1
|
Peters-Founshtein G, Eshet Y, Sarfaty M, Dotan Z, Catalano OA, Davidson T, Domachevsky L. The Role of Nuclear Medicine in Imaging and Therapy of Prostate Cancer: The State of the Art. Urol Clin North Am 2025; 52:13-24. [PMID: 39537299 DOI: 10.1016/j.ucl.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men. In recent years, nuclear medicine has played an expanding role in diagnosing, staging, monitoring, and treating PCa. Specifically, the introduction of prostate-specific membrane antigen PET/computed tomography has significantly contributed to detecting locoregional and distant disease. Radioligand therapy, with its capacity to induce highly selective cytotoxic effects, is progressively being integrated into PCa therapy. The advent of novel therapeutic agents, additional indications, and a more comprehensive integration between nuclear imaging and therapy, represent the forefront of nuclear medicine in PCa.
Collapse
Affiliation(s)
- Gregory Peters-Founshtein
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel.
| | - Yael Eshet
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| | - Michal Sarfaty
- Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel; Genitourinary Oncology Unit, The Jusidman Oncology Hospital, Sheba Medical center, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel
| | - Zohar Dotan
- Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel; Department of Urology, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel
| | - Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Tima Davidson
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| | - Liran Domachevsky
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Na SJ, Ha S, Kim IH, Lee JY, O JH. Description of FDG and Prostate-Specific Membrane Antigen PET/CT Findings in Korean Patients With Advanced Metastatic Castration-Resistant Prostate Cancer. Korean J Radiol 2024; 25:1022-1028. [PMID: 39473093 PMCID: PMC11524684 DOI: 10.3348/kjr.2024.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE We aimed to describe the [18F]fluorodeoxyglucose (FDG) and prostate-specific membrane antigen (PSMA) PET/CT findings in Korean men with advanced metastatic castration-resistant prostate cancer (mCRPC). MATERIALS AND METHODS The results of paired FDG and PSMA PET/CT examinations performed in 42 consecutive men with prostate cancer for treatment planning after failure of anti-androgen therapy and chemotherapy were studied. Tumor lesions with FDG or PSMA uptake intensity higher than that of the liver on visual review were considered positive and noted per patient and tumor site (prostate bed, lymph node, bone, and visceral organ). The presence of unequivocally discordant FDG and PSMA uptake patterns in tumor lesions was assessed. Patients were grouped according to the total tumor volume as seen on each PET/CT scan, and the clinical findings between the patient groups were compared using the Mann-Whitney U test. RESULTS On patient-based analysis, the image findings were PSMA+/FDG- in 2 patients, PSMA-/FDG+ in one, and PSMA+/FDG+ in 39 patients. On site-based analysis, the discordance (PSMA+/FDG- or PSMA-/FDG+) rate was 9.5% (4/42) for prostate/bed, 11.9% (5/42) for lymph nodes, 9.5% (4/42) for bones, and 11.9% (5/42) for visceral organs. FDG uptake was higher than PSMA uptake in at least one tumor site in 54.8% (23/42) of patients. Patients with greater total tumor volume on FDG PET/CT than that on PSMA PET/CT ("FDG-dominant pattern") accounted for 28.6% (12/42), and they had significantly shorter time from diagnosis (median 25 months vs. 62 months, P = 0.049), and higher aspartate aminotransferase (median 28.5 vs. 22.5, P = 0.027) and lactate dehydrogenase (median 341.5 vs. 224.5, P = 0.010) levels. CONCLUSION Most patients with advanced mCRPC had tumors with positive findings on both FDG and PSMA PET/CT. However, the uptake patterns varied; 54.8% of the patients had tumor(s) with FDG uptake greater than PSMA uptake, and FDG-dominant pattern was noted in 28.6% of the patients.
Collapse
Affiliation(s)
- Sae Jung Na
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo Hyun O
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
4
|
Hameed MY, Gul M, Chaudhry A, Muzaffar H, Sheikh M, Chee W, Ayyash S, Ayyash J, Al-Hindi M, Shahare H, Chaudhry A. From Oncogenesis to Theranostics: The Transformative Role of PSMA in Prostate Cancer. Cancers (Basel) 2024; 16:3039. [PMID: 39272896 PMCID: PMC11394180 DOI: 10.3390/cancers16173039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer, a leading cause of cancer-related mortality among men, is characterized by complex genetic and epigenetic alterations, dysregulation of oncogenic pathways, and a dynamic tumor microenvironment. Advances in molecular diagnostics and targeted therapies have significantly transformed the management of this disease. Prostate-specific membrane antigen (PSMA) has emerged as a critical biomarker, enhancing the precision of prostate cancer diagnosis and treatment. Theranostics, which integrates PSMA-targeted imaging with radioligand therapies, has shown remarkable efficacy in detecting and treating advanced prostate cancer. By leveraging the dual capabilities of PSMA-based diagnostics and therapeutic agents, theranostics offers a personalized approach that improves patient outcomes. This comprehensive review explores the latest developments in PSMA-targeted theranostics and their impact on the future of prostate cancer management, highlighting key clinical trials and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Muhammad Y Hameed
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72223, USA
| | - Maryam Gul
- Crescent Theranostics, Anaheim, CA 982902, USA
| | | | | | | | - Winson Chee
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72223, USA
| | - Sondos Ayyash
- Department of Medical Oncology, University Health Network (UHN), Toronto, ON M5G 2C1, Canada
| | - Jenna Ayyash
- Department of Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mohannad Al-Hindi
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72223, USA
| | - Humam Shahare
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72223, USA
| | | |
Collapse
|
5
|
Hristova-Panusheva K, Xenodochidis C, Georgieva M, Krasteva N. Nanoparticle-Mediated Drug Delivery Systems for Precision Targeting in Oncology. Pharmaceuticals (Basel) 2024; 17:677. [PMID: 38931344 PMCID: PMC11206252 DOI: 10.3390/ph17060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Nanotechnology has emerged as a transformative force in oncology, facilitating advancements in site-specific cancer therapy and personalized oncomedicine. The development of nanomedicines explicitly targeted to cancer cells represents a pivotal breakthrough, allowing the development of precise interventions. These cancer-cell-targeted nanomedicines operate within the intricate milieu of the tumour microenvironment, further enhancing their therapeutic efficacy. This comprehensive review provides a contemporary perspective on precision cancer medicine and underscores the critical role of nanotechnology in advancing site-specific cancer therapy and personalized oncomedicine. It explores the categorization of nanoparticle types, distinguishing between organic and inorganic variants, and examines their significance in the targeted delivery of anticancer drugs. Current insights into the strategies for developing actively targeted nanomedicines across various cancer types are also provided, thus addressing relevant challenges associated with drug delivery barriers. Promising future directions in personalized cancer nanomedicine approaches are delivered, emphasising the imperative for continued optimization of nanocarriers in precision cancer medicine. The discussion underscores translational research's need to enhance cancer patients' outcomes by refining nanocarrier technologies in nanotechnology-driven, site-specific cancer therapy.
Collapse
Affiliation(s)
- Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (K.H.-P.); (C.X.)
