1
|
Manyatsi TS, Mousavi Khaneghah A, Gavahian M. The effects of ultrasound on probiotic functionality: an updated review. Crit Rev Food Sci Nutr 2024; 64:11643-11660. [PMID: 37565473 DOI: 10.1080/10408398.2023.2242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The effects of ultrasound (US) on probiotics, as health-promoting microbes, have attracted the attention of researchers in fermentation and healthy food production. This paper aims to review recent advances in the application of the US for enhancing probiotic cells' activity, elaborate on the mechanisms involved, explain how probiotic-related industries can benefit from this emerging food processing technology, and discuss the perspective of this innovative approach. Data showed that US could enhance fermentation, which is increasingly used to enrich agri-food products with probiotics. Among the probiotics, recent studies focused on Lactiplantibacillus plantarum, Lactobacillus brevis, Lactococcus lactis, Lactobacillus casei, Leuconostoc mesenteroides, Bifidobacteria. These bacteria proliferated in the log phase when treated with US at relatively low-intensities. Also, this non-thermal technology increased extracellular enzymes, mainly β-galactosidase, and effectively extracted antioxidants and bioactive compounds such as phenolics, flavonoids, and anthocyanins. Accordingly, better functional and physicochemical properties of prebiotic-based foods (e.g., fermented dairy products) can be expected after ultrasonication at appropriate conditions. Besides, the US improved fermentation efficiency by reducing the production time, making probiotics more viable with lower lactose content, more oligosaccharide, and reduced unpleasant taste. Also, US can enhance the rheological characteristics of probiotic-based food by altering the acidity. Optimizing US settings is suggested to preserve probiotics viability to achieve high-quality food production and contribute to food nutrition improvement and sustainable food manufacturing.
Collapse
Affiliation(s)
- Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| |
Collapse
|
2
|
Qian J, Lu D, Zhang Z, Chen D, Zhao F, Huo S, Wang F, Ma H, Kan J. Effect of low-frequency alternating magnetic field on exopolysaccharide production and antioxidant capacity of Pleurotus citrinopileatus by submerged fermentation. Int Microbiol 2024:10.1007/s10123-024-00604-9. [PMID: 39422857 DOI: 10.1007/s10123-024-00604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The objective of this study was to investigate the effect of low-frequency alternating magnetic field (LF-AMF) on the production of extracellular polysaccharide (EPS) by submerged fermentation of Pleurotus citrinopileatus. The fermentation conditions optimized by the central composite design method were as follows: fermentation time of 6.18 days, temperature of 28.28 °C, shaking speed of 149.04 r/min, and inoculum amount of 8.43%. Under these conditions, a LF-AMF was applied to the submerged fermentation of P. citrinopileatus. When the intensity of LF-AMF was 40 Gs, the initial intervention time was 24 h after inoculation, and the treatment time was 6 h at one time, the mycelial biomass of P. citrinopileatus increased by 11.30%, and the EPS yield increased by 23.09% compared with the fermentation without LF-AMF treatment. The morphology of mycelium after LF-AMF treatment was observed by scanning electron microscopy. It was found that the surface of mycelium was wrinkled, and the structure of mycelium was loose, which might be more conducive to the production of EPS. Mycelium diameter decreased, and ATPase activity increased, indicating that LF-AMF had a positive effect on the production of EPS by P. citrinopileatus fermentation. Moreover, LF-AMF could improve the permeability of the mycelial cell membrane, facilitate the exchange of intracellular and extracellular substances, and increase the metabolic capacity of P. citrinopileatus. In vitro antioxidant test of EPS showed that LF-AMF treatment also improved its antioxidant capacity.
