultrasonic power, pH, and operating temperature have been also discussed. The economic aspects of the industrial effluent treatment have been analyzed. HC can be considered as cost-efficient approach compared to AC on the basis of the lower operating costs and better transfer efficiencies. Overall, HC combined with AOPs appears to be an effective treatment strategy that can be successfully implemented at industrial-scale of operation.
Collapse
Affiliation(s)
- C Agarkoti
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P D Thanekar
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| |
Collapse
|
15
|
Kodavatiganti S, Bhat AP, Gogate PR. Intensified degradation of Acid Violet 7 dye using ultrasound combined with hydrogen peroxide, Fenton, and persulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Zampeta C, Bertaki K, Triantaphyllidou IE, Frontistis Z, Vayenas DV. Treatment of real industrial-grade dye solutions and printing ink wastewater using a novel pilot-scale hydrodynamic cavitation reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113301. [PMID: 34280856 DOI: 10.1016/j.jenvman.2021.113301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A novel pilot-scale hydrodynamic cavitation (HC) reactor was used to decolorize industrial-grade dye solutions and printing ink wastewater (PIW). The effect of the orifice plate geometry (1 hole plate of 1 mm and 2 mm in diameter, 31 holes of 1 mm and 2 mm in diameter, 62 holes of 1 mm and 2 mm in diameter), inlet pressure (4, 5 bar), initial dye concentration (0.3 and 0.6 OD), and the synergistic effect of HC and hydrogen peroxide concentration (0.0, 0.5, 1.0, 2.0 g/L) were investigated. The results showed that the highest color removal was obtained using 31 holes orifice plate of 2 mm holes' diameter, at 4 bar inlet pressure. Furthermore, although HC could not degrade completely all the industrial-grade dyes, efficiency was enhanced in the presence of H2O2. The optimum concentration of hydrogen peroxide was 1.0 g/L regardless of the initial concentration of the dyes studied. Under optimum operating conditions, color removal reached up to 68% for black, 39% for red, 43% for yellow, 55% for green, and 51% for cyan dye, while color removal in the PIW reached only 15%. The black dye solution presented almost 100% COD removal, while 38%, 25%, 67%, and 78% COD removal values were obtained for the red, yellow, cyan and green dyes, respectively. 55% COD removal was recorded from the PIW. Concerning cavitation yields, black, red, yellow, green, cyan dye yields reached 2.5E(-7), 1.1E(-7), 1.5E(-7), 2.0E(-7), 1.7E(-7) OD⋅L/J, respectively, while PIW yield was 6.3E(-8) OD⋅L/J. The present study demonstrates that HC combined with green oxidants such as hydrogen peroxide could be an alternative treatment approach for real industrial wastewater streams. However, a combination with a post-treatment method should be applied to maximize both color and COD removal.
Collapse
Affiliation(s)
- Charikleia Zampeta
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece
| | - Kleio Bertaki
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece
| | | | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50100, Kozani, Greece
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ ICE-HT), Stadiou Str., Platani, GR-26504, Patras, Greece.
| |
Collapse
|