1
|
Fan X, Zhang K, Tan Z, Xu W, Liu X, Zhou D, Li D. Effects of ultrahigh pressure heat-assisted technology on the physicochemical and gelling properties of myofibrillar protein from Penaeus vannamei. Food Chem 2025; 464:141697. [PMID: 39427466 DOI: 10.1016/j.foodchem.2024.141697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
This study investigated the changes in conformation and gelling properties of myofibrillar protein (MP) from Penaeus vannamei under various ultrahigh pressure (UHP)-heat assisted technologies. The results indicated that UHP heat-assisted technology enhanced the cross-linking of the gel network by causing a rearrangement of the secondary structure of MP. Microstructural analysis revealed that MP gels treated with UHP heat-assisted technology exhibited a more uniform gel network structure. Additionally, UHP heat-assisted technology improved the binding capacity of water molecules within the gel network, particularly in the two-stage UHP heat-assisted (PBH) condition at 400 MPa. Gels prepared under this condition demonstrated the highest gel strength, measuring 386.4 g·mm. Furthermore, in vitro simulated digestion showed that PBH method significantly improved the digestibility of MP gels, suggesting that the UHP heat-assisted technology had the potential to produce easily digestible MP gel-based aquatic foods.
Collapse
Affiliation(s)
- Xin Fan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wensi Xu
- College of Life and Environmental Sciences, Hunan University of Arts and Science. Changde 415000, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Li R, Li X, Wang C, Zhang G, Niu Y, Wei F, Chen L, Feng X. The improved gel properties of myofibrillar protein under low salt condition by ultrasound-assisted sodium tripolyphosphate. Meat Sci 2025; 220:109712. [PMID: 39571508 DOI: 10.1016/j.meatsci.2024.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
Excessive salt intake is associated with increased risks of cardiovascular disease, while directly reducing salt content significantly decreased the quality of meat. The objective of this study was to investigate the synergistic effects of sodium tripolyphosphate (STP) and ultrasound treatment on the gel properties of MP under low-salt conditions (0.3 M NaCl). The results of FTIR spectra showed that P3O105- group of STP bound to -NH2 or -OH group of MP form C-N-P or C-O-P bond, indicating the STP was successfully introduced to MP. The addition of STP significantly increased the absolute value of Zeta-potential, suggesting that the presence of STP increased the electrostatic interaction of MP-MP. Importantly, STP combined with ultrasound treatment under low salt condition (STP-U0.3) significantly increased solubility and decreased particle size of MP. Besides, STP-U0.3 treatment also promoted the exposure of hydrophobic groups and improved the rheological behavior of MP, resulting in the highest gel strength (37.78 ± 0.71 g) and the lowest cooking loss (26.73 ± 0.90 %) especially in 10 mM STP combined 100 W ultrasound treatment. These results corresponded by the gradually increases of α-helix content and the decrease of tryptophan fluorescence intensity. Furthermore, results of SEM illustrated that STP-U0.3 treatment contributed to formation of more homogeneous and dense gel network of MP gel. The above results displayed that the STP-U treatment under 0.3 M NaCl resulted in an equivalent effect to control group of 0.6 M NaCl, indicating that the combined application of STP and ultrasound has a promising potential in the low-salt meat processing industry.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guiming Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yabin Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fashan Wei
- College of of Food Science and Technology, Henan Agricultural University, Zhengzhou 450004, Hennan, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zhang K, Tan Z, Zhang Q, Wu Q, Zhao J, Xu W, Liu Y, Liu X, Zhou D, Li D. Construction and characterisation of mung bean protein isolate/carboxymethyl konjac glucomannan sodium hydrogels: Gel properties, structural properties, microstructure, sodium salt release, and 3D printing. Food Chem 2025; 472:142995. [PMID: 39874701 DOI: 10.1016/j.foodchem.2025.142995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
This study proposed a hydrogel system using mung bean protein isolate (MPI) and carboxymethyl konjac glucomannan (CKGM). The effects of CKGM addition on the gel properties, structural characteristics, and Na+ loading capacity of the MPI-CKGM system were investigated. FTIR and molecular docking techniques demonstrated that MPI and CKGM formed hydrogels via hydrogen bonding interactions. The addition of CKGM led to the increase in gel strength of the hydrogel, reaching a peak value at a CKGM concentration of 3.5 %, which was attributed to the formation of a denser network structure. All hydrogels exhibited excellent performance in 3D printing applications. Fluorescence microscopy results demonstrated that the MPI-CKGM hydrogel was capable of loading Na+. Upon increasing the CKGM concentration to 3.5 %, the Na+ loading rate increased from 83.03 % to 91.20 %, thereby increasing Na+ release rate. The findings of this study can provide a foundation for further understanding the salt reduction mechanisms of hydrogels.
Collapse
Affiliation(s)
- Kexin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qingyi Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qiong Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiaxin Zhao
- Liaoning General Fair Testing Co., Ltd., Shenyang 110000, China
| | - Wensi Xu
- College of Life and Environmental Sciences, Hunan University of Arts and Science. Changde 415000, China
| | - Yuxin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Zheng X, Cheng T, Liu S, Tian Y, Liu J, Wang Z, Guo Z. Ultrasonic combined pH shifting strategy for improving the stability of emulsion stabilized by yeast proteins: Focused on solubility, protein structure, interface properties. Int J Biol Macromol 2025; 293:139396. [PMID: 39753173 DOI: 10.1016/j.ijbiomac.2024.139396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
In this study, the improvement mechanism of yeast proteins (YPs) with the ultrasonic and pH shifting treatment on the emulsion stability was investigated through the solubility, protein structure and interface behavior of YPs. Compared with only pH shifting or ultrasound treatment, the solubility of YPs with the combined treatment of ultrasonic and pH shifting was increased significantly. The soluble protein content of pH-U400 reached 85.51 %. The results of YPs structure demonstrated that the β-sheet, α-helix and disulfide bonds contents of YPs with the combined treatment first declined and subsequently increased with increasing ultrasonic power, under alkaline conditions. The fluorescence intensity and surface hydrophobicity first increased and then declined. The more flexible protein structure endowed pH-U400 with lower interfacial tension, higher interfacial diffusion, penetration and reorganization rate, and interfacial protein concentration. The pH-U400 showed the best emulsifying properties (emulsifying activity index was 27.05 m2/g, emulsifying stability index was 31.27 min) and could prepare smaller and more uniform emulsion droplet. The results of multiple light scattering demonstrated that emulsion stabilized by pH-U400 showed the best stability. These results revealed the stability mechanism of emulsions stabilized by YPs and provided guidance for further development of practical YPs products in the food industry.