Collapse
Affiliation(s)
- Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Dazhou Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zixuan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Di Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Feng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| |
Collapse
|
3
|
Müller WA, Sarkis JR, Marczak LDF, Muniz AR. Computational analysis of the simultaneous application of ultrasound and electric fields in a lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184364. [PMID: 38901662 DOI: 10.1016/j.bbamem.2024.184364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The combined application of electric fields and ultrasonic waves has shown promise in controlling cell membrane permeability, potentially resulting in synergistic effects that can be explored in the biotechnology industry. However, further clarification on how these processes interact is still needed. The objective of the present study was to investigate the atomic-scale effects of these processes on a DPPC lipid bilayer using molecular dynamics simulations. For higher electric fields, capable of independently forming pores, the application of an ultrasonic wave in the absence of cavitation yielded no additional effects on pore formation. However, for lower electric fields, the reduction in bilayer thickness induced by the shock wave catalyzed the electroporation process, effectively shortening the mean path that water molecules must traverse to form pores. When cavitation was considered, synergistic effects were evident only if the wave alone was able to generate pores through the formation of a water nanojet. In these cases, sonoporation acted as a mean to focus the electroporation effects on the initial pore formed by the nanojet. This study contributes to a better understanding of the synergy between electric fields and ultrasonic waves and to an optimal selection of processing parameters in practical applications of these processes.
Collapse
Affiliation(s)
- Wagner Augusto Müller
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | - Júlia Ribeiro Sarkis
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | | | - André Rodrigues Muniz
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Hao J, Xu H, Yan P, Yang M, Mintah BK, Dai C, Zhang R, Ma H, He R. Application of fixed-frequency ultrasound in the cultivation of Saccharomyces cerevisiae for rice wine fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6417-6430. [PMID: 38506633 DOI: 10.1002/jsfa.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Rice wine (RW) fermentation is limited by its long fermentation time, weak taste and unpleasant flavors such as oil and odor. In this study, a novel ultrasound technology of Saccharomyces cerevisiae was used with the aim of improving fermentation efficiency and volatile flavor quality of RW. RESULTS The results showed that fixed-frequency ultrasonic treatment (28 kHz, 45 W L-1, 20 min) of S. cerevisiae seed culture at its logarithmic metaphase significantly increased the biomass and alcohol yield by 31.58% and 26.45%, respectively, and reduced fermentation time by nearly 2 days. Flavor analysis indicated that the flavor compounds in RW, specifically the esters and alcohols, were also increased in quantity after the ultrasonic treatment of S. cerevisiae seed liquid. Isobutyl acetate, ethyl butyrate, ethyl hexanoate and phenethyl acetate contents were increased by 78.92%, 129.19%, 7.79% and 97.84%, respectively, as compared to the control. CONCLUSION Ultrasonic treatment of S. cerevisiae reduced fermentation time and enhanced the flavor profile of RW. This study could provide a theoretical and/or technological basis for the research and development of RW. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Hao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Mengyuan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | | | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Liu J, Wang D, Wang H, Yang N, Hou J, Lv X, Gong L. Low frequency magnetic field assisted production of acidic protease by Aspergillus niger. Arch Microbiol 2024; 206:273. [PMID: 38772954 DOI: 10.1007/s00203-024-04004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China.
- Hebei Fermentation Technology Innovation Center, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China.
| | - Dongxu Wang
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Hong Wang
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiayang Hou
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Xuemeng Lv
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Luqian Gong
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| |
Collapse
|
6
|
Zhu M, Wang H, Zong J, Zhang J, Zhao S, Ma H. Evaluating the effects of low-frequency alternating magnetic field thawing on oxidation, denaturation, and gelling properties of porcine myofibrillar proteins. Food Chem 2024; 433:137337. [PMID: 37688826 DOI: 10.1016/j.foodchem.2023.137337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
The impact of low-frequency alternating magnetic field thawing (LF-MFT) on the physicochemical and gelling properties of porcine myofibrillar proteins (MP) was studied. Results showed that compared to atmosphere thawing (AT), LF-MFT helped in inhibiting the oxidation and denaturation of protein during thawing, thereby maintaining a superior MP gel (P < 0.05). In particular, LF-MFT-4 (LF-MFT at 4 mT) could decrease the oxidation of MP, which might be due to having a higher content of total sulfhydryl and less carbonyl of MP than other thawing treatments. The denaturation of MP was reduced since LF-MFT-4 led to less aggregation and degradation than AT. The gelling properties were also retained, and a compact and homogeneous network structure was formed after LF-MFT-4, resulting in excellent water retention. These findings suggested that LF-MFT-4 improved the gelling properties of MP by inhibiting its oxidation and denaturation, demonstrating a potential application of LF-MFT in meat thawing.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; National Pork Processing Technology Research and Development Professional Center, Xinxiang 453003, China.