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (K.H.-P.); (C.X.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (K.H.-P.); (C.X.)
| |
Collapse
|
6
|
Chen DC, Huang S, Buteau JP, Kashyap R, Hofman MS. Clinical Positron Emission Tomography/Computed Tomography: Quarter-Century Transformation of Prostate Cancer Molecular Imaging. PET Clin 2024; 19:261-279. [PMID: 38199918 DOI: 10.1016/j.cpet.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Although positron emission tomography/computed tomography (PET/CT) underwent rapid growth during the last quarter-century, becoming a new standard-of-care for imaging most cancer types, CT and bone scan remained the gold standard for patients with prostate cancer. This occurred as 2-fluorine-18-fluoro-2-deoxy-d-glucose was perceived to have a limited role owing to low sensitivity in many patients. A resurgence of interest occurred with the use of fluorine-18-sodium-fluoride PET/CT as a replacement for bone scintigraphy, and then choline, fluciclovine, and dihydrotestosterone (DHT) PET/CT as prostate "specific" radiotracers. The last decade, however, has seen a true revolution with the meteoric rise of prostate-specific membrane antigen PET/CT.
Collapse
Affiliation(s)
- David C Chen
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Siyu Huang
- Department of Surgery, The University of Melbourne
| | - James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Raghava Kashyap
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Feng Y, Chiou CA, Stagner AM, Chang YS, Freitag SK. Distinguishing spheno-orbital metastatic prostate cancer mimicking a meningioma using novel 18F-PSMA PET/CT imaging. Orbit 2024:1-6. [PMID: 38526143 DOI: 10.1080/01676830.2024.2318769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
A 78-year-old man presented with acute-onset left temporal pain, eyelid swelling, and double vision. Computed tomography (CT) demonstrated a left sphenoid wing mass with extra-osseous intra-orbital and intracranial extension, thought to be a typical sphenoid wing meningioma by the primary team. The patient was admitted for an urgent craniotomy, which was planned for the following day. However, upon consultation with ophthalmic plastic surgery, concern was raised for an alternative diagnosis given the atypical timeline, inflammatory changes, and uncharacteristic imaging findings of mixed lytic and sclerotic bony changes without hyperostosis on CT and extensive peri-lesional dural thickening and enhancement on magnetic resonance imaging. A serum prostate-specific antigen was elevated to 206 ng/mL. Subsequent positron emission tomography (PET)/CT using 18F-fluorodeoxyglucose radiotracer was negative for metastatic disease. A prostate-specific membrane antigen (PSMA) PET/CT was then obtained and demonstrated extensive metastases. An orbital biopsy revealed poorly differentiated prostatic adenocarcinoma. The significant incongruence between the standard PET/CT and PSMA PET/CT highlights the value of this novel advanced radiographic modality in narrowing the differential diagnosis and determining the extent of disease. Findings of widespread metastasis on the PSMA PET/CT ultimately helped to avoid a large, morbid neurosurgical intervention in this patient, allowing for a minimally invasive orbital biopsy to characterize the tumor for therapeutic targeting.
Collapse
Affiliation(s)
- Yilin Feng
- Department of Ophthalmology, Ophthalmic Plastic Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolina A Chiou
- Department of Ophthalmology, Ophthalmic Plastic Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna M Stagner
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuh-Shin Chang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Suzanne K Freitag
- Department of Ophthalmology, Ophthalmic Plastic Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
9
|
Houshmand S, Lawhn-Heath C, Behr S. PSMA PET imaging in the diagnosis and management of prostate cancer. Abdom Radiol (NY) 2023; 48:3610-3623. [PMID: 37493837 PMCID: PMC10682054 DOI: 10.1007/s00261-023-04002-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths in men in the United States. Imaging techniques such as CT, MRI, and bone scans have traditionally been used for diagnosis and staging. Molecular imaging modalities targeting the prostate-specific membrane antigen (PSMA) have recently gained attention due to their high affinity and accuracy. PSMA PET has been combined with other modalities such as multiparametric MRI for better diagnostic and prognostic performance. PSMA imaging has been studied at different clinical settings with a wide range of disease aggressiveness. In this review we will explore the role of PSMA PET in high-risk prostate cancer staging, biochemical recurrence, and castration-resistant prostate cancer. The primary focus of this review article is to examine the latest developments in the use of PSMA imaging and emphasize the clinical situations where its effectiveness has been demonstrated to significantly impact the treatment of prostate cancer. In addition, we will touch upon the potential future advancements of PSMA PET imaging and its evolving significance in the management of prostate cancer.
Collapse
Affiliation(s)
- Sina Houshmand
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.
| | - Courtney Lawhn-Heath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Zanvit P, van Dyk D, Fazenbaker C, McGlinchey K, Luo W, Pezold JM, Meekin J, Chang CY, Carrasco RA, Breen S, Cheung CSF, Endlich-Frazier A, Clark B, Chu NJ, Vantellini A, Martin PL, Hoover CE, Riley K, Sweet SM, Chain D, Kim YJ, Tu E, Harder N, Phipps S, Damschroder M, Gilbreth RN, Cobbold M, Moody G, Bosco EE. Antitumor activity of AZD0754, a dnTGFβRII-armored, STEAP2-targeted CAR-T cell therapy, in prostate cancer. J Clin Invest 2023; 133:e169655. [PMID: 37966111 PMCID: PMC10645390 DOI: 10.1172/jci169655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
Prostate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index. Our studies revealed that six-transmembrane epithelial antigen of prostate-2 (STEAP2) was a prevalent prostate cancer antigen that displayed high, homogeneous cell surface expression across all stages of disease with limited distal normal tissue expression, making it ideal for therapeutic targeting. A multifaceted lead generation approach enabled development of an armored STEAP2 chimeric antigen receptor T cell (CAR-T) therapeutic candidate, AZD0754. This CAR-T product was armored with a dominant-negative TGF-β type II receptor, bolstering its activity in the TGF-β-rich immunosuppressive environment of prostate cancer. AZD0754 demonstrated potent and specific cytotoxicity against antigen-expressing cells in vitro despite TGF-β-rich conditions. Further, AZD0754 enforced robust, dose-dependent in vivo efficacy in STEAP2-expressing cancer cell line-derived and patient-derived xenograft mouse models, and exhibited encouraging preclinical safety. Together, these data underscore the therapeutic tractability of STEAP2 in prostate cancer as well as build confidence in the specificity, potency, and tolerability of this potentially first-in-class CAR-T therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Philip L. Martin
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Clare E. Hoover
- Clinical Pathology Patient Safety, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kenesha Riley
- Clinical Pathology Patient Safety, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Steve M. Sweet
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - David Chain
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Yeoun Jin Kim
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Eric Tu
- Oncology Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abouzayed A, Seitova K, Lundmark F, Bodenko V, Oroujeni M, Tolmachev V, Rosenström U, Orlova A. 177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry. Front Oncol 2023; 13:1221103. [PMID: 37829345 PMCID: PMC10565663 DOI: 10.3389/fonc.2023.1221103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that 177Lu-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy. Methods BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [177Lu]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [177Lu]Lu-PSMA-617 was simultaneously evaluated for comparison. Results BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [177Lu]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities KD1 = 3.8 nM and KD2 = 25 nM. The half-maximal inhibitory concentration for natLu-BQ7876 was 59 nM that is equal to 61 nM for natLu-PSMA-617. Cellular processing of [177Lu]Lu-BQ7876 was accompanied by slow internalization. [177Lu]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 ± 3%ID/g) did not differ significantly from tumor uptake (9 ± 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen. Discussion Biodistribution studies in mice demonstrated that targeting properties of [177Lu]Lu-BQ7876 are not inferior to properties of [177Lu]Lu-PSMA-617, but do not offer any decisive advantages.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Kamila Seitova
