1
|
Chen D, Rong M, Tang S, Zhang C, Wei H, Yuan Z, Miao T, Song H, Jiang H, Yang Y, Zhang L. A novel directed enzymolysis strategy for the preparation of umami peptides in Stropharia rugosoannulata and its mechanism of taste perception. Food Chem 2025; 468:142385. [PMID: 39675269 DOI: 10.1016/j.foodchem.2024.142385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
This study aimed to explore the effect of directed enzymolysis on the umami characteristics of S. rugosoannulata, clarify the flavour formation mechanism of umami peptides. We expressed a new aminopeptidase (DNPEP) and obtained the umami peptides of S. rugosoannulata by alkaline protease and DNPEP. The optimal enzymolysis conditions were temperature 55 °C, solid-liquid ratio 1:20 (g/mL), alkaline protease enzymolysis (60 min, 0.5 %, pH 9.0), and DNPEP enzymolysis (80 min, 0.3 %, pH 8.0). The umami peptide components were separated by ultrafiltration and gel filtration chromatography. Six umami peptides (EEAKFN, KAELDLH, LADVEEDK, LKEAHDVA, AHLDYGDGK, and LGKSEDDVSK) were identified by LC-MS/MS and virtual screening, and the umami thresholds of the peptides were 0.15-1.09 mmol/L. Molecular simulations revealed that the amino acid residues Glu301, Ser217, Asp218, and Arg277 were crucial in the binding of the umami peptide to the T1R1/T1R3. Therefore, this study provides a theoretical basis for the development of mushroom condiments.
Collapse
Affiliation(s)
- Daoyou Chen
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mingli Rong
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuting Tang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Chuanxi Zhang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Wei
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaoting Yuan
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tingwei Miao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hucheng Song
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Haiming Jiang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Wang X, Bhullar KS, Fu J, Chen B, Liu H, Su D, Wu S, He H, Wang Q, Qiao Y, Zhou W. Unraveling novel antioxidant peptides from Asian swamp eel: Identification, in silico selection, and mechanistic insights through quantum chemical calculation and molecular docking. Food Chem 2025; 464:141668. [PMID: 39432943 DOI: 10.1016/j.foodchem.2024.141668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/11/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Fifteen novel antioxidant peptides were identified from Asian swamp eel (ASE) hydrolysate through in silico screening, demonstrating ABTS and ORAC activities ranging from 1.17 to 3.28 and 1.94 to 5.67 times higher than Trolox, respectively. Concurrently, four new sequences (AVLW, VWPS, VPWP, and HWDGSLPR) were discovered. The critical role of the hydrogen atom on the tryptophan indole nitrogen in ABTS radical scavenging was elucidated by quantum chemical calculations and subsequent active site methylation experiments, while the significance of hydrogen atoms on both the tryptophan indole nitrogen and tyrosine phenolic hydroxyl groups for ORAC values was emphasized. Moreover, molecular docking analysis demonstrated that ASE antioxidant peptides primarily interacted with myeloperoxidase (MPO) via hydrogen bonds with Arg405, Arg499, Arg590, Gln257, Glu268, His261, and Thr266, and electrostatic interactions with Arg405, Arg590, Glu268, His261, and His502, resulting in a tight binding to MPO.
Collapse
Affiliation(s)
- Xiao Wang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Khushwant S Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Juan Fu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bingjie Chen
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongru Liu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Di Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Songheng Wu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui He
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qiankun Wang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongjin Qiao
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Wenzong Zhou
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem,Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
3
|
Xiao C, Lai Z, Zhang C, Lu W, Chen D, Wang H, Cheng H, Huang L, Ye X, Liu D. Identification of salty peptides from enzymolysis extract of oyster by peptidomics and virtual screening. Food Res Int 2024; 195:114966. [PMID: 39277236 DOI: 10.1016/j.foodres.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Salty peptide as an important sodium substitute, which could reduce the risk of cardiovascular disease caused by excessive sodium intake. In this study, novel salty peptides were prepared and identified from enzymolysis extract of oysters by peptitomic identification, virtual screening and solid phase synthesis. Additionally, molecular simulation was used to study the taste mechanism of salty peptides. 316 peptides were identified in the enzymatic hydrolysates of oysters. 6 peptides, selected through virtual screening, were synthesized using solid-phase synthesis, and EK, LFE, LEY and DR were confirmed to possess a pleasing salty taste through electronic tongue evaluation. Molecular docking results indicated that these 4 peptides could enter the binding pocket within the transmembrane channel-like 4 (TMC4) cavity, wherein salt bridges, hydrogen bonds and attractive charges were the main binding forces. This study provides a rapid screening method for salty peptides in sea food products but possibly applied for other sources.