| | - He Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiaxing Zong
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Juan Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
7
|
Chen S, Jin Y, Yang N, Wei L, Xu D, Xu X. Improving microbial production of value-added products through the intervention of magnetic fields. BIORESOURCE TECHNOLOGY 2024; 393:130087. [PMID: 38042431 DOI: 10.1016/j.biortech.2023.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The magnetic field application is emerging as an auxiliary physical strategy to facilitate rapid biomass accumulation and intracellular production of compounds. However, the underlying mechanisms and principles governing the application of magnetic fields for microbial growth and biotransformation are not yet fully understood. Therefore, a better understanding of interdisciplinary technologies integration, expanded magnetic field application, and scaled-up industrial implementation is crucial. In this review, the magnetic field characteristics, magnetic field-assisted fermentation devices, and the working mechanism of magnetic field have been reviewed comprehensively from both physical and microbiological perspectives. The review suggests that magnetic fields affect the biochemical processes in microorganisms by mediating nutrient transport across membranes, electron transfer during photosynthesis and respiration, enzyme activity and gene expression. Moreover, the recent advances in magnetic field application for microbial fermentation and conversion in biochemical, food and agricultural fields have been summarized.
Collapse
Affiliation(s)
- Sirui Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Na Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Liwen Wei
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| |
Collapse
|
8
|
Song J, Jiang L, Qi M, Han F, Li L, Xu M, Li Y, Zhang D, Yu S, Li H. Influence of magnetic field on gluten aggregation behavior and quality characteristics of dough enriched with potato pulp. Int J Biol Macromol 2024; 254:128082. [PMID: 37972838 DOI: 10.1016/j.ijbiomac.2023.128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the effect of varying magnetic field intensities (ranging from 0 to 10 mT) on the quality characteristics of dough with 40 % potato pulp substitution (DPP). The results indicated that the DPP fermented with a 4 mT magnetic field exhibited a significant enhancement in the combination of water and substrate, thereby elevating the viscoelastic properties of DPP through reinforcing the stability of gluten network. Meanwhile, DPP treated with a 4 mT magnetic field exhibited the highest amount of disulfide bonds (11.64 μmol SS/g sample). This is accompanied by a prominent cross-linkage structure, as evidenced by SDS-PAGE and CLSM. Notably, the application of a magnetic field substantially augments the dough's capacity to retain gas during fermentation. In addition, the application of magnetic field significantly increased the wet gluten content (20.85 %, P < 0.05) in DPP, which improved tensile properties and an acceptable color profile. The introduction of a magnetic field induces gluten aggregation, which in turn results in heightened particle size distribution and ζ-potential values. In conclusion, this study emphasize the potential of magnetic field technology as a viable method to enhance the overall quality attributes of dough enriched with potato pulp substitution.
Collapse
Affiliation(s)
- Jialin Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Lijun Jiang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mingming Qi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Feng Han
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Luxia Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mei Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Yueming Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Dongliang Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Shifeng Yu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China.
| | - Hongjun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China.
| |
Collapse
|
9
|
Sun M, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106763. [PMID: 38219551 PMCID: PMC10825639 DOI: 10.1016/j.ultsonch.2024.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Edible mushrooms are high in nutrients, low in calories, and contain bioactive substances; thus, they are a valuable food source. However, the high moisture content of edible mushrooms not only restricts their storage and transportation after harvesting, but also leads to a shorter processable cycle, production and processing limitations, and a high risk of deterioration. In recent years, ultrasonic technology has been widely applied to various food production operations, including product cleaning, post-harvest preservation, freezing and thawing, emulsifying, and drying. This paper reviews applications of ultrasonic technology in the production and processing of edible mushrooms in recent years. The effects of ultrasonic technology on the drying, extraction of bioactive substances, post-harvest preservation, shelf life/preservation, freezing and thawing, and frying of edible mushrooms are discussed. In summary, the application of ultrasonic technology in the edible mushroom industry has a positive effect and promotes the development of this industry.