Collapse
Affiliation(s)
- Xueting Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sibo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Liu
- Shandong Yuwang Industrial Co., Ltd, Dezhou, Shandong 251299, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Pandita G, Sharma S, Elsa Oommen I, Madaan N, Bhosale Y, Nagy V, Mukarram Shaikh A, Kovács B. Comprehensive review on the potential of ultrasound for blue food protein extraction, modification and impact on bioactive properties. ULTRASONICS SONOCHEMISTRY 2024; 111:107087. [PMID: 39362033 PMCID: PMC11480250 DOI: 10.1016/j.ultsonch.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Food security for the increasing global population is a significant challenge of the current times particularly highlighting the protein deficiencies. Plant-based proteins could be considered as alternate source of the protein. The digestibility and PDCASS value of these proteins are still a concern. Blue proteins, the new approach of utilizing the proteins from aquatic sources could be a possible solution as it contains all the essential amino acids. However, the conjugation of these proteins with fats and glycogen interferes with their techno-functional properties and consequently their applicability. The application of power ultrasound for extraction and modification of these proteins from aquatic sources to break open the cellular structure, increase extractability, alter the protein structure and consequently provide proteins with higher bioavailability and bioactive properties could be a potential approach for their effective utilization into food systems. The current review focuses on the application of power ultrasound when applied as extraction treatment, alters the sulphite and peptide bond and modifies protein to elevated digestibility. The degree of alteration is influenced by intensity, frequency, and exposure time. The extracted proteins will serve as a source of essential amino acids. Furthermore, modification will lead to the development of bioactive peptides with different functional applications. Numerous studies reveal that blue proteins have beneficial impacts on amino acid availability, and subsequently food security with higher PDCAAS values. In many cases, converted peptides give anti-hypertensive, anti-diabetic, and anti-oxidant activity. Therefore, researchers are concentrating on ultrasound-based extraction, modification, and application in food and pharmaceutical systems.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | | | - Irin Elsa Oommen
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Nishchhal Madaan
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Yuvraj Bhosale
- Research Engineer, Indian Institute of Technology, Kharagpur, India.
| | - Vivien Nagy
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Technology, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary.
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary.
| | - Béla Kovács
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary.
| |
Collapse
|
6
|
Chen J, Ma H, Guo A, Lv M, Pan Q, Ya S, Wang H, Pan C, Jiang L. Influence of (ultra-)processing methods on aquatic proteins and product quality. J Food Sci 2024; 89:10239-10251. [PMID: 39503310 DOI: 10.1111/1750-3841.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 12/28/2024]
Abstract
Aquatic products are a high-quality source of protein for humans, and the changes in protein during aquatic product processing are crucial for nutritional value, product performance, and consumer health. With the advancement of science and technology, aquatic product processing methods have become increasingly diverse. In addition to traditional methods such as thermal processing (steaming, roasting, and frying) and pickling, emerging non-thermal processing technologies, such as high pressure, ultrasound, and irradiation, are also being applied. During (ultra-)processing, aquatic products undergo complex biochemical reactions, among which protein oxidation significantly affects the quality of aquatic products. Protein oxidation can alter the molecular structure of proteins, thereby changing their functional properties and ultimately impacting product quality. This paper primarily explored the effects of protein changes under different processing methods on aquatic product quality and human health, as well as techniques for controlling protein oxidation. It aims to provide a theoretical basis for selecting appropriate processing methods, improving aquatic product quality, and controlling protein oxidation in aquatic products, and to offer scientific guidance for practical production.
Collapse
Affiliation(s)
- Jingjing Chen
- Tourism and Health Vocational College, Zhoushan Islands New Area, Zhoushan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Min Lv
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Qingyan Pan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Shiya Ya
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Hui Wang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Chuanyan Pan
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Linyuan Jiang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| |
Collapse
|
7
|
Zhou C, Liu R, Zhao D, Shan K, Ke W, Li C. Ultrasound treatment improved gelling and emulsifying properties of myofibrillar proteins from Antarctic krill (Euphausia superba). ULTRASONICS SONOCHEMISTRY 2024; 111:107123. [PMID: 39490146 PMCID: PMC11549988 DOI: 10.1016/j.ultsonch.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Antarctic krill is a promising source of marine proteins with abundant biomass and excellent nutritional profile, but has poor technological properties. Ultrasonic treatment at power levels of 0, 100, 200, 300, 400 and 500 W was applied to improve the technological properties of Antarctic krill meat, and the changes in physicochemical properties of myofibrillar proteins (MPs) were investigated. The results indicated that proper ultrasonic treatment significantly improved the gelling properties of Antarctic krill meat, in terms of a more uniform and stable gel texture and better water holding capacity, which were related to better cross-linking of MPs. Ultrasonic treatment promoted the conversion of MPs' secondary structures from α-helix and random coil to β-sheet and β-turn, thereby making the molecular structure soft and loose. In addition, at tertiary structure level, ultrasonic treatment exposed the hydrophobic groups and sulfhydryl groups within MPs, thereby improving the emulsifying properties by changing the intermolecular interactions and interface properties. Furthermore, the particle size of MPs decreased and exhibited a more uniform distribution, aligning with the enhanced interactions observed between MPs and oil. These results provide an insight into the efficient development of Antarctic krill by elucidating how the ultrasonic treatment improves the gelling and emulsifying properties based on structure modulation of myofibrillar proteins.
