1
|
Li Z, Zhang L, Shan Y, Zhao Y, Dai L, Wang Y, Sun Q, McClements DJ, Cheng Y, Xu X. Fabrication of high internal phase emulsions (HIPEs) using pea protein isolate-hyaluronic acid-tannic acid complexes: Application of curcumin-loaded HIPEs as edible inks for 3D food printing. Food Chem 2024; 460:140402. [PMID: 39059330 DOI: 10.1016/j.foodchem.2024.140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Pea protein isolate (PPI)-hyaluronic acid (HA)-tannic acid (TA) ternary complexes were assembled using non-covalent interactions, their potential application in 3D printing and delivery of curcumin were investigated. As the HA-to-TA ratio in the complexes changed from 1:0 to 0:1, the oil-water interfacial tension first decreased and then increased, and the secondary structure of the proteins changed. The composition of the complexes (HA-to-TA ratio) was optimized to produce high internal phase emulsions (HIPEs) containing small uniform oil droplets with good storage and thermal stability. When the HA to TA ratio is 7:1 (P-H7-T1), HIPEs exhibited better viscosity, viscoelasticity, and thixotropy, which contributed to its preferable 3D printing. Moreover, curcumin-loaded HIPEs stabilized by P-H7-T1 showed a high lipid digestibility (≈101%) and curcumin bioaccessibility (≈79%). In summary, the PPI-HA-TA-stabilized HIPEs have good potential to be 3D-printable materials that could be loaded with bioactive components.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Liwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yuehan Shan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yue Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | | | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Wang Y, Liu J, Xia K, Ding Z, Wang B, Yu X, Liu J, Yuan P, Duan S. Enhancing the stability of O/W emulsions by the interactions of casein/carboxymethyl chitosan and its application in whole nutrient emulsions. Int J Biol Macromol 2024:133589. [PMID: 39084970 DOI: 10.1016/j.ijbiomac.2024.133589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
The influence of Carboxymethyl chitosan (CMCS) on the emulsification stability mechanism of casein (CN) and its effects on the stability of whole nutrient emulsions were investigated. The complex solutions of CN and CMCS were prepared and the turbidity, ultraviolet (UV) absorption spectrum, fluorescence spectrum, circular dichroism (CD) spectrum, Fourier transform infrared (FTIR) spectrum, interfacial tension and microstructural observations were used to study the inter-molecular interaction of CMCS and CN. The effects of CMCS on the emulsion stability of CN were further analyzed by particle size, ζ-potential, instability index and rheological properties. Moreover, the accelerated stability of whole nutrient emulsions prepared by CMCS and CN was evaluated. The results revealed that CN-CMCS complexes were mainly formed by hydrogen bonding. The stability of the CN-CMCS composite emulsions were improved, as evidenced by the interfacial tension decreasing from 165.96 mN/m to 158.49 mN/m, the particle size decreasing from 45.85 μm to 12.98 μm, and the absolute value of the potential increasing from 29.8 mV to 33.5 mV. The stability of whole nutrient emulsion was also significantly enhanced by the addition of CN-CMCS complexes. Therefore, CN-CMCS complex could be served as a novel emulsifier to improve the stability of O/W emulsions.
Collapse
Affiliation(s)
- Yingxiang Wang
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Jinyang Liu
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Kai Xia
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Zhenjiang Ding
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | | | - Xinyu Yu
- Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing 100124, China
| | - Jia Liu
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Peng Yuan
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China
| | - Shenglin Duan
- China National Research Institute of Food Fermentation Industries Co., Ltd., Functional Staple Food Creation and Nutrition Intervention for Chronic Diseases in Beijing Key Laboratory, Beijing 100020, China.
| |
Collapse
|
3
|
Xie M, Zhou C, Li X, Ma H, Liu Q, Hong P. Preparation and characterization of tilapia protein isolate - Hyaluronic acid complexes using a pH-driven method for improving the stability of tilapia protein isolate emulsion. Food Chem 2024; 445:138703. [PMID: 38387313 DOI: 10.1016/j.foodchem.2024.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
This study aimed to investigate the non-covalent complexation between hyaluronic acid (HA) and tilapia protein isolate (TPI) on the stability of oil-in-water (O/W) TPI emulsion. The results showed that HA binds to TPI through electrostatic, hydrophobic, and hydrogen bonding interactions, forming homogeneous hydrophilic TPI-HA complexes. The binding of HA promoted the structural folding of TPI and altered its secondary structure during pH neutralization. The TPI-HA complexes presented significantly improved EAI and ESI (P < 0.05) when the HA concentration was 0.8 % (w/v). Emulsion characterization showed that HA promoted the transfer of TPI to the O/W interface, forming an emulsion with excellent stability, which, combined with the high surface charge and strong spatial site resistance effect of HA, improved TPI emulsion stability. Therefore, non-covalent complexation with HA is an effective strategy to improve the stability of TPI emulsion.