Collapse
Affiliation(s)
- Mianli Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| |
Collapse
|
10
|
He M, Wu F, Qu G, Liu X. Harmless and resourceful utilization of solid waste: Multi physical field regulation in the microbiological treatment process of solid waste treatment. ENVIRONMENTAL RESEARCH 2023; 238:117149. [PMID: 37716393 DOI: 10.1016/j.envres.2023.117149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Solid waste (SW) treatment methods mainly include physical, chemical, and biological methods, while physical and chemical methods have advantages such as fast effectiveness and short treatment time, but have high costs and were prone to secondary pollution. Due to the advantages of mild conditions and environmental protection, microbial methods have attracted the attention of numerous researchers. Recently, promotion of biological metabolic activity in biotreatment technology by applying multiple physical conditions, and reducing the biochemical reaction energy base to promote the transfer of protons and electrons, has made significant progress in harmless and resourceful utilization of SW. This paper main summarized the harmless and resourceful treatment methods of common bulk SW. The research of physical field-enhanced microbial treatment of inorganic solid waste (ISW) and organic solid waste (OSW) was discussed. The advantages and mechanisms of microbial treatment compared to traditional SW treatment methods were analyzed. The multi-physical field coupling enhanced microbial treatment technology was proposed to further improving the efficiency of large-scale treatment of bulk SW. The application prospects and potential opportunities of this technology were analyzed. Novel research ideas for the large-scale harmless and resourceful treatment of bulk SW were provided.
Collapse
Affiliation(s)
- Minjie He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| |
Collapse
|
11
|
Dai C, Shu Z, Xu X, Yan P, Dabbour M, Kumah Mintah B, Huang L, He R, Ma H. Enhancing the growth of thermophilic Bacillus licheniformis YYC4 by low-intensity fixed-frequency continuous ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106611. [PMID: 37757602 PMCID: PMC10550775 DOI: 10.1016/j.ultsonch.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The effect of low-intensity fixed-frequency continuous ultrasound (LIFFCU) on the growth of Bacillus licheniformis YYC4 was investigated. The changes in morphology and activity of the organism, contributing to the growth were also explored. Compared with the control, a significant increase (48.95%) in the biomass of B. licheniformis YYC4 (at the logarithmic metaphase) was observed following the LIFFCU (28 kHz, 1.5 h and 120 W (equivalent to power density of 40 W/L)) treatment. SEM images showed that ultrasonication caused sonoporation, resulting in increased membrane permeability, evidenced by increase in cellular membrane potential, electrical conductivity of the culture, extracellular protein and nucleic acid, and intracellular Ca2+ content. Furthermore, LIFFCU action remarkably increased the extracellular protease activity, volatile components of the culture medium, microbial metabolic activity, and spore germination of the strain. Therefore, LIFFCU could be used to efficiently promote the growth of targeted microorganisms.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhenzhen Shu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Hu Y, Li K, Bai Y, Li H, Chen J. Effect of combined ultrasonic and enzymatic assisted treatment on the fermentation process of whole Lycium barbarum (goji berry) fruit. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Yang B, Yu Q, Zhang Y. Applying Dynamic Magnetic Field To Promote Anaerobic Digestion via Enhancing the Electron Transfer of a Microbial Respiration Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2138-2148. [PMID: 36696287 DOI: 10.1021/acs.est.2c08577] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical methods have been reported to strengthen anaerobic digestion, but the continuous electrical power supply and the complicated electrode installed inside the digester have restricted it from practical use. In this study, a dynamic magnetic field (DMF) was placed outside a digester to induce an electromotive force to electrically promote anaerobic digestion. With the applied DMF, an electromotive force of 0.14 mV was generated in the anaerobic sludge, and a 65.02% methane increment was obtained from the anaerobic digestion of waste-activated sludge. Experiments on each stage of anaerobic digestion showed that acidification and methanogenesis that involve electron transfer of respiration chains were promoted with the DMF, while solubilization and hydrolysis less related to respiration chains were not enhanced. Further analysis indicated that the induced electromotive force polarized the protein-like substances in the sludge to increase the conductivity and capacitance of the sludge. Electrotrophic methanogens (Methanothrix) and exoelectrogens (Exiguobacterium) were enriched with DMF. The kinetic isotope effect test confirmed that electron transfer was accelerated with DMF. Consistently, the concentration ratio of co-enzymes (NADH/NAD+ and F420H2/F420) that reflects the electron exchange with respiration chains significantly increased. Applying the DMF seemed a more accessible strategy to electrically strengthen anaerobic digestion.
