1
|
Li C, Zheng Y, Xiong X, Xue F. Production of protein-epigallocatechin gallate conjugates using free radicals induced by ultrasound and their gelation behavior. Food Chem 2025; 463:141300. [PMID: 39306991 DOI: 10.1016/j.foodchem.2024.141300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/14/2024]
Abstract
In this study, free radicals generated by ultrasound were used to prepare conjugates of food proteins (soybean protein isolates, sodium caseinate and gelatin) with epigallocatechin gallate (EGCG). The changes in free amino and sulfhydryl group contents were used to confirm the occurrence of conjugation. The formation of covalent interactions on surface hydrophobicity, functional groups, structures, thermal stability, and gelation behavior of three proteins were investigated. The results showed that conjugation led to decrease in free amino and sulfhydryl group contents, reduction in the intensity of amide A and fluorescence intensity, and increase in β-fold content. The conjugation also resulted in a decrease in surface hydrophobicity and thermal stability of soybean protein isolates and sodium caseinate, but an increase in the surface hydrophobicity and thermal stability of gelatin. Furthermore, the covalent bonding between proteins and EGCG improved gel strength, water holding capacity, and resulted in a denser and more compact microstructure.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yalu Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Medicinal Substance and Utilization of Fresh Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Zheng X, Cheng T, Liu S, Tian Y, Liu J, Wang Z, Guo Z. Ultrasonic combined pH shifting strategy for improving the stability of emulsion stabilized by yeast proteins: Focused on solubility, protein structure, interface properties. Int J Biol Macromol 2025; 293:139396. [PMID: 39753173 DOI: 10.1016/j.ijbiomac.2024.139396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
In this study, the improvement mechanism of yeast proteins (YPs) with the ultrasonic and pH shifting treatment on the emulsion stability was investigated through the solubility, protein structure and interface behavior of YPs. Compared with only pH shifting or ultrasound treatment, the solubility of YPs with the combined treatment of ultrasonic and pH shifting was increased significantly. The soluble protein content of pH-U400 reached 85.51 %. The results of YPs structure demonstrated that the β-sheet, α-helix and disulfide bonds contents of YPs with the combined treatment first declined and subsequently increased with increasing ultrasonic power, under alkaline conditions. The fluorescence intensity and surface hydrophobicity first increased and then declined. The more flexible protein structure endowed pH-U400 with lower interfacial tension, higher interfacial diffusion, penetration and reorganization rate, and interfacial protein concentration. The pH-U400 showed the best emulsifying properties (emulsifying activity index was 27.05 m2/g, emulsifying stability index was 31.27 min) and could prepare smaller and more uniform emulsion droplet. The results of multiple light scattering demonstrated that emulsion stabilized by pH-U400 showed the best stability. These results revealed the stability mechanism of emulsions stabilized by YPs and provided guidance for further development of practical YPs products in the food industry.
Collapse
Affiliation(s)
- Xueting Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sibo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Liu
- Shandong Yuwang Industrial Co., Ltd, Dezhou, Shandong 251299, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Zhang Y, Liu J, Zheng Z, Cao S, Wang X, Guo W, Yan Z, Zhang R, Liu X. Ultrasound-mediated soybean-egg white protein acid-induced emulsion gels: A multi-design approach integrating techno-functional properties, digestibility, and nutritional value. Food Chem 2024; 469:142560. [PMID: 39721435 DOI: 10.1016/j.foodchem.2024.142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
This study investigated the effects of formulation and ultrasound on the processing properties and nutrient digestion of soy protein isolate (SPI)-egg white protein (EWP) emulsion gels. The incorporation of EWP significantly improved the texture properties and freeze-thaw stability through disulfide bonds and homogeneous networks in comparison to SPI emulsion gels. However, swelling ratio of emulsion gels at SPI:EWP ratios of 3:1 and 2:1 decreased due to disruption of SPI network continuity. After ultrasound, SPI-EWP emulsion gels exhibited higher gel strength, freeze-thaw stability, and swelling ratio. Digestion kinetics showed an increased half-life time of SPI-EWP emulsion gels with no significant difference in PCmax. Flexible proteins could adsorb around small droplets, forming tight interfacial layers and a dense and uniform network according to particle size and Cryo-SEM. This work elucidated the mechanism of performance stabilization and digestion kinetics of SPI-EWP emulsion gels, supporting the design of animal and plant protein complex products.