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vitalina Bodenko
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Siebinga H, Privé BM, Peters SMB, Nagarajah J, Dorlo TPC, Huitema ADR, de Wit‐van der Veen BJ, Hendrikx JJMA. Population pharmacokinetic dosimetry model using imaging data to assess variability in pharmacokinetics of 177 Lu-PSMA-617 in prostate cancer patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:1060-1071. [PMID: 36760133 PMCID: PMC10431047 DOI: 10.1002/psp4.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 02/11/2023] Open
Abstract
Studies to evaluate and optimize [177 Lu]Lu-PSMA treatment focus primarily on individual patient data. A population pharmacokinetic (PK) dosimetry model was developed to explore the potential of using imaging data as input for population PK models and to characterize variability in organ and tumor uptake of [177 Lu]Lu-PSMA-617 in patients with low volume metastatic prostate cancer. Simulations were performed to identify the effect of dose adjustments on absorbed doses in salivary glands and tumors. A six-compartment population PK model was developed, consisting of blood, salivary gland, kidneys, liver, tumor, and a lumped compartment representing other tissue (compartment 1-6, respectively), based on data from 10 patients who received [177 Lu]Lu-PSMA-617 (2 cycles, ~ 3 and ~ 6 GBq). Data consisted of radioactivity levels (decay corrected) in blood and tissues (9 blood samples and 5 single photon emission computed tomography/computed tomography scans). Observations in all compartments were adequately captured by individual model predictions. Uptake into salivary glands was saturable with an estimated maximum binding capacity (Bmax ) of 40.4 MBq (relative standard error 12.3%) with interindividual variability (IIV) of 59.3% (percent coefficient of variation [CV%]). IIV on other PK parameters was relatively minor. Tumor volume was included as a structural effect on the tumor uptake rate constant (k15 ), where a two-fold increase in tumor volume resulted in a 1.63-fold increase in k15 . In addition, interoccasion variability on k15 improved the model fit (43.5% [CV%]). Simulations showed a reduced absorbed dose per unit administered activity for salivary glands after increasing radioactivity dosing from 3 to 6 GBq (0.685 Gy/GBq vs. 0.421 Gy/GBq, respectively). All in all, population PK modeling could help to improve future radioligand therapy research.
Collapse
Affiliation(s)
- Hinke Siebinga
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Nuclear MedicineThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Bastiaan M. Privé
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Steffie M. B. Peters
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - James Nagarajah
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Thomas P. C. Dorlo
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Jeroen J. M. A. Hendrikx
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Nuclear MedicineThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
13
|
Cem Kusdemir B, Kozgus Guldu O, Yurt Kilcar A, Ilker Medine E. Preparation and in vitro investigation of prostate-specific membrane antigen targeted Lycopene loaded niosomes on prostate cancer cells. Int J Pharm 2023; 640:123013. [PMID: 37149111 DOI: 10.1016/j.ijpharm.2023.123013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
In this study, it's aimed to develop prostate-specific membrane antigen (PSMA) targeted niosomes with a multifunctional theranostic approach. With this aim, PSMA-targeted niosomes were synthesized by a thin-film hydration method followed by bath sonication. Drug-loaded niosomes (Lyc-ICG-Nio) were coated with DSPE-PEG-COOH (Lyc-ICG-Nio-PEG) and subsequently anti-PSMA antibody conjugated to niosomes (Lyc-ICG-Nio-PSMA) with amide bond formation. Dynamic light scattering (DLS) analysis showed that the hydrodynamic diameter of Lyc-ICG-Nio-PSMA was approximately 285 nm and it was found with transmission electron microscopy (TEM) that the niosome formulation was spherical. Encapsulation efficiency was 45% and %65 upon dual encapsulation of ICG and lycopene. The results of fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated that PEG coating and antibody coupling were successfully done. In vitro studies showed that cell viability decreased when lycopene was entrapped into niosomes applied while the total apoptotic cell population rose slightly. When Lyc-ICG-Nio-PSMA was applied to cells, decreased cell viability and enhanced apoptotic effect were seen compared to those for Lyc-ICG-Nio. In conclusion, it was demonstrated that targeted niosomes displayed improved cellular association and decreased cell viability on PSMA+ cells.
Collapse
Affiliation(s)
- Bekir Cem Kusdemir
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova-Izmir, 35100 Turkey
| | - Ozge Kozgus Guldu
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Bornova-Izmir, 35100 Turkey.
| | - Ayfer Yurt Kilcar
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Bornova-Izmir, 35100 Turkey.
| | - Emin Ilker Medine
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova-Izmir, 35100 Turkey; Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Bornova-Izmir, 35100 Turkey
| |
Collapse
|
14
|
Parker D, Zambelli J, Lara MK, Wolf TH, McDonald A, Lee E, Abou-Elkacem L, Gordon EJ, Baum RP. Case Report: Long-term complete response to PSMA-targeted radioligand therapy and abiraterone in a metastatic prostate cancer patient. Front Oncol 2023; 13:1192792. [PMID: 37188199 PMCID: PMC10175697 DOI: 10.3389/fonc.2023.1192792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Despite decades of research and clinical trials, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and typically fatal. Current treatments may provide modest increases in progression-free survival but can come with significant adverse effects and are disaggregated from the diagnostic imaging needed to fully assess the spread of metastatic disease. A theranostic approach, using radiolabeled ligands that target the cell surface protein PSMA, simplifies the visualization and disease treatment process by enabling both to use similar agents. Here, we describe an exemplary case wherein a gentleman in his 70s with mCRPC on diagnosis was treated with 177Lu-PSMA-617 and abiraterone, and remains disease-free to date, over five years later.
Collapse
Affiliation(s)
- David Parker
- Private Health Management, Los Angeles, CA, United States
| | | | | | | | - Amber McDonald
- Private Health Management, Los Angeles, CA, United States
| | - Erica Lee
- Private Health Management, Los Angeles, CA, United States
| | | | - Eva J. Gordon
- Private Health Management, Los Angeles, CA, United States
| | | |
Collapse
|
15
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
16
|
Chen Z, Krishnamachary B, Mironchik Y, Ray Banerjee S, Pomper MG, Bhujwalla ZM. PSMA-specific degradable dextran for multiplexed immunotargeted siRNA therapeutics against prostate cancer. NANOSCALE 2022; 14:14014-14022. [PMID: 36093754 PMCID: PMC9844541 DOI: 10.1039/d2nr02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Small interfering RNA (siRNA) is ideal for gene silencing through a sequence-specific RNA interference process. The redundancy and complexity of molecular pathways in cancer create a need for multiplexed targeting that can be achieved with multiplexed siRNA delivery. Here, we delivered multiplexed siRNA with a PSMA-targeted biocompatible dextran nanocarrier to downregulate CD46 and PD-L1 in PSMA expressing prostate cancer cells. The selected gene targets, PD-L1 and CD46, play important roles in the escape of cancer cells from immune surveillance. PSMA, abundantly expressed by prostate cancer cells, allowed the prostate cancer-specific delivery of the nanocarrier. The nanocarrier was modified with acid cleavable acetal bonds for a rapid release of siRNA. Cell imaging and flow cytometry studies confirmed the PSMA-specific delivery of CD46 and PD-L1 siRNA to high PSMA expressing PC-3 PIP cells. Immunoblot, qRT-PCR and flow cytometry methods confirmed the downregulation of CD46 and PD-L1 following treatment with multiplexed siRNA.