Collapse
Affiliation(s)
- Mengya Xie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China
| | - Xiang Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Huanta Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Jing Y, Wang C, Li C, Wei Z, Lei D, Chen A, Li X, He X, Cen L, Sun M, Liu B, Xue B, Li R. Development of a manganese complex hyaluronic acid hydrogel encapsulating stimuli-responsive Gambogic acid nanoparticles for targeted Intratumoral delivery. Int J Biol Macromol 2024; 270:132348. [PMID: 38750838 DOI: 10.1016/j.ijbiomac.2024.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gambogic acid is a natural compound with anticancer properties and is effective for many tumors. But its low water solubility and dose-dependent side effects limit its clinical application. This study aims to develop a novel drug delivery system for intratumoral delivery of gambogic acid. In our experimental study, we propose a new method for encapsulating gambogic acid nanoparticles using a manganese composite hyaluronic acid hydrogel as a carrier, designed for targeted drug delivery to tumors. The hydrogel delivery system is synthesized through the coordination of hyaluronic acid-dopamine (HA-DOPA) and manganese ions. The incorporation of manganese ions serves three purposes:1.To form cross-linked hydrogels, thereby improving the mechanical properties of HA-DOPA.2.To monitor the retention of hydrogels in vivo in real-time using magnetic resonance imaging (MRI).3.To activate the body's immune response. The experimental results show that the designed hydrogel has good biosafety, in vivo sustained release effect and imaging tracking ability. In the mouse CT26 model, the hydrogel drug-loaded group can better inhibit tumor growth. Further immunological analysis shows that the drug-loaded hydrogel group can stimulate the body's immune response, thereby better achieving anti-tumor effects. These findings indicate the potential of the developed manganese composite hyaluronic acid hydrogel as an effective and safe platform for intratumoral drug delivery. The amalgamation of biocompatibility, controlled drug release, and imaging prowess positions this system as a promising candidate for tumor treatment.
Collapse
Affiliation(s)
- Yuanhao Jing
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Chun Wang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chunhua Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Zijian Wei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Dan Lei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Anni Chen
- Nanjing International Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Xiang Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lanqi Cen
- Department of Oncology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China. 210000
| | - Mengna Sun
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210008, China.
| | - Rutian Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Geng H, Yu J, Zhang B, Yu D, Ban Q. Stabilization mechanisms and digestion properties of Pickering emulsions prepared with tempo-oxidized hyaluronic acid/chitosan nanoparticles: From the perspective of oxidation degree. Int J Biol Macromol 2024; 271:132456. [PMID: 38777013 DOI: 10.1016/j.ijbiomac.2024.132456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
In this study, the stabilization mechanism and digestion behavior of Pickering emulsion prepared by a combination of chitosan (CS) and TEMPO-oxidized hyaluronic acid (HA) were investigated. Conductometric titration was used to determine the degree of oxidation and carboxylate content of TEMPO-oxidized HA. The results showed that the degree of oxidation increased proportionally with increasing oxidation time, and the electrostatic and hydrogen bonding interactions with CS were significantly enhanced. The results of FTIR and TEM showed the formation of CS/oxidized HA nanoparticles (CS/oxidized-HANPs). In addition, the contact angle of CS/oxidized-HANPs is closed to 77°, thereby providing higher desorption energy at the interface. Rheological results showed that the Pickering emulsion exhibited a gel-like network structure and higher viscosity. In vitro digestion results suggested that the quercetin (Que) bioaccessibility of the CS/oxidation HANps-stabilized Pickering emulsion with an oxidation time of 20 min was better than that of the conventional emulsion prepared with CS alone. The research is expected to develop novel polysaccharide-based Pickering emulsion delivery systems for functional compounds.