Collapse
Affiliation(s)
- Yudan Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyuan Zheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
An Y, Guo R, Gao Y, Zhu Y, Huang Y, Liu L, Zhu X. Ultrasonic treatment of emulsion gels with different soy protein-hemp protein composite ratios: Changes in structural and physicochemical properties. Int J Biol Macromol 2024; 285:138252. [PMID: 39631590 DOI: 10.1016/j.ijbiomac.2024.138252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
To improve the emulsion gel system of single soybean isolate protein (SPI) and to broaden the application field of hemp protein isolate (HPI), ultrasonic treatment and HPI were introduced to improve the properties of SPI emulsion gel and to explore the mechanism. The results showed that the gel strength (218.6 g) and water-holding capacity (86.24 %) of the emulsion gels were improved under ultrasonic treatments when the ratio of SPI:HPI was >6:4, and the reticulation structure of the gels was enhanced. When the ratio of SPI:HPI was <6:4, the gel structure was loose and formless. Ultrasonic treatment has a significant effect on the emulsion gel with the ratio of SPI:HPI was >6:4. Appropriate ultrasonic treatment (400 W) changed the protein structure, improved the rheological properties of emulsion gels to form the protein-oil-coated network structure. However, excessive ultrasonic treatment (600 W) will destroy the conformation of the protein, reducing the stability of the structure. The effect of ultrasonic treatment on emulsion gels with the ratio of SPI:HPI was <6:4 is low, but improved the gel protein digestibility. This study provides a theoretical basis for the application of ultrasonic in composite protein emulsion gels systems and the development and application of HPI.
Collapse
Affiliation(s)
- Yuexin An
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150028, China
| | - Ruqi Guo
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150028, China
| | - Yang Gao
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150028, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150028, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150028, China
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150028, China
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150028, China.
| |
Collapse
|
5
|
Xie Y, Yang F, Shu W, Zhao K, Huang Y, Liu Q, Yuan Y. Improved qualities of cod-rice dual-protein gel as affected by rice protein: Insight into molecular flexibility, protein interaction and gel properties. Food Res Int 2024; 197:115176. [PMID: 39593387 DOI: 10.1016/j.foodres.2024.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Blending plant-based proteins with animal-based proteins to achieve adequate dietary protein intake is a strategy to address dietary deficiencies in the elderly. This research systematically investigated the effect of the ratio of cod protein/rice protein (21:0, 21:1.5, 21:3, 21:4.5, 21:6, 21:7.5, and 21:9) on the gelation properties of dual-protein gels and the underlying dual-protein interaction mechanisms. The results indicated that the myosin heavy chain (MHC) of cod and the glutelin in rice protein are primarily linked by hydrogen bonds, particularly involving Tyr residues, as evidenced by molecular docking and fluorescence quenching results. The addition of rice protein in cod protein promoted α-helix transforming into β-sheet, β-turn and random coil of the original protein solution, which was significantly correlated with molecule flexibility increasing. The decrease in the dual-protein particle size, and rice protein uniformly distributed in a cod protein-based gel network, which promoted the compactness and density of the gel structure. It was found that the hardness and springiness of 21:6 cod-rice protein gel increased by 73.96% and 17.28% compared to single cod gel, respectively. This study provides theoretical basis to the mechanism of dual-protein interaction affecting gel properties from the molecular level.