Collapse
Affiliation(s)
- Zhihang Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Balaji Krishnamachary
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Yelena Mironchik
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Zaver M Bhujwalla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Tubre T, Hacking S, Alexander A, Brickman A, Delalle I, Elinzano H, Donahue JE. Prostate-Specific Membrane Antigen Expression in Meningioma: A Promising Theranostic Target. J Neuropathol Exp Neurol 2022; 81:1008-1017. [PMID: 36179256 PMCID: PMC9677239 DOI: 10.1093/jnen/nlac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Meningioma is the most common intracranial neoplasm, yet there is no effective therapy for recurrent/refractory meningiomas after surgery and radiation. Prostate-specific membrane antigen (PSMA) is an enzyme upregulated on endothelial cells of multiple neoplasms and is being investigated as a theranostic target. Until now, PSMA has not been studied in meningiomas. We aimed to verify PSMA endothelial expression in meningiomas, detect tumor grade variability, and investigate the relationship of PSMA signal with tumor recurrence. We analyzed 96 archival meningiomas including 58 de novo and 38 recurrent specimens. All specimens were stained routinely and immunostained for CD31 and PSMA. Slides were scanned and analyzed producing raw data for images of PSMA, CD31, PSMA/CD31, and PSMA/vasculature. PSMA expression was seen within 98.9% of meningioma samples. In the total cohort, higher-grade tumors had increased expression of raw PSMA and PSMA/CD31, and PSMA/vasculature ratios compared to grade 1 tumors. PSMA expression and PSMA/vasculature ratios (p = 0.0015) were higher in recurrent versus de novo tumors among paired samples. ROC curves demonstrated PSMA/CD31, PSMA/vasculature, and raw CD31 as indicators of tumor recurrence. Thus, PSMA is expressed within endothelial cells of meningiomas, is increased with tumor grade and recurrence, and persists with prior irradiation.
Collapse
Affiliation(s)
- Teddi Tubre
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sean Hacking
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Abigail Alexander
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Arlen Brickman
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ivana Delalle
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Heinrich Elinzano
- Department of Neurology, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - John E Donahue
- Send correspondence to: John E. Donahue, MD, Department of Pathology and Laboratory Medicine, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA; E-mail:
| |
Collapse
|
18
|
Hu C, Dong L, Xue W, Pienta KJ. Prostate-Specific Membrane Antigen-Based PET Brings New Insights into the Management of Prostate Cancer. PET Clin 2022; 17:555-564. [PMID: 36153235 DOI: 10.1016/j.cpet.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Prostate cancer (PCa) is the third most common cancer diagnosed in the world. Since its first identification in 1987 and its first molecular cloning in 1993, prostate-specific membrane antigen (PSMA) has been developed as a theragnostic imaging biomarker and therapeutic agent for PCa. For metastatic castration-resistant PCa, PSMA-based PET imaging can be applied to the monitoring of disease and response assessment with PSMA-based therapeutics. This novel imaging modality is bringing new insights into diagnosis, stratification, and clinical decision-making and treatment.
Collapse
Affiliation(s)
- Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Kenneth J Pienta
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
19
|
Tariq A, McCart Reed AE, Morton A, Porten S, Vela I, Williams ED, Yaxley JW, Black PC, Roberts MJ. Urothelial Carcinoma and Prostate-specific Membrane Antigen: Cellular, Imaging, and Prognostic Implications. Eur Urol Focus 2022; 8:1256-1269. [PMID: 34429271 DOI: 10.1016/j.euf.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/17/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Staging, restaging, and surveillance of urothelial carcinoma (UC) is challenging due to suboptimal accuracy of standard of care imaging modalities. Prostate-specific membrane antigen (PSMA) imaging may serve to improve characterisation of UC. OBJECTIVE To appraise available literature regarding cellular, imaging, and prognostic implications of PSMA for UC. EVIDENCE ACQUISITION A systematic review was performed considering all available literature (including conference abstracts) published from 1990 to 2020 and reported according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines following registration in PROSPERO (CRD42020186744). All relevant texts relating to immunohistochemical analysis and PSMA-based imaging in UC were included and collated. Additionally, FOLH1 (gene encoding PSMA) expression according to The Cancer Genome Atlas (TCGA) database was analysed as well as according to consensus and TCGA molecular classification subtypes and subsequently compared with clinical outcomes. EVIDENCE SYNTHESIS PSMA expression across UC tumour tissue was heterogeneous (0-100%) but appeared to decrease with increased grade and stage. The TCGA analysis demonstrated loss of FOLH1 expression with increasing T stage (p = 0.0180) and N stage (p = 0.0269), and reduced FOLH1 expression was associated with worse disease-free survival. PSMA expression in UC neovasculature was variable but mostly increased (44-100%). Eleven reports of PSMA-based imaging for UC were identified, reporting on 18 patients. PSMA positron emission tomography (PET) imaging was positive in 17 out of 18 patients. The included literature review data were limited by mostly low-quality, retrospective studies. CONCLUSIONS Tissue PSMA, or FOLH1 expression, may inversely be associated with pathological and survival outcomes in localised UC. PSMA PET imaging may improve detection of metastatic disease and response to systemic therapy due to PSMA expression in neovasculature. Available evidence is limited; thus, larger, prospective studies are required to confirm early results and define populations that benefit most. PATIENT SUMMARY In this systematic review, we assess the potential role of prostate-specific membrane antigen in urothelial cancer. We found that its utility is in expression of blood vessels surrounding metastasis. We conclude that it may be beneficial in detecting metastasis and response to systemic therapies.