Collapse
Affiliation(s)
- Chaogeng Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zeping Lai
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cen Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Wang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Li W, Chen W, Zhang Z, Wu D, Liu P, Li Z, Yang Y. Combined Peptidomics and Metabolomics Analyses to Characterize the Digestion Properties and Activity of Stropharia rugosoannulata Protein-Peptide-Based Materials. Foods 2024; 13:2546. [PMID: 39200473 PMCID: PMC11353256 DOI: 10.3390/foods13162546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Protein-peptide-based materials typically possess high nutritional value and various physiological regulatory activities. This study evaluated the digestion, metabolism, and activity of Stropharia rugosoannulata protein-peptide-based materials. After the S. rugosoannulata protein-peptide-based materials were digested (simulated) orally, in the stomach, and in the intestines, the proportions of >10,000 Da, 5000~10,000 Da, and <180 Da in the digestion products increased, and the peptide content was maintained at more than 120 mg/g dry weight. The digestion products of eight test groups with different oral-gastrointestinal digestion-level settings all had suitable ACE inhibitory activity (IC50 range 0.004~0.096 mg/mL). The main metabolite groups were lipid-like molecules, fatty acids, carboxylic acids, their derivatives, amino acids, peptides, and analogs. Bile and glycosylated amino acids were the main compounds that caused differences between groups. KEGG pathways enriched in differentially expressed metabolites included eight significantly upregulated pathways, including valine, leucine, and isoleucine biosynthesis, etc., and six significantly downregulated pathways, including the citric acid cycle (tricarboxylic acid cycle), etc. The arginine and proline metabolism pathways and the aminoacyl-tRNA biosynthesis pathways were upregulation and downregulation pathways that enriched multiple differentially expressed metabolites. Twenty-six metabolites, including bile acids, total bile acids, and the essential amino acids L-isoleucine and L-leucine, were differentially expressed metabolite markers of the protein-peptide-based material oral-gastrointestinal digestion products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.Z.); (D.W.); (P.L.); (Z.L.)
| |
Collapse
|
5
|
Wang X, Chen B, Bhullar KS, Yang H, Luo X, Fu J, Liu H, Su D, Sun D, Qiao Y, Zhou W. Investigation of Antioxidant Mechanisms of Novel Peptides Derived from Asian Swamp Eel Hydrolysate in Chemical Systems and AAPH-Induced Human Erythrocytes. Antioxidants (Basel) 2024; 13:888. [PMID: 39199134 PMCID: PMC11351846 DOI: 10.3390/antiox13080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Sixteen novel antioxidant peptides from Asian swamp eel (ASE) were identified in previous studies. However, their chemical and cellular antioxidant mechanisms remain unclear. Molecular docking of these peptides with ABTS and DPPH radicals revealed the critical role of hydrogen bonding and Pi-Pi stacking hydrophobic interactions between hydrophobic amino acid residues and free radicals. Residues, such as tryptophan, proline, leucine, and valine, played significant roles in these interactions. All these peptides exhibited notable erythrocyte morphoprotective effects in a model of AAPH-induced oxidative damage of human erythrocytes. Erythrocyte hemolysis was reduced primarily through the modulation of both non-enzymatic (GSH/GSSG) and enzymatic antioxidant systems (SOD, CAT, and GSH-Px) by these peptides. A decrease in levels of MDA, LDH release, and hemoglobin oxidation was observed. Among the peptides, VLYPW demonstrated superior chemical and cellular antioxidant activities, which may be attributed to its higher levels of tyrosine and tryptophan, as well as to its increased hydrophobic amino acid content.