Collapse
Affiliation(s)
- Haoyuan Geng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaye Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bingfang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Wang M, Yang S, Sun N, Zhu T, Lian Z, Dai S, Xu J, Tong X, Wang H, Jiang L. Soybean isolate protein complexes with different concentrations of inulin by ultrasound treatment: Structural and functional properties. ULTRASONICS SONOCHEMISTRY 2024; 105:106864. [PMID: 38581796 PMCID: PMC11004718 DOI: 10.1016/j.ultsonch.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 μmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Na Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziteng Lian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shicheng Dai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Joshi R, Sutariya SG, Salunke P. Effect of Different Molecular Weight Hyaluronic Acids on Skim Milk Functional Properties. Foods 2024; 13:690. [PMID: 38472803 DOI: 10.3390/foods13050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Hyaluronic acid (HA), a naturally occurring polysaccharide with recognized health benefits, has gained approval for use in the food industry as a food additive, ingredient, and health supplement in numerous countries. HA can increase viscosity in solutions and is available commercially in various molecular weights (MW) depending on end applications. Nevertheless, no research has explored the impact of different MW HAs on functionality, rheological properties, and texture-building benefits in the dairy product matrix wherein they are incorporated. Therefore, the objective of this study was to evaluate how varying MWs of HA-specifically 8 kDa, 320 kDa, 980 kDa, and 2550 kDa at 0.25% (w/w) concentration-impact rheological characteristics, functional attributes, heat stability, protein stability, protein structure, and protein fractions within skim milk. The addition of HA led to an increase in the apparent viscosity of all samples. A higher G″ value over G' values for all HA samples was observed in frequency sweep, indicating the absence of interparticle interactions between HA particles. Protein stability and heat stability were significantly lower for 980 kDa and 2550 kDa HA as compared to the control and 8 kDa HA samples. As the MW increased, WHC, emulsion properties, and foaming stability notably increased. However, reversed results were found in the case of foaming activity. Moreover, no significant changes were observed in the percent area of individual protein fractions and the hydrodynamic diameter of protein particles. This study would help to understand the effect of HA when incorporated in dairy products for water binding or enhancement in viscosity-based applications.
Collapse
Affiliation(s)
- Rutvi Joshi
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Suresh G Sutariya
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Prafulla Salunke
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
8
|
Gu X, Li W, Jiang X, Chang C, Wu J. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Int J Biol Macromol 2024; 258:128892. [PMID: 38134988 DOI: 10.1016/j.ijbiomac.2023.128892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In this work, pectin was employed as a coating material to fabricate zein/whey protein isolate (WPI)/pectin complex nanoparticles via a pH-adjusted and heat-induced electrostatic adsorption process for potential oral administration applications of curcumin. Factors such as the order of raw material addition, heating temperature and pH, and zein concentration were comprehensively examined. In addition to electrostatic interactions, Fourier transform infrared and fluorescence spectroscopy indicated that hydrophobic interactions and hydrogen bonds were also involved in the development of complex nanoparticles. The complex nanoparticles obtained not only improved the antioxidant activity of curcumin in aqueous phase, but also contributed to its controlled release under gastrointestinal conditions. Our findings revealed that the heating pH and adding sequence of raw materials had a notable impact on the properties of complex nanoparticles, and that pectin coating had an exceptional stabilizing effect on complex nanoparticles under gastrointestinal circumstances. This study provides novel insights and perspectives for the preparation of polysaccharide-protein complex nanoparticles, signifying the potential use of zein/WPI/pectin complex nanoparticles as delivery vehicles in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| |
Collapse
|
9
|
Zhu J, Wang H, Miao L, Chen N, Zhang Q, Wang Z, Xie F, Qi B, Jiang L. Curcumin-loaded oil body emulsions prepared by an ultrasonic and pH-driven method: Fundamental properties, stability, and digestion characteristics. ULTRASONICS SONOCHEMISTRY 2023; 101:106711. [PMID: 38061250 PMCID: PMC10749905 DOI: 10.1016/j.ultsonch.2023.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
In this study, oil bodies (OBs) loaded with curcumin (Cur) were successfully prepared via an ultrasonic and pH-driven method. Ultrasonic treatment significantly improved the encapsulation efficiency (EE) and loading capacity (LC) of Cur, producing OB particles with small size, uniform distribution, and high ζ-potential absolute values. When the ultrasonic power was 200 W, the EE, LC, and ζ-potential absolute value were the greatest (88.27 %, 0.044 %, and -25.71 mV, respectively), and the OBs possessed the highest yellowness, representing the best treatment result. The confocal laser scanning microscopy (CLSM) and cryo-scanning electron microscopy (cryo-SEM) results was also intuitionally shown that. Moreover, circular dichroism (CD) proved that ultrasonic treatment could unfold the surface protein structure, further enhancing the stability. Therefore, the cream index (CI), peroxide value (POV), and thiobarbituric acid reactive substances (TBARS) were the lowest when the ultrasonic power was 200 W. In this case, the Cur loaded in OBs was well protected against hostile conditions, evidenced by the highest Cur retention rate and the lowest degradation rate constant. Finally, the in vitro gastrointestinal digestion simulation results showed that the ultrasonic treatment effectively increased the release of FFA, bioaccessibility, and stability of Cur, especially when the ultrasonic power was 200 W. This research offers a new OB-based delivery system to stabilize, deliver, and protect Cur for food processing.