Collapse
Affiliation(s)
- Chang Zhou
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Ruoyan Liu
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Di Zhao
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Kai Shan
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Weixin Ke
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Chunbao Li
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| |
Collapse
|
8
|
Chen W, Jin W, Ma X, Wen H, Li Y, Xu G, Xu P, Cheng H. A study on the structure-functionality relationship of Solenaia oleivora protein under high-intensity ultrasonication processing. Food Chem 2024; 460:140598. [PMID: 39068791 DOI: 10.1016/j.foodchem.2024.140598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Solenaia oleivora is a valuable freshwater mussel endemic to China with a high content of high-quality proteins, but the lack of structural information and limited functionality of Solenaia oleivora proteins constrained their application in the food industry. This study investigates the changes in structural characteristics and functionality of Solenaia oleivora protein under ultrasound processing at power from 200 to 600 W. The ultrasound treatment caused increased contents of β-turn and α-helix, and the exposure of interior hydrophobic groups, resulting in the increased hydrophobicity by around 3 folds. The ultrasound treatment could significantly decrease particle size and increase surface charges of Solenaia oleivora proteins, facilitating the increase of hydrosolubility from 10.2% to 81.7%. These structural changes and increased hydrosolubility contributed to the enhancement of emulsifying and foaming properties, and in vitro digestibility. The results suggested that the ultrasound-treated Solenaia oleivora proteins possessed the potential as an alternative protein in food applications.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Yanping Li
- Jinghuai Special Aquatic Products Limited Company, Funan, Anhui, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Xu W, Bao Y, Gou H, Xu B, Hong H, Gao R. Mitigation of mechanical damage and protein deterioration in giant river prawn (Macrobrachium rosenbergii) by multi-frequency ultrasound-assisted immersion freezing. Food Chem 2024; 458:140324. [PMID: 38970954 DOI: 10.1016/j.foodchem.2024.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In order to investigate the effects of multi-frequency ultrasound-assisted immersion freezing (MUIF) on the meat quality of Macrobrachium rosenbergii, tail meat was subjected to different MUIF treatments respectively, namely 20 + 40 kHz (MUIF-20 + 40), 20 + 60 kHz (MUIF-20 + 60), 40 + 60 kHz (MUIF-40 + 60) and 20 + 40 + 60 kHz (MUIF-20 + 40 + 60), and the immersion freezing (IF) as control. Results showed that average diameter of ice crystals was 28 μm in IF, and that was only 8 μm in MUIF-20 + 40 + 60. When compared to IF, MUIF alleviated oxidative deterioration of lipids and proteins, but only at higher ultrasound frequency (MUIF-40 + 60; MUIF-20 + 40 + 60). Carbonyl content of MUIF-20 + 40 + 60 was only 40% of that in IF. Similarly, protein denaturation was inhibited in MUIF (except for MUIF-20 + 40). Transmission electron microscopy showed greater distortion of the ultrastructural components in IF, MUIF-40 + 60, and MUIF-20 + 40 + 60, suggested by bended Z-line. In conclusion, MUIF can be an effective strategy to mitigate mechanical damage and protein deterioration in the meat of Macrobrachium rosenbergii.
Collapse
Affiliation(s)
- Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| | - Hao Gou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
10
|
Yuan D, Li C, Zhang J, Kong B, Sun F, Zhang H, Liu Q, Cao C. Abelmoschus manihot gum improves the water retention capacity of low-salt myofibrillar protein gels: Perspective on aggregation behaviour and conformational changes during heating. Int J Biol Macromol 2024; 282:137483. [PMID: 39528197 DOI: 10.1016/j.ijbiomac.2024.137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to investigate the effect of Abelmoschus manihot gum (AMG) on the water retention capacity of low-salt myofibrillar protein (MP) gel by analysing its aggregation behaviour and conformational changes during heating (30-80 °C). The results revealed that AMG significantly increased the water holding capacity and facilitated the formation of a more uniform gel network structure in low-salt MP gel (P < 0.05). During the heat-induced gelation process, the solubility of low-salt MP significantly decreased, whereas its turbidity evidently increased as the level of added AMG increased (P < 0.05). Furthermore, the dynamic rheological behaviours indicated that low-salt MP-AMG gels underwent early denaturation and unfolded at 58 °C, finally forming an irreversible three-dimensional network at 80 °C. Moreover, adding AMG promoted α-helix-to-β-sheet transition in low-salt MP and decreased its fluorescence intensity during the heating process. Hydrophobic interactions and disulfide bonds were the two dominant forces governing the formation and maintenance of low-salt MP gel. The present study provides theoretical guidance for the production of novel low-salt healthy meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cheng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
11
|
Liu J, Li X, Geng F, Li X, Huang Y, Wu Y, Luo Z, Huang Q, Shang P, Liu Z. Ultrasound-assisted improvement of thawing quality of Tibetan pork by inhibiting oxidation. ULTRASONICS SONOCHEMISTRY 2024; 110:107029. [PMID: 39163693 PMCID: PMC11381469 DOI: 10.1016/j.ultsonch.2024.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
The challenge of meat quality degradation due to transportation difficulties in high-altitude plateaus underscores the importance of an efficient thawing process for Tibetan pork to ensure its quality. This study compared four thawing methods ultrasound thawing (UT), refrigerator thawing (RT), hydrostatic thawing (HT), and microwave thawing (MT) to assess their impact on the quality of Tibetan pork, focusing on thawing loss, tenderness, color variation, and alterations in protein secondary structure and moisture content. Additionally, the study examined the impact of thawing on the metabolites of Tibetan pork using metabolomics techniques. The results indicated that UT yielded the highest quality samples. UT significantly accelerated the thawing rate and had minimal impact on tenderness compared to traditional thawing methods. Moreover, protein and lipid oxidation levels were reduced by UT treatment. Furthermore, it enhanced the binding capacity of protein and water molecules, reduced drip loss, and maintained meat color stability. What's more, amino acid metabolites such as l-glutamic acid, l-proline, oxidized glutathione, and 1-methylhistidine played a significant role in thawing oxidation in Tibetan pork, exhibiting a positive correlation with protein oxidation. UT resulted in a notable decrease in the levels of hypoxanthine and 2-aminomethylpyrimidine, contributing to the reduction of bitterness in the thawed meat and consequently enhancing the freshness of Tibetan pork. This study offers novel insights into understanding the biological changes occurring during the thawing process, while also furnishing a theoretical framework and technical assistance to improve the quality of Tibetan pork and propel advancements in food processing technology.