Collapse
Affiliation(s)
- Xiao Wang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (B.C.); (J.F.); (H.L.); (D.S.)
| | - Bingjie Chen
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (B.C.); (J.F.); (H.L.); (D.S.)
| | - Khushwant S. Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Hang Yang
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xiaohu Luo
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
| | - Juan Fu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (B.C.); (J.F.); (H.L.); (D.S.)
| | - Hongru Liu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (B.C.); (J.F.); (H.L.); (D.S.)
| | - Di Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Dapeng Sun
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (B.C.); (J.F.); (H.L.); (D.S.)
| | - Yongjin Qiao
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (B.C.); (J.F.); (H.L.); (D.S.)
| | - Wenzong Zhou
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| |
Collapse
|
6
|
Wang X, Fu J, Bhullar KS, Chen B, Liu H, Zhang Y, Wang C, Liu C, Su D, Ma X, Qiao Y. Identification, in silico selection, and mechanistic investigation of antioxidant peptides from corn gluten meal hydrolysate. Food Chem 2024; 446:138777. [PMID: 38402763 DOI: 10.1016/j.foodchem.2024.138777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Seven novel antioxidant peptides (AWF, LWQ, WIY, YLW, LAYW, LPWG, and LYFY) exhibiting a superior activity compared to trolox were identified through in silico screening. Among these, the four peptides (WIY, YLW, LAYW, and LYFY) displayed notably enhanced performance, with ABTS activity 2.58-3.26 times and ORAC activity 5.19-8.63 times higher than trolox. Quantum chemical calculations revealed that the phenolic hydroxyl group in tyrosine and the nitrogen-hydrogen bond in the indole ring of tryptophan serve as the critical sites for antioxidant activity. These findings likely account for the potent chemical antioxidant activity. The corn peptides also exerted a protective effect against AAPH-induced cytomorphologic changes in human erythrocytes by modulating the antioxidant system. Notably, LAYW exhibited the most pronounced cytoprotective effects, potentially due to its high content of hydrophobic amino acids.
Collapse
Affiliation(s)
- Xiao Wang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Juan Fu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China; School of Flavor and Fragrance Technology and Engineering, Shanghai Institute of Technology, Shanghai, PR China
| | - Khushwant S Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Bingjie Chen
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Hongru Liu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Yi Zhang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Chunfang Wang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Chenxia Liu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Di Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xia Ma
- School of Flavor and Fragrance Technology and Engineering, Shanghai Institute of Technology, Shanghai, PR China
| | - Yongjin Qiao
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| |
Collapse
|
7
|
Li W, Chen W, Wang J, Zhang Z, Wu D, Liu P, Li Z, Ma H, Yang Y. Revealing the ACE receptor binding properties and interaction mechanisms of salty oligopeptides from Stropharia rugosoannulata mushroom by molecular simulation and antihypertensive evaluation. Food Funct 2024; 15:5527-5538. [PMID: 38700280 DOI: 10.1039/d4fo00596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| |
Collapse
|
8
|
Cao J, Xiang B, Dou B, Hu J, Zhang L, Kang X, Lyu M, Wang S. Novel Angiotensin-Converting Enzyme-Inhibitory Peptides Obtained from Trichiurus lepturus: Preparation, Identification and Potential Antihypertensive Mechanism. Biomolecules 2024; 14:581. [PMID: 38785988 PMCID: PMC11117660 DOI: 10.3390/biom14050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 μM), QGPIGPR (IC50 = 81.09 μM), and GPTGPAGP (IC50 = 168.11 μM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs.