Collapse
Affiliation(s)
- Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Huang Z, Huang Y, Dong Z, Guan P, Wang X, Wang S, Lei M, Suo B. Modelling the growth of Staphylococcus aureus with different levels of resistance to low temperatures in glutinous rice dough. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
Yu Q, Zhang M, Ju R, Mujumdar AS, Wang H. Advances in prepared dish processing using efficient physical fields: A review. Crit Rev Food Sci Nutr 2022; 64:4031-4045. [PMID: 36300891 DOI: 10.1080/10408398.2022.2138260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prepared dishes are increasingly popular convenience food that can be eaten directly from hygienic packaging by heating. Physics field (PF) is food processing method built with physical processing technology, which has the characteristics of high efficiency and environmental safety. This review focuses on summarizing the application of PFs in prepared dishes, evaluating and comparing PFs through quality changes during processing and storage of prepared dishes. Currently, improving the quality and extending the shelf life of prepared dishes through thermal and non-thermal processing are the main modes of action of PFs. Most PFs show good potential in handing prepared dishes, but may also react poorly to some prepared dishes. In addition, the difficulty of precise control of processing conditions has led to research mostly at the laboratory stage, but as physical technology continues to break through, more PFs and multi-physical field will be promoted for commercial use in the future. This review contributes to a deeper understanding of the effect of PFs on prepared dishes, and provides theoretical reference and practical basis for future processing research in the development of various enhanced PFs.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
17
|
Shockwaves Increase In Vitro Resilience of Rhizopus oryzae Biofilm under Amphotericin B Treatment. Int J Mol Sci 2022; 23:ijms23169226. [PMID: 36012494 PMCID: PMC9409157 DOI: 10.3390/ijms23169226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acoustical biophysical therapies, including ultrasound, radial pressure waves, and shockwaves, have been shown to harbor both a destructive and regenerative potential depending on physical treatment parameters. Despite the clinical relevance of fungal biofilms, little work exits comparing the efficacy of these modalities on the destruction of fungal biofilms. This study evaluates the impact of acoustical low-frequency ultrasound, radial pressure waves, and shockwaves on the viability and proliferation of in vitro Rhizopus oryzae biofilm under Amphotericin B induced apoptosis. In addition, the impact of a fibrin substrate in comparison with a traditional polystyrene well-plate one is explored. We found consistent, mechanically promoted increased Amphotericin B efficacy when treating the biofilm in conjunction with low frequency ultrasound and radial pressure waves. In contrast, shockwave induced effects of mechanotransduction results in a stronger resilience of the biofilm, which was evident by a marked increase in cellular viability, and was not observed in the other types of acoustical pressure waves. Our findings suggest that fungal biofilms not only provide another model for mechanistical investigations of the regenerative properties of shockwave therapies, but warrant future investigations into the clinical viability of the therapy.
Collapse
|
18
|
Exploring magnetic field treatment into solid-state fermentation of organic waste for improving structural and physiological properties of keratin peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Guo L, Azam SR, Guo Y, Liu D, Ma H. Germicidal efficacy of the pulsed magnetic field against pathogens and spoilage microorganisms in food processing: An overview. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Zhao S, Liu Y, Yuan X, Zhao Y, Kang Z, Zhu M, Ma H. Effect of low-frequency alternating magnetic field on the rheological properties, water distribution and microstructure of low-salt pork batters. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Liu X, Hasan KMF, Wei S. Immunological regulation, effects, extraction mechanisms, healthy utilization, and bioactivity of edible fungi: A comprehensive review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| | | | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| |
Collapse
|
22
|
Wu P, Wang X, Lin W, Bai L. Acoustic characterization of cavitation intensity: A review. ULTRASONICS SONOCHEMISTRY 2022; 82:105878. [PMID: 34929549 PMCID: PMC8799601 DOI: 10.1016/j.ultsonch.2021.105878] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
Cavitation intensity is used to describe the activity of cavitation, and several methods are developed to identify the intensity of cavitation. This work aimed to provide an overview and discussion of the several existing characterization methods for cavitation intensity, three acoustic approaches for charactering cavitation were discussed in detail. It was showed that cavitation noise spectrum is too complex and there are some differences and disputes on the characterization of cavitation intensity by cavitation noise. In this review, we recommended a total cavitation noise intensity estimated via the integration of real cavitation noise spectrum over full frequency domain instead of artificially adding inaccurate filtering processing.
Collapse
Affiliation(s)
- Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuming Wang
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Bai
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|