Collapse
Affiliation(s)
- Junmei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yujie Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Peng Shang
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| |
Collapse
|
12
|
Zhong H, Wang F, Tang C, Li J, Cheng JH. Combination of Structural Analysis and Proteomics Strategy Revealed the Mechanism of Ultrasound-Assisted Cold Plasma Regulating Shrimp Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356241 DOI: 10.1021/acs.jafc.4c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Allergic incidents of crustacean aquatic products occur frequently, and tropomyosin (TM) is the main allergen. Therefore, it is worthwhile to develop technologies to efficiently reduce the allergenicity of TM. In this study, ultrasound-assisted cold plasma (UCP) treatment was used to regulate shrimp allergy. The remarkable changes in TM structure were substantiated by alteration in secondary structure, reduction in sulfhydryl content, change in surface hydrophobicity, and disparity in surface morphology. The IgE and IgG binding ability of TM significantly decreased by 52.40% and 46.51% due to UCP treatment. In the Balb/c mouse model, mice in the UCP group showed most prominent mitigation of allergic symptoms, proved by lower allergy score, changes in levels of TM-specific antibodies, and restoration of Th1/Th2 cytokine imbalance. Using a proteomics approach, 439 differentially expressed proteins (DEPs) in the TM group (vs phosphate-buffered saline group) and 170 DEPs in the UCP group (vs TM group) were determined. Subsequent analysis demonstrated that Col6a5, Col6a6, and Epx were potential biomarkers of TM allergy. Moreover, Col6a5, Col6a6, Dcn, and Kng1 might be the target proteins of UCP treatment, while PI3K/Akt/mTOR might be the regulated signaling pathway. These findings proved that UCP treatment has great potential in reducing TM allergenicity and provide new insights into the development of hypoallergenic shrimp products.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengqi Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Caidie Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
13
|
Liu B, Wu Y, Jiang LL, Liang QY. Controlling the quality of Patinopecten yessoensis from the perspective of the ultrasound and ferulic acid influences. J Food Sci 2024; 89:6335-6349. [PMID: 39183691 DOI: 10.1111/1750-3841.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
In this study, the effects of ultrasound combined with ferulic acid (FA) on the quality of the Yesso scallop (Patinopecten yessoensis) adductor muscles (SAM) during refrigerated storage were investigated. The results demonstrated that the combined treatment with 350 W ultrasound and FA (UFA) significantly delayed enzyme activities and microbial growth in SAM tissues compared to FA treatment alone. After 6 days of cold storage, samples treated with UFA exhibited higher hardness (2850 g), lower thiobarbituric acid reactive substances (TBARS = 9.35 MDA mg/g SAM), and lower total volatile basic nitrogen (TVB-N = 19.75 mg/100 g SAM) values compared to control and FA-treated samples. Consequently, UFA treatment prolonged the shelf life of SAM by 3 days during storage at 4°C. Based on scanning electron microscopy and low-field nuclear magnetic resonance data, these findings are attributed to UFA treatment not only reducing the degradation of SAM tissue network structure but also minimizing water loss. PRACTICAL APPLICATION: Scallop adductor muscle (SAM) is commonly considered a delicacy owing to its unique mouthfeel and delicious taste. However, owing to its high moisture content and high levels of various nutrients, SAM has a short shelf life. In this work, a combination of ultrasound with ferulic acid (UFA) has been found to have effective preservation effects on SAM during refrigerated storage. Our study findings pave the way for a potential approach to maintain scallop quality during processing and storage. Moreover, our study also provides some theoretical basis for using and promoting these technologies in aquatic products.
Collapse
Affiliation(s)
- Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Yuan Wu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Liang-Liang Jiang
- School of Geography and Tourism, Chongqing Normal University, Chongqing, China
| | - Qiu-Yan Liang
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang Uygur Autonomous Region, Urumqi, P. R. China
| |
Collapse
|
14
|
Ni X, Chen C, Li R, Liu Q, Duan C, Wang X, Xu M. Effects of ultrasonic treatment on the structure and functional characteristics of myofibrillar proteins from black soldier fly. Int J Biol Macromol 2024; 278:135057. [PMID: 39187097 DOI: 10.1016/j.ijbiomac.2024.135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In the process of utilizing black soldier fly larvae (BSFL) lipids to develop biodiesel, many by-products will be produced, especially the underutilized protein components. These proteins can be recycled through appropriate treatment and technology, such as the preparation of feed, biofertilizers or other kinds of bio-products, so as to achieve the efficient use of resources and reduce the generation of waste. Myofibrillar protein (MP), as the most important component of protein, is highly susceptible to environmental influences, leading to oxidation and deterioration, which ultimately affects the overall performance of the protein and product quality. For it to be high-quality and fully exploited, in this study, black soldier fly myofibrillar protein (BMP) was extracted and primarily subjected to ultrasonic treatment to investigate the impact of varying ultrasonic powers (300, 500, 700, 900 W) on the structure and functional properties of BMP. The results indicated that as ultrasonic power increased, the sulfhydryl content and turbidity of BMP decreased, leading to a notable improvement in the stability of the protein emulsion system. SEM images corroborated the changes in the microstructure of BMP. Moreover, the enhancement of ultrasound power induced modifications in the intrinsic fluorescence spectra and FTIR spectra of BMP. Additionally, ultrasonic treatment resulted in an increase in carbonyl content and emulsifying activity of BMP, with both peaking at 500 W. It was noteworthy that BMP treated with ultrasound exhibited stronger digestibility compared to the untreated. In summary, 500 W was determined as the optimal ultrasound parameter for this study. Overall, ultrasound modification of insect MPs emerges as a dependable technique capable of altering the structure and functionality of BMP.