Collapse
Affiliation(s)
- Jiaming Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyuan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingfei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
9
|
Chen W, Li W, Wu D, Zhang Z, Li Z, Li L, Wu T, Yang Y. Exploring of multi-functional umami peptides from Stropharia rugosoannulata: Saltiness-enhancing effect and mechanism, antioxidant activity and potential target sites. Food Chem 2024; 439:138138. [PMID: 38134569 DOI: 10.1016/j.foodchem.2023.138138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Umami peptides enhance flavor and offer potential health benefits. We analyzed the taste-value profiles of five novel umami peptides from Stropharia rugosoannulata using E-tongue, exhibiting significant saltiness characteristics. While the peptides PHEMQ and SEPSHF exhibited higher saltiness, their mixture with salt did not enhance saltiness compared to individual peptides. Surprisingly, SGCVNEL, which was initially weak in saltiness, showed remarkably enhanced saltiness when mixed with salt, possibly due to have strong binding with receptors. Molecular docking elucidated the salt-forming mechanism of TMC4, highlighting the P2-domain and hydrogen bonds' role in the composite structure stability. Evaluation of the antioxidant activity evaluation demonstrated dose-dependent effects primarily through free radical scavenging via the single-electron transfer potential mechanism for SGCVNEL, EPLCNQ, and ESCAPQL. Docking experiments with antioxidant targets revealed varied binding stabilities, indicating diverse antioxidant effects of the peptides. These findings provide valuable insights into the exploration and application of versatile bioactive flavor peptides.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, Henan, PR China
| | - Ting Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China.
| |
Collapse
|
10
|
Li J, Liu X, Li W, Wu D, Zhang Z, Chen W, Yang Y. A screening strategy for identifying umami peptides with multiple bioactivities from Stropharia rugosoannulata using in silico approaches and SPR sensing. Food Chem 2024; 431:137057. [PMID: 37604008 DOI: 10.1016/j.foodchem.2023.137057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/15/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Umami peptides from natural resources have garnered considerable attention for their potential bioactivities and flavor-enhancing characteristics. In this study, we constructed a database comprising 123 peptides from Stropharia rugosoannulata and screened for umami peptides with both angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase-4 (DPP-IV) inhibitory activities using online prediction tools and molecular docking, and further confirmed by SPR sensing, intelligent sensory and activities test. Five peptides with varying chain lengths were synthesized and by evaluations analyses they exhibited strong umami, with thresholds ranging from 0.105 mmol/L to 0.547 mmol/L. According to the targeted SPR molecular interaction analysis, umami peptides and hT1R3 receptor exhibited a "fast-on/fast-off" binding mode with stronger intensity and persistence than MSG. Furthermore, in vitro experiments revealed that five peptides showed potent ACE and DPP-IV inhibitory activities. Notably, the EAF inhibitory activity was the most significant among the peptides. This comprehensive screening strategy provides a rapid approach for identifying high-sensitivity umami peptides with bioactivities.
Collapse
Affiliation(s)
- Jialin Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China; Shanghai Baixin Biotechnology Co., Ltd., Shanghai 201403, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China.