Collapse
Affiliation(s)
- Arsalan Tariq
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy E McCart Reed
- University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Andrew Morton
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sima Porten
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Ian Vela
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Department of Urology, Princess Alexandra Hospital, Brisbane, Queensland, Australia; Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - John W Yaxley
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Roberts
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Queensland, Australia; Department of Urology, Redcliffe Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
20
|
Rizzo A, Dall’Armellina S, Pizzuto DA, Perotti G, Zagaria L, Lanni V, Treglia G, Racca M, Annunziata S. PSMA Radioligand Uptake as a Biomarker of Neoangiogenesis in Solid Tumours: Diagnostic or Theragnostic Factor? Cancers (Basel) 2022; 14:4039. [PMID: 36011032 PMCID: PMC9406909 DOI: 10.3390/cancers14164039] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
Due to its overexpression on the surface of prostate cancer cells, prostate-specific membrane antigen (PSMA) is a relatively novel effective target for molecular imaging and radioligand therapy (RLT) in prostate cancer. Recent studies reported that PSMA is expressed in the neovasculature of various types of cancer and regulates tumour cell invasion as well as tumour angiogenesis. Several authors explored the role of diagnostic and therapeutic PSMA radioligands in various malignancies. In this narrative review, we describe the current status of the literature on PSMA radioligands' application in solid tumours other than prostate cancer to explore their potential role as diagnostic or therapeutic agents, with particular regard to the relevance of PSMA radioligand uptake as neoangiogenetic biomarker. Hence, a comprehensive review of the literature was performed to find relevant articles on the applications of PSMA radioligands in non-prostate solid tumours. Data on the general, methodological and clinical aspects of all included studies were collected. Forty full-text papers were selected for final review, 8 of which explored PSMA radioligand PET/CT performances in gliomas, 3 in salivary gland malignancies, 6 in thyroid cancer, 2 in breast cancer, 16 in renal cell carcinoma and 5 in hepatocellular carcinoma. In the included studies, PSMA radioligand PET showed promising performance in patients with non-prostate solid tumours. Further studies are needed to better define its potential role in oncological patients management, especially in those undergoing antineoangiogenic therapies, and to assess the efficacy of PSMA-RLT in this clinical context.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Sara Dall’Armellina
- Nuclear Medicine Unit, Department of Medical Sciences, AOU Città della Salute e della Scienza, University of Turin, 10134 Turin, Italy
| | - Daniele Antonio Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Germano Perotti
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Luca Zagaria
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Valerio Lanni
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giorgio Treglia
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
21
|
Chen J, Qi L, Tang Y, Tang G, Gan Y, Cai Y. Current role of prostate-specific membrane antigen-based imaging and radioligand therapy in castration-resistant prostate cancer. Front Cell Dev Biol 2022; 10:958180. [PMID: 36036001 PMCID: PMC9411749 DOI: 10.3389/fcell.2022.958180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a therapy-resistant and lethal form of prostate cancer as well as a therapeutic challenge. Prostate-specific membrane antigen (PSMA) has been proved as a promising molecular target for optimizing the theranostics for CRPC patients. When combined with PSMA radiotracers, novel molecular imaging techniques such as positron emission tomography (PET) can provide more accurate and expedient identification of metastases when compared with conventional imaging techniques. Based on the PSMA-based PET scans, the accurate visualization of local and disseminative lesions may help in metastasis-directed therapy. Moreover, the combination of 68Ga-labeled PSMA-based PET imaging and radiotherapy using PSMA radioligand therapy (RLT) becomes a novel treatment option for CRPC patients. The existing studies have demonstrated this therapeutic strategy as an effective and well-tolerated therapy among CRPC patients. PSMA-based PET imaging can accurately detect CRPC lesions and describe their molecular features with quantitative parameters, which can be used to select the best choice of treatments, monitor the response, and predict the outcome of RLT. This review discussed the current and potential role of PSMA‐based imaging and RLT in the diagnosis, treatment, and prediction of prognosis of CRPC.
Collapse
Affiliation(s)
- Jiaxian Chen
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lin Qi
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yongxiang Tang
- Department of PET Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Guyu Tang
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Gan
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- *Correspondence: Yu Gan, ; Yi Cai,
| | - Yi Cai
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- *Correspondence: Yu Gan, ; Yi Cai,
| |
Collapse
|
22
|
Antibody-Drug Conjugates in Uro-Oncology. Target Oncol 2022; 17:203-221. [PMID: 35567672 DOI: 10.1007/s11523-022-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Currently available treatment options for patients with refractory metastatic prostate, bladder, or kidney cancers are limited with the prognosis remaining poor. Advances in the pathobiology of tumors has led to the discovery of cancer antigens that may be used as the target for cancer treatment. Antibody-drug conjugates (ADCs) are a relatively new concept in cancer treatment that broaden therapeutic landscape. ADCs are examples of a 'drug delivery into the tumor' system composed of an antigen-directed antibody linked to a cytotoxic drug that may release cytotoxic components after binding to the antigen located on the surface of tumor cells. The clinical properties of drugs are influenced by every component of ADCs. Regarding uro-oncology, enfortumab vedotin (EV) and sacituzumab govitecan (SG) are currently registered for patients with locally advanced or metastatic urothelial cancer following previous treatment with an immune checkpoint inhibitor (iCPI; programmed death receptor-1 [PD-1] or programmed death-ligand 1 [PD-L1]) inhibitor) and platinum-containing chemotherapy. The EV-301 trial showed that EV significantly prolonged the overall survival compared with classic chemotherapy. The TROPHY-U-01 trial conducted to evaluate SG demonstrated promising results as regards the objective response rate and duration of response. The safety and efficacy of ADCs in monotherapy and polytherapy (mainly with iCPIs) for different cancer stages and tumor types are assessed in numerous ongoing clinical trials. The aim of this review is to present new molecular biomarkers, specific mechanisms of action, and ongoing clinical trials of ADCs in genitourinary cancers. In the expert discussion, we assess the place of ADCs in uro-oncology and discuss their clinical value.
Collapse
|
23
|
Mitri N, Rahme K, Fracasso G, Ghanem E. Human blood biocompatibility and immunogenicity of scFvD2B PEGylated gold nanoparticles. NANOTECHNOLOGY 2022; 33:315101. [PMID: 35417900 DOI: 10.1088/1361-6528/ac66ef] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Single chain variable D2B antibody fragments (scFvD2Bs) exhibit high affinity binding to prostate specific membrane antigens overexpressed in metastatic prostate cancer (PC). Conjugation of scFvD2B to gold nanoparticles (AuNPs) would enhance its stability and plasma half-life circulation to shuttle theranostic agents in PC. In this study, we synthesized PEGylated scFvD2B-AuNPs (AuNPs-scFvD2B-PEG) and tested their integrity, biocompatibility, and immunogenicity in freshly withdrawn human blood. Prior to blood incubation, Zeta potential measurements, UV-Vis spectroscopy, and dynamic light scattering (DLS) were used to assess the physicochemical properties of our nano-complexes in the presence or absence of PEGylation. A surface plasmon resonance band shift of 2 and 4 nm confirmed the successful coating for AuNPs-scFvD2B and AuNPs-scFvD2B-PEG, respectively. Likewise, DLS revealed a size increase of ∼3 nm for AuNPs-scFvD2B and ∼19 nm for AuNPs-scFvD2B-PEG. Zeta potential increased from -34 to -19 mV for AuNPs-scFvD2B and reached -3 mV upon PEGylation. Similar assessment measures were applied post-incubation in human blood with additional immunogenicity tests, such as hemolysis assay, neutrophil function test, and pyridine formazan extraction. Interestingly, grafting PEG chains on AuNPs-scFvD2B precluded the binding of blood plasma proteins and reduced neutrophil activation level compared with naked AuNPs-citrate counterparts. Most likely, a hydrated negative PEG cloud shielded the NPs rendering blood compatiblility with less than 10% hemolysis. In conclusion, the biocompatible AuNPs-scFvD2B-PEG presents promising characteristics for PC targeted therapy, with minimal protein adsorption affinity, low immunorecognition, and reduced hemolytic activity.