Collapse
Affiliation(s)
- Xiangxiang Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chengcheng Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruixi Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiwei Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chaoyi Duan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiu Wang
- School of Advanced Materials & Engineering, Jiaxing Nanhu University, Jiaxing 314001, China.
| | - Mingfeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
15
|
Wang X, Ni X, Duan C, Li R, Jiang X, Xu M, Yu R. The Effect of Ultrasound Treatment on the Structural and Functional Properties of Tenebrio molitor Myofibrillar Protein. Foods 2024; 13:2817. [PMID: 39272582 PMCID: PMC11395043 DOI: 10.3390/foods13172817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The objective of this study was to explore the impacts of various ultrasonic powers (0, 300, 500, 700, and 900 W) on the structure and functional attributes of the myofibrillar protein (MP) of Tenebrio molitor. As the ultrasonic intensity escalated, the extraction efficiency and yield of the MP rose, while the particle size and turbidity decreased correspondingly. The reduction in sulfhydryl group content and the increase in carbonyl group content both suggested that ultrasonic treatment promoted the oxidation of the MP to a certain extent, which was conducive to the formation of a denser and more stable gel network structure. This was also affirmed by SEM images. Additionally, the findings of intrinsic fluorescence and FTIR indicated that high-intensity ultrasound significantly altered the secondary structure of the protein. The unfolding of the MP exposed more amino acid residues, the α-helix decreased, and the β-helix improved, thereby resulting in a looser and more flexible conformation. Along with the structural alteration, the surface hydrophobicity and emulsification properties were also significantly enhanced. Besides that, SDS-PAGE demonstrated that the MP of T. molitor was primarily composed of myosin heavy chain (MHC), actin, myosin light chain (MLC), paramyosin, and tropomyosin. The aforementioned results confirmed that ultrasonic treatment could, to a certain extent, enhance the structure and function of mealworm MP, thereby providing a theoretical reference for the utilization of edible insect proteins in the future, deep-processing proteins produced by T. molitor, and the development of new technologies.
Collapse
Affiliation(s)
- Xiu Wang
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Xiangxiang Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chaoyi Duan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruixi Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao'e Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingfeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rongrong Yu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
16
|
Cropotova J, Kvangarsnes K, Rustad T, Stangeland J, Roda G, Fanzaga M, Bartolomei M, Lammi C. Effect of ultrasound treatment on quality parameters and health promoting activity of fish protein hydrolysates extracted from side streams of Atlantic mackerel ( Scomber scombrus). Front Nutr 2024; 11:1446485. [PMID: 39296503 PMCID: PMC11408299 DOI: 10.3389/fnut.2024.1446485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Fish protein hydrolysates (FPH) obtained by enzymatic hydrolysis allows for smart valorization of fish side streams. However, further treatments are normally needed to enhance bioactive and functional properties of the obtained FPH. At present, the commonly used methods to improve functional properties of FPH include chemical and enzymatic modification. Chemical treatments often cause environmental problems, while the enzymatic modification method requires the use of quite expensive enzymes. In recent years, emerging technologies such as ultrasound treatment (US-treatment) have shown great potential in protein modification with high efficiency and safety, low energy consumption, and low nutritional destructiveness. In this study, high-power ultrasound treatments were applied to fish protein hydrolysates (FPH) extracted from Atlantic mackerel (Scomber scombrus) side streams to improve their quality parameters. The effect of three different treatments of 300 W, 450 W and 600 W at the operating frequency of 20 kHz for 10 min on the physicochemical, structural, and functional characteristics of FPH, were examined. The results have shown that with an increase in ultrasound power, the protein solubility of FPH increased linearly, and the changes were significant for all US-treated samples compared to control (untreated) samples. US-treatment significantly increased the degree of hydrolysis of FPH samples treated with 450 W and 600 W compared to control samples. The carbonyl content of FPH increased (significantly for 450 W and 600 W), while thiol groups decreased (significantly for 300 W and 450 W). This indicated that some US-treatments induced oxidation of FPH, however the values of the protein oxidation were low. Amino acid composition of FPH revealed that US-treatment increased the proportion of essential amino acids in the sample treated with 300 W and 450 W, but the increase was not significant. After the US-treatment, all FPH samples became lighter and less yellowish and reddish, which suggest potentially higher attractiveness to consumers. In addition, the in vitro antioxidant activity was assessed using the DPPH, FRAP, and ABTS assays and the cell-free dipeptidyl peptidase IV (DPP-IV) inhibitory activity was also measured. Moreover, these biological activities were measured at cellular level utilizing human intestinal Caco-2 cells. Specifically, the FPH capacity to lower H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels was used to measure its antioxidant activity. The findings suggest that Scomber scombrus hydrolysates could find use as ingredients for promoting health.