Collapse
Affiliation(s)
- Yisha Xie
- School of Food and Bioengineering, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China.
| | - Feng Yang
- School of Food and Bioengineering, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China
| | - Wenjing Shu
- School of Food and Bioengineering, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China
| | - Kangyu Zhao
- School of Food and Bioengineering, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China
| | - Yizhen Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qingqing Liu
- School of Food and Bioengineering, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China.
| | - Yongjun Yuan
- School of Food and Bioengineering, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China
| |
Collapse
|
6
|
Abker AM, Xia Z, Hu G, Fu X, Zhang Y, Jin Y, Ma M, Fu X. Using salted egg white in steamed bread: Impact on functional and structural characteristics. Food Chem 2024; 454:139609. [PMID: 38795615 DOI: 10.1016/j.foodchem.2024.139609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Steamed bread has long been an important part of Chinese cuisine. This study investigated the effects of salted egg white (SEW) (5, 10, 15, and 20% w/w) on the quality of steamed breads. Findings revealed that SEW notably enhanced the bread's volume and texture, with a 20% inclusion significantly boosting water retention and rheological properties, albeit reducing bread's lightness. In addition, the H-bond absorption band intensity in the Fourier transform infrared spectroscopy (FTIR) analysis showed increased peak intensities with higher SEW levels, indicative of protein structure alterations. X-ray diffraction confirmed the presence of an amylose-lipid complex. Scanning electron microscope (SEM) and Confocal laser scanning microscope (CLSM) imaging depicted a smooth, consistent protein network with SEW addition. Consumer sensory evaluation responded favourably to the SEW15 steamed bread, suggesting its potential for food industry application. Overall, the study considers SEW an effective ingredient for improving steamed bread quality.
Collapse
Affiliation(s)
- Adil M Abker
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, Sudan
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiaowen Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Lin S, Li X, Zhang J, Kong B, Cao C, Sun F, Zhang H, Liu Q, Liu C. Potential mechanisms and effects of ultrasound treatment combined with pre- and post-addition of κ-carrageenan on the gelling properties and rheological behavior of myofibrillar proteins under low-salt condition. Meat Sci 2024; 215:109554. [PMID: 38838569 DOI: 10.1016/j.meatsci.2024.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and β-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chunyan Liu
- Heilongjiang Academy of Sciences, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
8
|
Bu K, Huang D, Zhang H, Xu K, Zhu C. Ultrasonic-microwave technique promotes the physicochemical structure of hydrogel and its release characterization of curcumin in vitro. Food Chem 2024; 451:139389. [PMID: 38670023 DOI: 10.1016/j.foodchem.2024.139389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
In this study, soybean protein isolate and hawthorn pectin were mixed to prepare binary hydrogels using ultrasound and microwave techniques. Moderate treatment can not only significantly improve the mechanical strength of the hydrogel, but also increase the tightness of the internal cross-linking. The strengthening of interactions (hydrogen bonds, hydrophobic interactions, and disulfide bonds) was the main reason for this trend. Especially, the ultrasonic-microwave (80 s) treatment hydrogel possessed excellent hardness (33.426 N), water-holding capacity (98.26%), elasticity (G' = 1205 Pa), and a more homogeneous and denser microstructure. In addition, the hydrogel minimized the extent of curcumin loss (21.23%) after 5 weeks of storage. In general, the ultrasonic-microwave technique could significantly promote the physicochemical structure and curcumin bioaccessibility of hydrogels, which showed excellent market prospects in the food industry.