| |
Collapse
|
11
|
Rafique H, Hu X, Ren T, Dong R, Aadil RM, Zou L, Sharif MK, Li L. Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients 2023; 16:117. [PMID: 38201947 PMCID: PMC10780882 DOI: 10.3390/nu16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Neurodegenerative disorders pose a substantial risk to human health, and oxidative stress, cholinergic dysfunction, and inflammation are the major contributors. The purpose of this study was to explore the neuroprotective effects of oat protein hydrolysate (OPH) and identify peptides with neuroprotective potential. This study is the first to isolate and identify OPH peptides with neuroprotective potential, including DFVADHPFLF (DF-10), HGQNFPIL (HL-8), and RDFPITWPW (RW-9), by screening via peptidomes and molecular-docking simulations. These peptides showed positive effects on the activity of antioxidant enzymes and thus reduced oxidative stress through regulation of Nrf2-keap1/HO-1 gene expression in vitro and in vivo. The peptides also significantly ameliorated scopolamine-induced cognitive impairment in the zebrafish model. This improvement was correlated with mitigation of MDA levels, AChE activity, and levels of inflammatory cytokines in the brains of zebrafish. Furthermore, these peptides significantly upregulated the mRNA expression of Bdnf, Nrf2, and Erg1 in the brains of zebrafish with neurodegenerative disorders. Collectively, oat peptides have potential for use as active components in nutraceutical applications for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Lu Li
- Guilin Seamild Food Co., Ltd., Guilin 541000, China
| |
Collapse
|
12
|
Gao X, Zhang C, Wang N, Lin JM, Dang Y, Zhao Y. Screening of Oral Potential Angiotensin-Converting Enzyme Inhibitory Peptides from Zizyphus jujuba Proteins Based on Gastrointestinal Digestion In Vivo. Int J Mol Sci 2023; 24:15848. [PMID: 37958831 PMCID: PMC10648141 DOI: 10.3390/ijms242115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Plant proteins are a good source of active peptides, which can exert physiological effects on the body. Predicting the possible activity of plant proteins and obtaining active peptides with oral potential are challenging. In this study, the potential activity of peptides from Zizyphus jujuba proteins after in silico simulated gastrointestinal digestion was predicted using the BIOPEP-UWM™ database. The ACE-inhibitory activity needs to be further investigated. The actual peptides in mouse intestines after the oral administration of Zizyphus jujuba protein were collected and analyzed, 113 Zizyphus jujuba peptides were identified, and 3D-QSAR models of the ACE-inhibitory activity were created and validated using a training set (34 peptides) and a test set (12 peptides). Three peptides, RLPHV, TVKPGL and KALVAP, were screened using the 3D-QSAR model and were found to bind to the active sites of the ACE enzyme, and their IC50 values were determined. Their values were 6.01, 3.81, and 17.06 μM, respectively. The in vitro digestion stabilities of the RLPHV, TVKPGL, and KALVAP peptides were 82%, 90%, and 78%. This article provides an integrated method for studying bioactive peptides derived from plant proteins.
Collapse
Affiliation(s)
- Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (X.G.); (N.W.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chaoying Zhang
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (X.G.); (N.W.)
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (X.G.); (N.W.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Li W, Chen W, Wang J, Li Z, Zhang Z, Wu D, Yan M, Ma H, Yang Y. Structure-Activity Relationship of Novel ACE Inhibitory Undecapeptides from Stropharia rugosoannulata by Molecular Interactions and Activity Analyses. Foods 2023; 12:3461. [PMID: 37761171 PMCID: PMC10529921 DOI: 10.3390/foods12183461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Undecapeptide is the central peptide molecule in the peptide base material of Stropharia rugosoannulata, and angiotensin-converting enzyme (ACE) plays a crucial role in hypertension. To fully explore the interaction mechanism and ACE-inhibitory activity of long-chain peptides from Stropharia rugosoannulata, the binding conformations of twenty-seven undecapeptides with the ACE receptor were revealed by molecule docking. The undecapeptide GQEDYDRLRPL with better receptor binding capacity and higher secondary mass spectral abundance was screened. All amino acid residues except proline in GQEDYDRLRPL interacted with the ACE receptor. GQEDYDRLRPL interfered with the receptor's overall structure, with significant fluctuations in amino acid residues 340-355, including two residues in the receptor's active pockets. The binding constants of GQEDYDRLRPL to the ACE receptors were at the μM level, with a kinetic binding constant of 9.26 × 10-7 M, which is a strong binding, and a thermodynamic binding constant of 3.06 × 10-6 M. Intermolecular interaction were exothermic, enthalpy-driven, and specific binding reactions. GQEDYDRLRPL had an IC50 value of 164.41 μmol/L in vitro and superior antihypertensive effects at low-gavage administration in vivo. Obtaining information on the interaction mechanism of ACE-inhibitory undecapeptides from S. rugosoannulata with the ACE receptor will help to develop and utilize ACE inhibitors of natural origin.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.L.); (Z.Z.); (D.W.); (M.Y.)
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.L.); (Z.Z.); (D.W.); (M.Y.)
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.L.); (Z.Z.); (D.W.); (M.Y.)