Collapse
Affiliation(s)
- Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Kristine Kvangarsnes
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
17
|
Lin S, Li X, Zhang J, Kong B, Cao C, Sun F, Zhang H, Liu Q, Liu C. Potential mechanisms and effects of ultrasound treatment combined with pre- and post-addition of κ-carrageenan on the gelling properties and rheological behavior of myofibrillar proteins under low-salt condition. Meat Sci 2024; 215:109554. [PMID: 38838569 DOI: 10.1016/j.meatsci.2024.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and β-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chunyan Liu
- Heilongjiang Academy of Sciences, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
18
|
Zhang Z, Xu Y, Li X, Chi L, Li Y, Xu C, Mu G, Zhu X. Modulating Whey Proteins Antigenicity with Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 Metabolites: Insights from Spectroscopic and Molecular Docking Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15198-15212. [PMID: 38941263 DOI: 10.1021/acs.jafc.3c08874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Numerous studies have highlighted the potential of Lactic acid bacteria (LAB) fermentation of whey proteins for alleviating allergies. Nonetheless, the impact of LAB-derived metabolites on whey proteins antigenicity during fermentation remains uncertain. Our objective was to elucidate the impact of small molecular metabolites on the antigenicity of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG). Through metabolomic analysis, we picked 13 bioactive small molecule metabolites from Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 for coincubation with α-LA and β-LG, respectively. The outcomes revealed that valine, arginine, benzoic acid, 2-keto butyric acid, and glutaric acid significantly diminished the sensitization potential of α-LA and β-LG, respectively. Moreover, chromatographic analyses unveiled the varying influence of small molecular metabolites on the structure of α-LA and β-LG, respectively. Notably, molecular docking underscored that the primary active sites of α-LA and β-LG involved in protein binding to IgE antibodies aligned with the interaction sites of small molecular metabolites. In essence, LAB-produced metabolites wield a substantial influence on the antigenic properties of whey proteins.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - YunPeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinling Li
- Xinjiang Tianrun Biol Technol Co., Ltd., Urumqi 830011, China
| | - Lei Chi
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Yue Li
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Chao Xu
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
19
|
Xie Y, Zhao K, Yang F, Shu W, Ma J, Huang Y, Cao X, Liu Q, Yuan Y. Modification of myofibrillar protein structural characteristics: Effect of ultrasound-assisted first-stage thermal treatment on unwashed Silver Carp surimi gel. ULTRASONICS SONOCHEMISTRY 2024; 107:106911. [PMID: 38761771 PMCID: PMC11127271 DOI: 10.1016/j.ultsonch.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The hardness properties of unwashed surimi gel are considered as the qualities of gelation defect. This research investigated the effect of ultrasound-assisted first-stage thermal treatment (UATT) on the physicochemical properties of unwashed Silver Carp surimi gel, and the enhancement mechanism. UATT could reduce protein particle size, which significantly reduced from 142.22 μm to 106.70 μm after 30 min of UATT compared with the nature protein. This phenomenon can promote the protein crosslinking, resulting in the hardness of surimi gel increased by 15.08 %. Partially unfolded structure of myofibrillar protein and exposures of tryptophan to water, lead to the increase in the zeta potential absolute value, driven by UATT. The reduced SH group level and the conformational conversion of proteins from random coiling to α-helix and β-sheet, which was in support of intermolecular interaction and gel network construction. The results are valuable for processing protein gels and other food products.
Collapse
Affiliation(s)
- Yisha Xie
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China.
| | - Kangyu Zhao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Feng Yang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Wenjing Shu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Junkun Ma
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Yizhen Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xi Cao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Qingqing Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Yongjun Yuan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China.
| |
Collapse
|
20
|
Liu B, Wu Y, Liang QY, Zheng H. Effects of high-intensity ultrasound on physicochemical and gel properties of myofibrillar proteins from the bay scallop (Argopecten irradians). ULTRASONICS SONOCHEMISTRY 2024; 107:106935. [PMID: 38850642 PMCID: PMC11214343 DOI: 10.1016/j.ultsonch.2024.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Myofibrillar proteins (MPs) have a notable impact on the firmness and flexibility of gel-based products. Therefore, enhancing the gelation and emulsification properties of scallop MPs is of paramount significance for producing high-quality scallop surimi products. In this study, we investigated the effects of high-intensity ultrasound on the physicochemical and gelation properties of MPs from bay scallops (Argopecten irradians). The carbonyl content of MPs significantly increased with an increase in ultrasound power (150, 350, and 550 W), indicating ultrasound-induced MP oxidation. Meanwhile, high-intensity ultrasound treatment (550 W) enhanced the emulsifying capacity and the short-term stability of MPs (up to 72.05 m2/g and 153.05 min, respectively). As the ultrasound power increased, the disulfide bond content and surface hydrophobicity of MPs exhibited a notable increase, indicating conformational changes in MPs. Moreover, in the secondary structure of MPs, the α-helix content significantly decreased, whereas the β-sheet content increased, thereby suggesting the ultrasound-induced stretching and flexibility of MP molecules. Sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and scanning electron microscopy analysis further elucidated that high-intensity ultrasound induced MP oxidation, leading to modification of amino acid side chains, intra- and intermolecular cross-linking, and MP aggregation. Consequently, high-intensity ultrasound treatment was found to augment the viscoelasticity, gel strength, and water-holding capacity of MP gels, because ultrasound treatment facilitated the formation of a stable network structure in protein gels. Thus, this study offers theoretical insights into the functional modification of bay scallop MPs and the processing of its surimi products.
Collapse
Affiliation(s)
- Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yuan Wu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Qiu-Yan Liang
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hong Zheng
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
21
|
Zhang K, Wang Y, Fan X, Li N, Tan Z, Liu H, Liu X, Zhou D, Li D. Effects of calcium chloride on the gelling and digestive characteristics of myofibrillar protein in Litopenaeus vannamei. Food Chem 2024; 441:138348. [PMID: 38199106 DOI: 10.1016/j.foodchem.2023.138348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
In this study, the effects of CaCl2 (0, 25, 50, 75, and 100 mM) on the gelling and digestive properties of the myofibrillar protein (MP) in Litopenaeus vannamei were investigated. The results showed that increasing CaCl2 concentration led to changes in the tertiary structure of MP. Specifically, compared with the control group, a 64.31 % increase in surface hydrophobicity and a 45.90 % decrease in the sulfhydryl group were observed after 100 mM CaCl2 treatment. Correspondingly, the water holding capacity and strength of the MP gel increased by 24.46 % and 55.99 %, respectively. These changes were positively correlated with the rheological properties, microstructure pore size, and content of non-flowable water. The mechanical properties of MP gel were improved, and the microstructure became more compact with the increase in CaCl2 concentration. Furthermore, the particle size of the digested MP gels decreased in the presence of CaCl2, which improved the digestion characteristics of MP gels.