Collapse
Affiliation(s)
- Jianyu Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liming Miao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ning Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qing Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziheng Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
10
|
Qian S, Lan T, Zhao X, Song T, Cao Y, Zhang H, Liu J. Mechanism of ultrasonic combined with different fields on protein complex system and its effect on its functional characteristics and application: A review. ULTRASONICS SONOCHEMISTRY 2023; 98:106532. [PMID: 37517277 PMCID: PMC10407543 DOI: 10.1016/j.ultsonch.2023.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
In recent years, new food processing technologies (such as ultrasound, high-pressure homogenization, and pulsed electric fields) have gradually appeared in the public 's field of vision. These technologies have made outstanding contributions to changing the structure and function of protein complexes. As a relatively mature physical field, ultrasound has been widely used in food-related fields. However, with the gradual deepening of related research, it is found that the combination of different fields often makes some characteristics of the product better than the product under the action of a single field, which will not only lead to a broader application prospect of the product, but also make the product a better solution in some special fields. There are usually synergistic and antagonistic effects when multiple fields are combined, and these effects will also gradually enlarge the interaction between different components of the protein complex system. In this paper, while explaining the mechanism of ultrasonic combined with other fields affecting the steric hindrance and shielding site of protein complex system, we will further explain the effect of this effect on the function and application of protein complex system.
Collapse
Affiliation(s)
- Sheng Qian
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tiantong Lan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Xu Zhao
- Jilin Province Institute of Product Quality Supervision and Inspection, Changchun 130022, China
| | - Tingyu Song
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Yong Cao
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
11
|
Luo X, Ao S, Wu H, McClements DJ, Fang L, Huang M, Zhou Y, Yin X, Xi M, Cai T, Zhu K. Hyaluronic Acid Poly(glyceryl) 10-Stearate Derivatives: Novel Emulsifiers for Improving the Gastrointestinal Stability and Bioaccessibility of Coenzyme Q10 Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37436914 DOI: 10.1021/acs.jafc.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Fish oils are a rich source of polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, which are reported to exhibit therapeutic effects in a variety of human diseases. However, these oils are highly susceptible to degradation due to oxidation, leading to rancidity and the formation of potentially toxic reaction products. The aim of this study was to synthesize a novel emulsifier (HA-PG10-C18) by esterifying hyaluronic acid with poly(glyceryl)10-stearate (PG10-C18). This emulsifier was then used to formulate nanoemulsion-based delivery systems to co-deliver fish oil and coenzyme Q10 (Q10). Q10-loaded fish oil-in-water nanoemulsions were fabricated, and then their physicochemical properties, digestibility, and bioaccessibility were measured. The results indicated that the environmental stability and antioxidant activity of oil droplets coated with HA-PG10-C18 surpassed those coated with PG10-C18 due to the formation of a denser interfacial layer that blocked metal ions, oxygen, and lipase. Meanwhile, the lipid digestibility and Q10 bioaccessibility of nanoemulsions formulated with HA-PG10-C18 (94.9 and 69.2%) were higher than those formulated with PG10-C18 (86.2 and 57.8%), respectively. These results demonstrated that the novel emulsifier synthesized in this study could be used to protect chemically labile fat-soluble substances from oxidative damage, while still retaining their nutritional value.
Collapse
Affiliation(s)
- Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Sha Ao
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongze Wu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Likun Fang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Mengyu Huang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xuguang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
12
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources. Foods 2023; 12:foods12071502. [PMID: 37048323 PMCID: PMC10094036 DOI: 10.3390/foods12071502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| |
Collapse
|