Collapse
Affiliation(s)
- Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hao Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
9
|
Hu X, Huang Y, Tang X, Zhang K, Yang F. Interactions between rice starch and flavor components and their impact on flavor. Int J Biol Macromol 2024; 275:133397. [PMID: 38960261 DOI: 10.1016/j.ijbiomac.2024.133397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Flavor is considered one of the most significant factors affecting food quality. However, it is often susceptible to environmental factors, so encapsulation is highly necessary to facilitate proper handling and processing. In this study, the structural changes in starch encapsulation and their effects on flavor retention were investigated using indica starch (RS) as a matrix to encapsulate three flavoring compounds, namely nonanoic acid, 1-octanol, and 2-pentylfuran. The rheological and textural results suggested that the inclusion of flavor compounds improved the intermolecular interactions between starch molecules, resulting in a significant increase in the physicochemical properties of starch gels in the order: nonanoic acid > 1-octanol > 2-pentylfuran. The XRD results confirmed the successful preparation of v-starch. Additionally, the inclusion complexes (ICs) were characterized using FT-IR, SEM, and DSC techniques. The results showed that v-starch formed complexes with Flavor molecules. The higher enthalpy of the complexes suggested that the addition of alcohols and acids could improve the intermolecular complexation between starch molecules. The retention rates of three flavor compounds in starch were determined using HS-GC, with the values of 51.7 %, 32.37 %, and 35.62 %. Overall, this study provides insights into novel approaches to enhance the quality and flavor retention, improve the storability and stability, reduce losses during processing and storage, and extend the shelf life of starchy products.
Collapse
Affiliation(s)
- XinYue Hu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Liuzhou Luosifen Engineering Technology Research Center, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Vocational & Technical College, Nanning, 530026, China.
| | - Xiangyi Tang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Liuzhou Liangmianzhen Co., Ltd., Liuzhou 545000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510460, China.
| | - Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Liuzhou Luosifen Engineering Technology Research Center, Guangxi University of Science and Technology, Liuzhou 545000, China.
| | - Feng Yang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China.
| |
Collapse
|
10
|
Patil ND, Bains A, Sridhar K, Bhaswant M, Kaur S, Tripathi M, Lanterbecq D, Chawla P, Sharma M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024; 13:1398. [PMID: 38731769 PMCID: PMC11083271 DOI: 10.3390/foods13091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education Deemed to be University, Coimbatore 641021, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | | |
Collapse
|
11
|
Sun W, Bu K, Meng H, Zhu C. Hawthorn pectin/soybean isolate protein hydrogel bead as a promising ferrous ion-embedded delivery system. Colloids Surf B Biointerfaces 2024; 237:113867. [PMID: 38522284 DOI: 10.1016/j.colsurfb.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Huangmei Meng
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
12
|
Zhao J, Yuan H, Chen Y, Fang X, Li Y, Yao H, Li W. Soy protein isolate-catechin complexes conjugated by pre-heating treatment for enhancing emulsifying properties: Molecular structures and binding mechanisms. Int J Biol Macromol 2024; 267:131157. [PMID: 38552684 DOI: 10.1016/j.ijbiomac.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ± 0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and β-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.
Collapse
Affiliation(s)
- Juyang Zhao
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China; College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Huiping Yuan
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064, China
| | - Yiyu Chen
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yuqi Li
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Hengzhe Yao
- Culinary Arts Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong 266100, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
13
|
Lin S, Liang X, Zhao Z, Kong B, Cao C, Sun F, Liu Q. Elucidating the mechanisms of ultrasound treatment combined with κ-carrageenan addition enhancing the gelling properties of heat-induced myofibrillar protein gel. Food Res Int 2024; 182:114177. [PMID: 38519164 DOI: 10.1016/j.foodres.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