Collapse
Affiliation(s)
- Kexin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yefan Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Fan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huilin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
22
|
Xu M, Ni X, Liu Q, Chen C, Deng X, Wang X, Yu R. Ultra-high pressure improved gelation and digestive properties of Tai Lake whitebait myofibrillar protein. Food Chem X 2024; 21:101061. [PMID: 38187941 PMCID: PMC10770425 DOI: 10.1016/j.fochx.2023.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
This study investigated the effects of ultra-high pressure (UHP) at different levels on the physicochemical properties, gelling properties, and in vitro digestion characteristics of myofibrillar protein (MP) in Tai Lake whitebait. The α-helix gradually unfolded and transformed into β-sheet as the pressure increased from 0 to 400 MPa. In addition, the elastic modulus (G') and viscous modulus (G'') of the 400 MPa-treated MP samples increased by 4.8 and 3.8 times, respectively, compared with the control group. The gel properties of the MP also increased significantly after UHP treatment, e.g., the gel strength increased by a 4.8-fold when the pressure reached 400 Mpa, compared with the control group. The results of in vitro simulated digestion showed that the 400 MPa-treated MP gel samples showed a 1.8-fold increase in digestibility and a 69.6 % decrease in digestible particle size compared with the control group.
Collapse
Affiliation(s)
- Mingfeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangxiang Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiwei Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chengcheng Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaohong Deng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiu Wang
- School of Advanced Materials & Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Rongrong Yu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
23
|
Lan M, Li T, Li L, Wang S, Chen J, Yang T, Li Z, Yang Y, Zhang X, Li B. Ultrasonic treatment treated sea bass myofibrillar proteins in low-salt solution: Emphasizing the changes on conformation structure, oxidation sites, and emulsifying properties. Food Chem 2024; 435:137564. [PMID: 37776650 DOI: 10.1016/j.foodchem.2023.137564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
The physiochemical properties, structure characteristics, oxidation, and emulsifying properties of myofibrillar proteins (MPs) in low salt solution after treated by the ultrasound were investigated. The solubility, mean diameters, sulfhydryl content, and carbonyl contents of MPs after ultrasonic treatment increased, while the turbidity decreased. The surface hydrophobicity of MPs with 200 W-600 W treatment increased, but decreased at 800 W treatment. The circular dichroism analysis revealed that α-helix content increased, while β-sheet and random coil content decreased after ultrasonic treatment. Fluorescence spectroscopy indicated the fluorescence intensities of MPs were increased after ultrasonic treatment. SDS-PAGE results showed more protein polymers due to myosin heavy chain (MHC) aggregation via disulfide bonds. Based on LC-MS/MS result, the myosin heavy chain was susceptible to oxidation, with monooxidation being the main oxidative modification. Finally, the emulsions stabilized by ultrasonically treated MPs, especially those treated at 800 W, exhibited decreased particle size, improved uniformity, and enhanced stability.
Collapse
Affiliation(s)
- Meijuan Lan
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tongshuai Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Juncheng Chen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Tangyu Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhiru Li
- Beijing Normal University - Hong Kong Baptist University United International College, Zhuhai, China
| | - Yipeng Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
24
|
Li Z, Zhong X, Luan C, Wen N, Shi C, Lin X, Zhao C, Zhang Y, Luo L, Zhang L, Wu Y, Yang J. Fabrication of high-preformance emulsifier from conjugating maltodextrin onto myofibrillar protein peptide with microwave- ultrasound synergy. ULTRASONICS SONOCHEMISTRY 2024; 104:106818. [PMID: 38452710 PMCID: PMC10924053 DOI: 10.1016/j.ultsonch.2024.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
In this study, we systematically investigated the emulsifying capabilities of myofibrillar protein (MP)- and MP peptide (MPP)-based conjugates synthesized through intensification techniques: water bath (WB), microwave, ultrasound, and the combined ultrasound-microwave (UM) methods. Compared with WB, microwave, and ultrasound treatments, the combined UM treatment greatly promoted the glycation reaction because ultrasound and microwave mutually reinforced modification effects. The resultant conjugate structure tended to unfold with more flexible conformation and homogeneous morphology. Moreover, the emulsifying properties of conjugates developed with single and combined ultrasound-assisted glycation displayed substantial improvement, and pre-hydrolysis further enhanced these performances, as observed in the Principal Component Analysis as well. Remarkably, MPP grafted by maltodextrin with the assistance of a combined UM field produced the smallest and most uniform emulsion system, positioning it as the most efficient emulsifier among all the fabricated glycoconjugates. Our study highlighted the potential of synergistically applying ultrasound and microwave techniques to develop a well-performance glycation with an ideal conjugate structure, in which they would be associated into a strong film that provided the robust physical barrier, creaming stability, heat retention, and oxidation resistance. These findings offered a basis for better utilizing complex ultrasonic technology to develop novel and improved MP-based food products.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xiaomei Zhong
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Cuirong Luan
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Nanhua Wen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chuanyang Shi
- Department of Nutrition and Food Studies, Steinhardt School of Culture, Education, and Human Development, New York University, NY, United States
| | - Xiaoyu Lin
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chao Zhao
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Yang Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lianyu Luo
- Fujian Flavorbio Technology Co., LTD, Fuzhou, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yijing Wu
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| | - Jie Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| |
Collapse
|
25
|
Chen J, Chai J, Sun X, Tao Y, Chen X, Zhou G, Xu X. Unexpected variations in the effects of ultrasound-assisted myofibrillar protein processing under varying viscosity conditions. ULTRASONICS SONOCHEMISTRY 2023; 99:106553. [PMID: 37574643 PMCID: PMC10448329 DOI: 10.1016/j.ultsonch.2023.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