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.L.); (Z.Z.); (D.W.); (M.Y.)
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.L.); (Z.Z.); (D.W.); (M.Y.)
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.L.); (Z.Z.); (D.W.); (M.Y.)
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.L.); (Z.Z.); (D.W.); (M.Y.)
| |
Collapse
|
14
|
Huang L, He C, Si C, Shi H, Duan J. Nutritional, Bioactive, and Flavor Components of Giant Stropharia ( Stropharia rugoso-annulata): A Review. J Fungi (Basel) 2023; 9:792. [PMID: 37623563 PMCID: PMC10455845 DOI: 10.3390/jof9080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Giant Stropharia (S. rugoso-annulata) is an edible mushroom recommended for consumption by the Food and Agriculture Organization of the United Nations. It possesses significant culinary and medicinal functionalities. The characteristics of this mushroom include high protein content, abundant bioactive compounds, delicious and sweet taste, and pleasant aroma. In recent years, the S. rugoso-annulata industry has seen strong growth, especially in China. This article presents the first comprehensive and systematic review of the nutritional, bioactive, and flavor components of S. rugoso-annulata, as well as their influencing factors. This article provides scientific evidence for the production of high-quality S. rugoso-annulata mushrooms, the extraction of bioactive components, post-harvest storage, and culinary processing, aiming to promote the consumption of S. rugoso-annulata and the health of consumers.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.H.); (C.H.); (C.S.); (H.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.H.); (C.H.); (C.S.); (H.S.)
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.H.); (C.H.); (C.S.); (H.S.)
| | - Hongyu Shi
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.H.); (C.H.); (C.S.); (H.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.H.); (C.H.); (C.S.); (H.S.)
| |
Collapse
|
15
|
Ayimbila F, Keawsompong S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr Nutr Rep 2023; 12:290-307. [PMID: 37032416 PMCID: PMC10088739 DOI: 10.1007/s13668-023-00468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE OF REVIEW Global concerns about population growth, economic, and nutritional transitions and health have led to the search for a low-cost protein alternative to animal origins. This review provides an overview of the viability of exploring mushroom protein as a future protein alternative considering the nutritional value, quality, digestibility, and biological benefits. RECENT FINDINGS Plant proteins are commonly used as alternatives to animal proteins, but the majority of them are low in quality due to a lack of one or more essential amino acids. Edible mushroom proteins usually have a complete essential amino acid profile, meet dietary requirements, and provide economic advantages over animal and plant sources. Mushroom proteins may provide health advantages by eliciting antioxidant, antitumor, angiotensin-converting enzyme (ACE), inhibitory and antimicrobial properties over animal proteins. Protein concentrates, hydrolysates, and peptides from mushrooms are being used to improve human health. Also, edible mushrooms can be used to fortify traditional food to increase protein value and functional qualities. These characteristics highlight mushroom proteins as inexpensive, high-quality proteins that can be used as a meat alternative, as pharmaceuticals, and as treatments to alleviate malnutrition. Edible mushroom proteins are high in quality, low in cost, widely available, and meet environmental and social requirements, making them suitable as sustainable alternative proteins.
Collapse
Affiliation(s)
- Francis Ayimbila
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand.
| |
Collapse
|
16
|
Chen D, Chen W, Li W, Wen X, Wu D, Zhang Z, Yang Y. Effects of continuous enzymolysis on the umami characteristics of Lentinula edodes and the flavor formation mechanism of umami peptides. Food Chem 2023; 420:136090. [PMID: 37080114 DOI: 10.1016/j.foodchem.2023.136090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
The purpose of this study was to explore the effect of continuous enzymolysis on the umami characteristics of Lentinula edodes and illuminate the umami mechanism of peptides. The results indicated that the continuous enzymolysis extracts (LFTE) of L.edodes had higher umami intensity and palatability than the water extracts (LWE). 1H NMR and LC-MS/MS were used to evaluate taste metabolites and peptide profiles. Among the identified peptides, LPGVAE, LDELEK, DVELSK, LPDEAR, and TTLPDK with high umami scores which threshold in the range of 0.091-0.371 mmol/L were screened by iUmami-SCM and BIOPEP-UWM, and further verified by sensory evaluation. The results of molecular docking suggested that Ser148, Asn150, Ser276, Ser278 of T1R1 and Asn68, Val277, Ala302, Ser306 of T1R3 played a key role in the umami peptides docking. The study revealed continuous enzymolysis of L.edodes could obtain more umami substances and umami peptides, which laid a foundation for researching flavor substances and developing flavor products from L.edodes.