This work investigated the effect of ultrasound (US) treatment synergized with κ-carrageenan (KC) on the gel properties, structural characteristics and microstructures of myofibrillar protein (MP) gel. The results demonstrated that simply adding KC enhanced the gel strength and water holding capacity (WHC) of MP gels. Moreover, the gel strength and WHC of MP gels were increased by 56.67 % and 76.19 % via 20 min US treatment synergized with KC, which was mainly attributed to the changes in sulfhydryl content, surface hydrophobicity, and fluorescence intensity of MP gels. Based on the results of molecular docking and secondary structure, it can be hypothesized that the synergistic effect resulted in the rearrangement of the proteins, which altered the interaction site between MP gels and KC, accompanied by stronger binding. Furthermore, the microstructural results indicated that moderate US treatment (20 min) facilitated the production of a more compact and denser MP gels matrix with uniformly sized and distributed pores. However, excessive US treatment (40 and 50 min) caused the MP gels to form looser and disordered gel structure, which reduced the gel strength and WHC. This study suggested that combining of US and KC was a potential tactic to enhance the gelling properties of heat-induced MP gels.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
14
|
Lin S, Liang X, Zhang J, Kong B, Sun F, Cao C, Zhang H, Liu Q. Combined effect of ultrasound treatment and κ-carrageenan addition on the enhancement of gelling properties and rheological behavior of myofibrillar protein: An underlying mechanisms study. Int J Biol Macromol 2024; 257:128569. [PMID: 38065443 DOI: 10.1016/j.ijbiomac.2023.128569] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
This work aimed to investigate the combined effect of ultrasound (US) treatment and κ-carrageenan (KC) addition on the gelling properties and rheological behaviors of myofibrillar protein (MP). Without US treatment, the KC incorporation promoted the gel strength and water-holding capacity (WHC) of MP gels. These properties were further improved by 20 min US treatment with gel strength of 98.61 g and WHC of 79.87 %, which was mainly attributed to changes associated with hydrophobic interactions and disulfide bonds and the transformation from α-helix to β-sheet in MP gels. In addition, US treatment for 20 min effectively resulted in a more homogeneous polymer distribution of the MP-KC mixed system, leading to lower particle size and the largest G' and G″ values of the MP-KC mixed gels. However, longer US treatment times (30, 40 and 50 min) rendered lower gel strength, WHC, storage modulus and loss modulus of MP-KC mixed gels, which was mainly due to the formation of loose and disordered gel structures. Our present results indicated that the application of US to MP for an intermediate treatment time (20 min) combined with KC provides a potential and novel strategy to promote the gel qualities of heat-induced MP gels.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
15
|
Wang X, Hu G, Wang X, Ma L, Li S, Wang J, Geng F. Quantitative proteomics provides new insights into the mechanism of improving rehydration of egg white powder by ultrasonic pretreatment. Int J Biol Macromol 2023; 253:127497. [PMID: 37858647 DOI: 10.1016/j.ijbiomac.2023.127497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Poor rehydration is one of the key factors affecting the functional properties of egg white powder (EWP). Reducing rehydrated precipitates is important for the processing and application of EWP. In this study, effects of ultrasonic pretreatment on the physicochemical and functional properties of EWP rehydration solutions were studied with the aim of revealing the mechanism of ultrasonic pretreatment to improve rehydration. Compared with freeze-dried EWP (FD) and spray-dried EWP (SD), the percentage of ultrasonic pretreated FD (UFD) and ultrasonic pretreated SD (USD) rehydrated precipitates decreased by 13.0 % and 5.6 %, respectively, after ultrasonic pretreatment (0.25 W/mL for 10 min); and the average particle sizes of UFD and USD solutions decreased by 22.5 % and 15.5 %, respectively. Fourier transform infrared spectroscopy showed that ultrasonic pretreatment caused higher β-sheet content in the protein secondary structure of UFD rehydrated precipitates (49.2 %). Quantitative proteomic analysis revealed a decrease in the abundance of major egg white proteins (ovalbumin, ovotransferrin, ovomucoid and ovomucin) in the rehydrated precipitates of UFD, except for lysozyme. It was also shown that lysozyme-centered aggregates were disrupted in the rehydrated precipitates of UFD. Our research suggests that ultrasonic pretreatment improves EWP rehydration by reducing the interactions between high abundance proteins as well as improving the solubility of high abundance proteins.
Collapse
Affiliation(s)
- Xiaolin Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xuemei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Lulu Ma
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shugang Li
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|