Collapse
Affiliation(s)
- Nadim Mitri
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| | | | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| |
Collapse
|
24
|
von Amsberg G, Alsdorf W, Karagiannis P, Coym A, Kaune M, Werner S, Graefen M, Bokemeyer C, Merkens L, Dyshlovoy SA. Immunotherapy in Advanced Prostate Cancer-Light at the End of the Tunnel? Int J Mol Sci 2022; 23:2569. [PMID: 35269712 PMCID: PMC8910587 DOI: 10.3390/ijms23052569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, "cold" tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor-immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Winfried Alsdorf
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Panagiotis Karagiannis
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Anja Coym
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Moritz Kaune
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Sergey A. Dyshlovoy
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| |
Collapse
|
25
|
Razmaria AA, Schoder H, Morris MJ. Advances in Prostate Cancer Imaging. Urol Oncol 2022. [DOI: 10.1007/978-3-030-89891-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Yuan W, Liu B, Sanda M, Wei R, Benicky J, Novakova Z, Barinka C, Goldman R. Glycoforms of human prostate-specific membrane antigen (PSMA) in human cells and prostate tissue. Prostate 2022; 82:132-144. [PMID: 34662441 PMCID: PMC9646948 DOI: 10.1002/pros.24254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION N-glycosylation is a ubiquitous and variable posttranslational modification that regulates physiological functions of secretory and membrane-associated proteins and the dysregulation of glycosylation pathways is often associated with cancer growth and metastasis. Prostate-specific membrane antigen (PSMA) is an established biomarker for prostate cancer imaging and therapy. METHODS Mass spectrometry was used to analyze the distribution of the site-specific glycoforms of PSMA in insect, human embryonic kidney, and prostate cancer cells, and in prostate tissue upon immunoaffinity enrichment. RESULTS While recombinant PSMA expressed in insect cells was decorated mainly by paucimannose and high mannose glycans, complex, hybrid, and high mannose glycans were detected in samples from human cells and tissue. We noted an interesting spatial distribution of the glycoforms on the PSMA surface-high mannose glycans were the dominant glycoforms at the N459, N476, and N638 sequons facing the plasma membrane, while the N121, N195, and N336 sites, located at the exposed apical PSMA domain, carried primarily complex glycans. The presence of high mannose glycoforms at the former sequons likely results from the limited access of enzymes of the glycosynthetic pathway required for the synthesis of the complex structures. In line with the limited accessibility of membrane-proximal sites, no glycosylation was observed at the N51 site positioned closest to the membrane. CONCLUSIONS Our study presents initial descriptive analysis of the glycoforms of PSMA observed in cell lines and in prostate tissue. It will hopefully stimulate further research into PSMA glycoforms in the context of tumor staging, noninvasive detection of prostate tumors, and the impact of glycoforms on physicochemical and enzymatic characteristics of PSMA in a tissue-specific manner.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Baoqin Liu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Renhuizi Wei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
| | - Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Georgetown University, Washington DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC, USA
| |
Collapse
|
27
|
Jiang J, Tang X, Pu Y, Yang Y, Yang C, Yang F, Tian Y, Li J, Sun H, Zhao S, Chen L. The Value of Multimodality PET/CT Imaging in Detecting Prostate Cancer Biochemical Recurrence. Front Endocrinol (Lausanne) 2022; 13:897513. [PMID: 35712249 PMCID: PMC9197252 DOI: 10.3389/fendo.2022.897513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) induced death is the predominant cause of cancer-related death among men in 48 countries. After radical treatment, biochemical recurrence has become an important factor for prognosis. The early detection and diagnosis of recurrent lesions are very helpful in guiding treatment and improving the prognosis. PET/CT is a promising method for early detection of lesions in patients with biochemical recurrence of prostate cancer. This article reviews the progress of the research on PET/CT in the PCa biochemical recurrence and aims to introduce new technologies and provide more direction for future research.
Collapse
Affiliation(s)
- Jie Jiang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Xiaoxia Tang
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yong Yang
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Fake Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yadong Tian
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Hua Sun
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
- *Correspondence: Long Chen, ; Hua Sun, ; Sheng Zhao,
| | - Sheng Zhao
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
- *Correspondence: Long Chen, ; Hua Sun, ; Sheng Zhao,
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan, China
- *Correspondence: Long Chen, ; Hua Sun, ; Sheng Zhao,
| |
Collapse
|
28
|
Mahmoudi E, Pirayesh E, Deevband MR, Amoui M, Rad MG, Ghorbani M. Patient-Specific Dosimetry in Radioligand Therapy (RLT) for Metastatic Prostate Cancer Using 177Lu-DKFZ-PSMA-617. Nucl Med Mol Imaging 2021; 55:237-244. [PMID: 34721716 DOI: 10.1007/s13139-021-00713-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose 177Lu-DKFZ-PSMA-617 is a promising treatment for patients with metastatic prostate cancer. Specific dosimetry for each patient is an important factor in planning the patient's treatment process. This study aimed to perform an image-based absorbed dose calculation for the treatment of metastatic prostate cancer with 177Lu-DKFZ-PSMA-617. Methods The individualized patient dosimetry calculations were based on whole-body planar scintigraphy images acquired in 10 patients with a mean age of 71.4 ± 6.07 years (range 63-85 years) at approximately 0-2 h, 4-6 h, 18-24 h, and 36-48 h after administration of the mean 6253 ± 826.4 MBq (range 5500-7400 MBq) of 177Lu-DKFZ-PSMA-617. Time-activity curves were generated for various organs. For count conversion to activities, calibration factors were calculated. Finally, the absorbed dose for an individual cycle was calculated using IDIAC-DOSE 2.1 software. Results On average, the calculated absorbed dose for the kidneys and salivary glands were 0.46 ± 0.09 mGy/MBq and 0.62 ± 0.07 mGy/MBq, respectively. Conclusions Based on the results, the177Lu-PSMA-617 therapy is a safe method for the treatment of castration-resistant prostate cancer patients. Large inter-individual variations in organ dose were found, demonstrating the need for patient-specific dosimetry and treatment planning.
Collapse
Affiliation(s)
- Elahe Mahmoudi
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Pirayesh
- Nuclear Medicine Department, Shohada-E-Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Deevband
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Nuclear Medicine Department, Shohada-E-Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Ghorbani
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy involves the genetic modification of the patient's own T cells so that they specifically recognize and destroy tumour cells. Considerable clinical success has been achieved using this technique in patients with lymphoid malignancies, but clinical studies that investigated treating solid tumours using this emerging technology have been disappointing. A number of developments might be able to increase the efficacy of CAR T cell therapy for treatment of prostate cancer, including improved trafficking to the tumour, techniques to overcome the immunosuppressive tumour microenvironment, as well as methods to enhance CAR T cell persistence, specificity and safety. Furthermore, CAR T cell therapy has the potential to be combined with other treatment modalities, such as androgen deprivation therapy, radiotherapy or chemotherapy, and could be applied as focal CAR T cell therapy for prostate cancer.
Collapse
|
30
|
Viglialoro R, Esposito E, Zanca R, Gessi M, Depalo T, Aghakhanyan G, Bartoli F, Sollini M, Erba PA. What to Trust, PSA or [ 68Ga]Ga-PSMA-11: Learn from Experience. Res Rep Urol 2021; 13:597-601. [PMID: 34447724 PMCID: PMC8384575 DOI: 10.2147/rru.s316446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
Brain metastases from prostate cancer typically occur in the more advanced stages of the disease. Clinically, the early diagnosis of visceral disease is crucial, impacting on patient’s management and prognosis. Although magnetic resonance imaging (MRI) is the modality of choice for the detection of brain metastases, it is not routinely performed in the surveillance of prostate cancer patients unless neurological manifestations appear. Prostate-specific membrane antigen (PSMA) is a glycoprotein, a membrane-bound metallopeptidase, overexpressed in more than 90% of prostate cancer cells. This molecular target is a suitable tissue biomarker for prostate cancer functional imaging. We present a case of a 73-year gentleman diagnosed with prostate adenocarcinoma and surgically treated (pT3bN1Mx, Gleason Score of 9) in February 2016. Subsequently, he underwent androgen deprivation therapy because of the occurrence of a bone metastasis. Between 2016 and January 2019 PSA levels were maintained under control. Starting from September 2019, it progressively raised up to 0.85 ng/mL with a doubling time of 3.3 months. Therefore, he performed a [68Ga]Ga-PSMA-11 PET/CT which showed a focal radiopharmaceutical uptake in the right temporal lobe corresponding to the presence of a rounded cystic lesion on brain MRI. The subsequent excisional biopsy diagnosed a prostate adenocarcinoma metastasis. PSMA expression has been reported in brain parenchyma after ischemic strokes and in some brain tumors including gliomas, meningiomas, and neurofibromas. In our case, the lack of symptoms and the relatively low PSA level raised questions about the nature of the lesion, posing the differential diagnosis between brain metastases and primary brain tumor. Finally, our case shows the capability of [68Ga]Ga-PSMA-11 PET/CT to detect metachronous distant brain metastases in a low biochemical recurrent asymptomatic prostate cancer patient, indicating that proper acquisition – from the vertex to thigh – should be always considered, regardless of the PSA level.