Collapse
Affiliation(s)
- Daoyou Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China; Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Xinmeng Wen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| |
Collapse
|
17
|
Dou B, Wu X, Xia Z, Wu G, Guo Q, Lyu M, Wang S. Multiple Bioactivities of Peptides from Hydrolyzed Misgurnus anguillicaudatus. Molecules 2023; 28:molecules28062589. [PMID: 36985560 PMCID: PMC10053552 DOI: 10.3390/molecules28062589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Misgurnus anguillicaudatus (loach) is a widely distributed benthic fish in Asia. In this study, the alkaline protease was used to hydrolyze loach, and the hydrolysate products of different molecular weights were obtained by membrane separation. In vitro antioxidant assays showed that the <3 kDa fraction (SLH-1) exhibited the strongest antioxidant activity (DPPH, hydroxyl radical and superoxide radical scavenging ability, and reducing power), while SLH-1 was purified by gel filtration chromatography, and peptide sequences were identified by LC-MS/MS. A total of six peptides with antioxidant activity were identified, namely SERDPSNIKWGDAGAQ (D-1), TVDGPSGKLWR (D-2), NDHFVKL (D-3), AFRVPTP (D-4), DAGAGIAL (D-5), and VSVVDLTVR (D-6). In vitro angiotensin-converting enzyme (ACE) inhibition assay and pancreatic cholesterol esterase (CE) inhibition assay, peptide D-4 (IC50 95.07 μg/mL, 0.12 mM) and D-2 inhibited ACE, and peptide D-2 (IC50 3.19 mg/mL, 2.62 mM), D-3, and D-6 acted as pancreatic CE inhibitors. The inhibitory mechanisms of these peptides were investigated by molecular docking. The results showed that the peptides acted by binding to the key amino acids of the catalytic domain of enzymes. These results could provide the basis for the nutritional value and promote the type of healthy products from hydrolyzed loach.
Collapse
Affiliation(s)
- Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zihan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guanghao Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Quanyou Guo
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| |
Collapse
|
18
|
Fan X, Ma X, Maimaitiyiming R, Aihaiti A, Yang J, Li X, Wang X, Pang G, Liu X, Qiu C, Abra R, Wang L. Study on the preparation process of quinoa anti-hypertensive peptide and its stability. Front Nutr 2023; 9:1119042. [PMID: 36742006 PMCID: PMC9889649 DOI: 10.3389/fnut.2022.1119042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
Quinoa seeds are a food resource rich in protein, vitamins, minerals, and other functional components such as polyphenols, polysaccharides, and saponins. The seeds have become favored by modern consumers due to being gluten-free and featuring a high protein content. This study focused on the preparation of quinoa peptides by short-time enzymatic-assisted fermentation. Quinoa flour (QF) was mixed with water in a certain ratio before being enzymatically digested with 0.5% amylase and 0.1% lipase for 6 h. Then, 16 bacterial taxa were used for fermentation, respectively. The peptide content in the resulting fermentation broths were determined by the biuret method. The dominant taxon was then identified and the peptide content, amino acid distribution, and molecular weight distribution of the prepared quinoa peptides were analyzed. Further, the temperature, pH, metal ions, organic solvents, ion concentration, and anti-enzyme stability of the quinoa anti-hypertensive peptides of different molecular weights after fermentation with the dominant taxon were investigated. Finally, the inhibitory activity of fermented quinoa peptides on bacteria was studied. The results show that the peptide content of the fermentation broth reached 58.72 ± 1.3% at 40 h of fermentation with Lactobacillus paracasei and the molecular weights of the hydrolyzed quinoa peptides were mainly distributed below 2 kDa by polyacrylamide gel. The Angiotensin Converting Enzyme (ACE) inhibition and peptide retention of the 0-3 kDa quinoa peptides were screened to be high and stable. At the same time, the inhibitory activity of quinoa peptide after fermentation on E. coli was obvious. This study provides a theoretical basis for further research on quinoa peptide and its application in industrial production, and also lays a foundation for the later application of polypeptides in new food and chemical products.