The efficient synthesis of myofibrillar protein(MRN)-gallic acid (GAD) complex in ultrasound (UID)-assisted processing is a challenging problem in food manufacturing. In this investigation, the effect of viscosity characteristics on the efficiency of UID processing in MRN-based beverages was analyzed. Both viscosity and surface tension can increase sono-physico-chemical effects on the degradation of terephthalic acid and crystal violet, with surface tension having a more significant effect (negative correlation, R2 = 0.99) than viscosity (positive correlation, R2 = 0.79). The structural indicators and microstructure demonstrated that the reaggregation and refolding of the MRN structure during the modification procedure occurred with relatively small three-dimensional dimensions. Compared to the MRN/GAD4 group, the water contact angle of the MRN/GAD7 system enhanced by 129.44%, leading to greater system stability. The ABTS-scavenging capacity of the system increased by approximately 19.45% due to the increase in viscosity of these two categories.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Chen J, Zeng X, Sun X, Zhou G, Xu X. A comparison of the impacts of different polysaccharides on the sono-physico-chemical consequences of ultrasonic-assisted modifications. ULTRASONICS SONOCHEMISTRY 2023; 96:106427. [PMID: 37149927 PMCID: PMC10192650 DOI: 10.1016/j.ultsonch.2023.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
This study aimed to examine the sono-physico-chemical effects of ultrasound (UND) and its impact on the conjugate rates of morin (MOI) following the addition of polysaccharides in various conditions. In comparison to the control group, the incorporation of quaternary ammonium chitosan decreased the rate of MOI conjugation by 17.38%, but the addition of locust bean gum enhanced the grafting rate by 29.89%. Notably, the highest degree of myofibrillar protein (MRN) unfolding (fluorescence intensity: 114435.50), the most stable state (-44.98 mV), and the greatest specific surface area (393.06 cm2/cm3) were observed in the UMP/LBG group. The outcomes of atomic force microscopy and scanning electron microscopy revealed that the inclusion of locust bean gum led to a different microscopic morphology than the other two polysaccharides, which may be the primary cause of the strongest sono-physico-chemical effects of the system. This work demonstrated that acoustic settings can be tuned based on the characteristics of polysaccharides to maximize the advantages of sono-physico-chemical impacts in UND-assisted MOI processing.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Deng XH, Ni XX, Han JH, Yao WH, Fang YJ, Zhu Q, Xu MF. High-intensity ultrasound modified the functional properties of Neosalanx taihuensis myofibrillar protein and improved its emulsion stability. ULTRASONICS SONOCHEMISTRY 2023; 97:106458. [PMID: 37257209 DOI: 10.1016/j.ultsonch.2023.106458] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
This study aimed to investigate the effects of high-intensity ultrasound treatment on the functional properties and emulsion stability of Neosalanx taihuensis myofibrillar protein (MP). The results showed that the carbonyl groups, emulsification properties, intrinsic fluorescence intensity, and surface hydrophobicity of the ultrasound treated MP solution were increased compared to the MP without ultrasound treatment. The results of secondary structure showed that the ultrasound treatment could cause a huge increase of β-sheet and a decline of α-helix of MP, indicating that ultrasound induced molecular unfolding and stretching. Moreover, ultrasound reduced the content of total sulfhydryl and led to a certain degree of MP cross-linking. The microscopic morphology of MP emulsion indicated that the emulsion droplet decreased with the increase of ultrasound power. In addition, ultrasound could also increase the storage modulus of the MP emulsion. The results for the lipid oxidation products indicated that ultrasound significantly improved the oxidative stability of N. taihuensis MP emulsions. This study offers an important reference theoretically for the ultrasound modification of aquatic proteins and the future development of N. taihuensis deep-processed products represented by surimi.
Collapse
Affiliation(s)
- Xiao-Hong Deng
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiang-Xiang Ni
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jia-Hui Han
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wen-Hua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ya-Jie Fang
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ming-Feng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
28
|
Zhang Z, Ma R, Xu Y, Chi L, Li Y, Mu G, Zhu X. Investigation of the Structure and Allergic Potential of Whey Protein by Both Heating Sterilization and Simulation with Molecular Dynamics. Foods 2022; 11:foods11244050. [PMID: 36553793 PMCID: PMC9778632 DOI: 10.3390/foods11244050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As the main allergens in milk, whey proteins are heat-sensitive proteins and are widespread in dairy products and items in which milk proteins are involved as food additives. The present work sought to investigate the effect of heating sterilization on the allergenicity of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), the main composite and allergen in whey protein isolate (WPI), by combining molecular dynamics with experimental techniques for detecting the spatial structure and IgE binding capacity. The structure of WPI was basically destroyed at heat sterilization conditions of 95 °C for 5 min and 65 °C for 30 min by SDS-PAGE analysis and spectroscopic analysis. In addition, α-lactalbumin (α-LA) may be more sensitive to temperature, resulting in exposure to allergic epitopes and increasing the allergic potential, while the binding capacity of β-lactoglobulin (β-LG) to IgE was reduced under 65 °C for 30 min. By the radius of gyration (Rg) and root-mean-square deviation (RMSD) plots calculated in molecular dynamics simulations, α-LA was less structurally stable at 368 K, while β-LG remained stable at higher temperatures, indicating that α-LA was more thermally sensitive. In addition, we observed that the regions significantly affected by temperatures were associated with the capacity of allergic epitopes (α-LA 80-101 and β-LG 82-93, 105-121) to bind IgE through root-mean-standard fluctuation (RMSF) plots, which may influence the two major allergens. We inferred that these regions are susceptible to structural changes after sterilization, thus affecting the allergenicity of allergens.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruida Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Chi
- Dalian Women and Children Medical Center, Dalian 116012, China
| | - Yue Li
- Dalian Women and Children Medical Center, Dalian 116012, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|