Collapse
Affiliation(s)
- Rita Viglialoro
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Enrica Esposito
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Roberta Zanca
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Marco Gessi
- Neuropathology Unit, Division of Pathology Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Tommaso Depalo
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Gayane Aghakhanyan
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Francesco Bartoli
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.,Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Centre, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
31
|
Ladurner M, Wieser M, Eigentler A, Seewald M, Dobler G, Neuwirt H, Kafka M, Heidegger I, Horninger W, Bektic J, Klocker H, Obrist P, Eder IE. Validation of Cell-Free RNA and Circulating Tumor Cells for Molecular Marker Analysis in Metastatic Prostate Cancer. Biomedicines 2021; 9:biomedicines9081004. [PMID: 34440208 PMCID: PMC8391593 DOI: 10.3390/biomedicines9081004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Since tissue material is often lacking in metastatic prostate cancer (mPCa), there is increasing interest in using liquid biopsies for treatment decision and monitoring therapy responses. The purpose of this study was to validate the usefulness of circulating tumor cells (CTCs) and plasma-derived cell-free (cf) RNA as starting material for gene expression analysis through qPCR. CTCs were identified upon prostate-specific membrane antigen and/or cytokeratin positivity after enrichment with ScreenCell (Westford, Massachusetts, USA) filters or the microfluidic ParsortixTM (Guildford, Surrey, United Kingdom) system. Overall, 50% (28/56) of the patients had ≥5 CTCs/7.5 mL of blood. However, CTC count did not correlate with Gleason score, serum PSA, or gene expression. Notably, we observed high expression of CD45 in CTC samples after enrichment, which could be successfully eliminated through picking of single cells. Gene expression in picked CTCs was, however, rather low. In cfRNA from plasma, on the other hand, gene expression levels were higher compared to those found in CTCs. Moreover, we found that PSA was significantly increased in plasma-derived cfRNA of mPCa patients compared to healthy controls. High PSA expression was also associated with poor overall survival, indicating that using cfRNA from plasma could be used as a valuable tool for molecular expression analysis.
Collapse
Affiliation(s)
- Michael Ladurner
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Manuel Wieser
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Andrea Eigentler
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Martin Seewald
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Gabriele Dobler
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Hannes Neuwirt
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Mona Kafka
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Wolfgang Horninger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Jasmin Bektic
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Peter Obrist
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Iris E. Eder
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
- Correspondence: ; Tel.: +43-512-504-24819; Fax: +43-512-504-24817
| |
Collapse
|
32
|
Lee SC, Ma JSY, Kim MS, Laborda E, Choi SH, Hampton EN, Yun H, Nunez V, Muldong MT, Wu CN, Ma W, Kulidjian AA, Kane CJ, Klyushnichenko V, Woods AK, Joseph SB, Petrassi M, Wisler J, Li J, Jamieson CAM, Schultz PG, Kim CH, Young TS. A PSMA-targeted bispecific antibody for prostate cancer driven by a small-molecule targeting ligand. SCIENCE ADVANCES 2021; 7:7/33/eabi8193. [PMID: 34380625 PMCID: PMC8357232 DOI: 10.1126/sciadv.abi8193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell-recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).
Collapse
Affiliation(s)
- Sung Chang Lee
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer S Y Ma
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Min Soo Kim
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eduardo Laborda
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sei-Hyun Choi
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eric N Hampton
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hwayoung Yun
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vanessa Nunez
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michelle T Muldong
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina N Wu
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna A Kulidjian
- Department of Orthopedic Surgery, Scripps MD Anderson Cancer Center, La Jolla, CA 92093, USA
| | - Christopher J Kane
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vadim Klyushnichenko
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ashley K Woods
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean B Joseph
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mike Petrassi
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Wisler
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jing Li
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christina A M Jamieson
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter G Schultz
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chan Hyuk Kim
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Travis S Young
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
33
|
Sarikaya I, Alqallaf A, Sarikaya A, Baqer A, Kazem N. Renal Cortical Scarring: 68Ga-PSMA-11 PET versus 99mTc-DMSA Scan in a Case with Pyelonephritis. J Nucl Med Technol 2021; 50:49-53. [PMID: 34330812 DOI: 10.2967/jnmt.121.262415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
We previously reported 68Ga-prostate‑specific membrane antigen (PSMA)-11 and 99mTcdimercaptosuccinic acid (DMSA) images of the 1st case of our prospective research comparing renal PSMA PET to DMSA scan in adult patients with pyelonephritis. Here, we present renal cortical PSMA PET and DMSA images of our 2nd patient with chronic recurring pyelonephritis which demonstrated renal parenchymal defects secondary to scarring in the kidney.
Collapse
|
34
|
Evolving Castration Resistance and Prostate Specific Membrane Antigen Expression: Implications for Patient Management. Cancers (Basel) 2021; 13:cancers13143556. [PMID: 34298770 PMCID: PMC8307676 DOI: 10.3390/cancers13143556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease, despite multiple novel treatment options. The role of prostate-specific membrane antigen (PSMA) in the process of mCRPC development has long been underestimated. During the last years, a new understanding of the underlying molecular mechanisms of rising PSMA expression and its association with disease progression has emerged. Accurate understanding of these complex interactions is indispensable for a precise diagnostic process and ultimately successful treatment of advanced prostate cancer. The combination of different novel therapeutics such as androgen deprivation agents, 177LU-PSMA radioligand therapy and PARP inhibitors promises a new kind of efficacy. In this review, we summarize the current knowledge about the most relevant molecular mechanisms around PSMA in mCRPC development and how they can be implemented in mCRPC management.
Collapse
|
35
|
Alghazo O, Eapen R, Koschel S, Cumberbatch M, Buteau J, Loh R, Lawrentschuk N, Murphy DG. The application of theranostics in different stages of prostate cancer. Future Oncol 2021; 17:3637-3644. [PMID: 34227404 DOI: 10.2217/fon-2020-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the remarkable achievements in treating metastatic prostate cancer over the last two decades, castrate-resistant status is still considered the lethal stage of the disease. Theranostics combines a targeting compound (ligand) with a therapeutic radioisotope (radioactive particle) injected into the blood to target the cancer cells. The most studied radioligand is 177Lu-PSMA-617, which targets PSMA, a protein found in prostate cancer cells. This new approach has shown promising results in treating metastatic castration-resistant prostate cancer. Currently, many trials are using PSMA-targeting radioligands in combination with conventional therapies in advanced prostate cancer or even in the earlier stages of the disease. Other preclinical trials are exploring the possibility of using newer ligands or radioisotopes to treat prostate cancer to increase the specificity and efficacy of this treatment.