Collapse
Affiliation(s)
- Xing Fan
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xuemei Ma
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | | | | | - Jiangyong Yang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xianai Li
- Xinjiang Arman Food Group Co. Ltd., Urumqi, China
| | - Xiaoyun Wang
- Xinjiang Arman Food Group Co. Ltd., Urumqi, China
| | - Guangxian Pang
- Shenxin Science and Technology Cooperation Base Co. Ltd., Urumqi, China
| | - Xiaolu Liu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Chenggong Qiu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Redili Abra
- Xinjiang Arman Food Group Co. Ltd., Urumqi, China,*Correspondence: Liang Wang ✉
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, China,Redili Abra ✉
| |
Collapse
|
19
|
Zhou T, Li Q, Zhao M, Pan Y, Kong X. A Review on Edible Fungi-Derived Bioactive Peptides: Preparation, Purification and Bioactivities. Int J Med Mushrooms 2023; 25:1-11. [PMID: 37585312 DOI: 10.1615/intjmedmushrooms.2023048464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Edible fungi bioactive peptides (BAPs) are extracted from fruiting bodies and the mycelium of edible fungus. They have various physiological functions such as antioxidant activity, antihypertensive activity, and antibacterial activity. In this paper, the preparation and purification methods of edible fungus BAPs were reviewed, their common biological activities and structure-activity relationships were analyzed, and their application prospects were discussed.
Collapse
Affiliation(s)
- Tiantian Zhou
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Qingwei Li
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Ming Zhao
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Yu Pan
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China; Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
20
|
Li W, Chen W, Ma H, Wang J, Li Z, Wang Q, Zhang Z, Wu D, Zhang J, Yang Y. Study on the relationship between structure and taste activity of the umami peptide of Stropharia rugosoannulata prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2022; 90:106206. [PMID: 36274418 PMCID: PMC9593856 DOI: 10.1016/j.ultsonch.2022.106206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 05/05/2023]
Abstract
Through virtual screening, electronic tongue verification, and molecular docking technology, the structure-taste activity relationship of 47 kinds of umami peptides (octapeptide - undecapeptide) from Stropharia rugosoannulata prepared by simultaneous ultrasonic-assisted directional enzymatic hydrolysis was analyzed. The umami peptides of S.rugosoannulata can form hydrogen bond interaction and electrostatic interaction with umami receptors T1R1/T1R3. The amino acid residues at the peptides' N-terminal and C-terminal play a vital role in binding with the receptors to form a stable complex. D, E, and R are the primary amino acids in the peptides that easily bind to T1R1/T1R3. The basic amino acid in the peptides is more easily bound to T1R1, and the acidic amino acid is more easily bound to T1R3. The active amino acid sites of the receptors to which the peptides bind account for 42%-65% of the total active amino acid residues in the receptors. ASP147 and ASP219 are the critical amino acid residues for T1R1 to recognize the umami peptides, and ARG64, GLU45, and GLU48 are the critical amino acid residues for T1R3 to recognize the umami peptides. The increase in the variety and quantity of umami peptides is the main reason for improving the umami taste of the substrate prepared by synchronous ultrasound-assisted directional enzymatic hydrolysis. This study provides a theoretical basis for understanding simultaneous ultrasound-assisted directional enzymatic hydrolysis for preparing umami peptides from S.rugosoannulata, enhancing the flavor of umami, and the relationship between peptide structure and taste activity.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China; School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Wanchao Chen
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Qian Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Zhong Zhang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Di Wu
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|