Collapse
Affiliation(s)
- Omar Alghazo
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Prostate Cancer Theranostics & Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia.,Urology Division, Clinical Sciences Department, Yarmouk University, Irbid 21163, Jordan
| | - Renu Eapen
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Prostate Cancer Theranostics & Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Samantha Koschel
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Marcus Cumberbatch
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Department of Academic Urology, University of Sheffield, Sheffield, UK
| | - James Buteau
- Prostate Cancer Theranostics & Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Molecular Imaging & Nuclear Medicine Therapeutics, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Rebecca Loh
- Prostate Cancer Theranostics & Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Prostate Cancer Theranostics & Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Department of Urology, Royal Melbourne Hospital, Melbourne 3052, Australia.,E J Whitten Prostate Cancer Research Centre, Epworth Healthcare, Victoria 3121, Australia
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Prostate Cancer Theranostics & Imaging Centre of Excellence, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| |
Collapse
|
36
|
Ullevig SL, Bacich DJ, Gutierrez JM, Balarin A, Lobitz CA, O'Keefe DS, Liss MA. Feasibility of dietary folic acid reduction intervention for men on active surveillance for prostate cancer. Clin Nutr ESPEN 2021; 44:270-275. [PMID: 34330478 DOI: 10.1016/j.clnesp.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Fortification of the US food supply has increased folic acid intake and resulted in a concomitant decrease in neural tube defects in women. However, a body evidence supports the hypothesis that increased circulating folate levels due to excessive dietary or supplemental folic acid may be harmful for men with prostate cancer. Therefore, this pilot study aimed to investigate the feasibility of a reduced folic acid dietary intervention in men on an active surveillance monitoring program for prostate cancer. METHODS Men with low-grade prostate cancer enrolled into a 12-week dietary folic acid reduction diet. Primary outcome was red blood cell (RBC) folate reduction at 12 weeks. Other outcomes include serum folate, homocysteine, and vitamin B12 levels. The number of patients who complete the trial and reasons for disenrollment or dropout were also assessed. RESULTS Twenty-eight participants were enrolled into the dietary intervention study. Six participants withdrew from the study and a total of 21 participants completed all baseline and week 12 biochemical assessments. Only 18 participants completed all dietary questionnaires. Participants withdrew from the study due to difficulty with the diet or personal reasons. A substantial reduction was noted in serum folate (p < 0.007), RBC folate (p < 0.001) and dietary consumption of folic acid from foods (p = 0.003) and supplements (p = 0.003) without reduction in serum homocysteine or vitamin B12. Although an overall decrease in PSA from baseline to twelve weeks was found, the reduction was not significant (-3.55 ng/mL, p = 0.197). CONCLUSIONS This phase 1 feasibility study reduced dietary folic acid intake from food and supplements and successfully lowered serum and RBC folate without resulting harmful effects. Data from this study supports future intervention trials with a larger prostate cancer active surveillance population and has the potential to reduce prostate cancer progression. There are no interventions to reduce progression of prostate cancer in man on active surveillance.
Collapse
Affiliation(s)
- Sarah L Ullevig
- College for Health, Community and Policy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Dean J Bacich
- Department of Urology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78249, United States
| | - Jose M Gutierrez
- Department of Urology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78249, United States
| | - Ashton Balarin
- College for Health, Community and Policy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - C Austin Lobitz
- College for Health, Community and Policy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Denise S O'Keefe
- Department of Urology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78249, United States
| | - Michael A Liss
- Department of Urology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78249, United States; College of Pharmacy, University of Texas at Austin, 110 Inner Campus Drive, Austin, TX 78705, United States.
| |
Collapse
|
37
|
Vasseur A, Kiavue N, Bidard F, Pierga J, Cabel L. Clinical utility of circulating tumor cells: an update. Mol Oncol 2021; 15:1647-1666. [PMID: 33289351 PMCID: PMC8169442 DOI: 10.1002/1878-0261.12869] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
The prognostic role of circulating tumor cells (CTCs) has been clearly demonstrated in many types of cancer. However, their roles in diagnostic and treatment strategies remain to be defined. In this review, we present an overview of the current clinical validity of CTCs in nonmetastatic and metastatic cancer, and the main studies or concepts investigating the clinical utility of CTCs. In particular, we focus on breast, lung, colorectal, and prostate cancer. Two major topics concerning the clinical utility of CTC are discussed: treatment based on CTC count or CTC variations, and treatment based on the molecular characteristics of CTCs. Although some of these studies are inconclusive, many are still ongoing, and their results could help to define the role of CTCs in the management of cancers. A summary of published or ongoing phase II-III trials is also presented.
Collapse
Affiliation(s)
- Antoine Vasseur
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - Nicolas Kiavue
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - François‐Clément Bidard
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- UVSQParis‐Saclay UniversityFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| | - Jean‐Yves Pierga
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
- Paris UniversityFrance
| | - Luc Cabel
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| |
Collapse
|
38
|
Chall A, Stagg J, Mixson A, Gato E, Quirino RL, Sittaramane V. Ablation of cells in mice using antibody-functionalized multiwalled carbon nanotubes (Ab-MWCNTs) in combination with microwaves. NANOTECHNOLOGY 2021; 32:195102. [PMID: 33540388 DOI: 10.1088/1361-6528/abe32a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This is a proof-of-principle study on the combination of microwaves and multiwalled carbon nanotubes to induce in vivo, localized hyperthermic ablation of cells as a potential methodology for the treatment of localized tumors. Compared to conventional methods, the proposed approach can create higher temperatures in a rapid and localized fashion, under low radiation levels, eliminating some of the unwanted side effects. Following successful ablation of cancer cells in cell culture and zebrafish tumor-xenograft models, it is hypothesized that a cancer treatment can be developed using safe microwave irradiation for selective ablation of tumor cells in vivo using carbon nanotube-Antibody (CNT-Ab) conjugates as a targeting agent. In this study, mice were used as an animal model for the optimization of the proposed microwave treatment strategy. The safe dose of CNT-Ab and microwave radiation levels for mice were determined. Further, CNT-Ab distribution and toxicology in mice were qualitatively determined for a time span of two weeks following microwave hyperthermia. The results indicate no toxicity associated with the CNT-Ab in the absence of microwaves. CNTs are only found in the proximity of the site of injection and have been shown to effectively cause hyperthermia induced necrosis upon exposure to microwaves with no noticeable damage to other tissues that are not in direct contact with the CNT-Ab. To understand the cellular immune response towards CNT-Abs, transgenic zebrafish with fluorescently labeled macrophages and neutrophils were used to assay for their ability to phagocytize CNT-Ab. Our results indicate that macrophages and neutrophils were able to actively phagocytose CNT-Abs shortly after injection. Taken together, this is the first study to show that CNTs can be used in combination with microwaves to cause targeted ablation of cells in mice without any side effects, which would be ideal for cancer therapies.
Collapse
Affiliation(s)
- Amy Chall
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - John Stagg
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Andrew Mixson
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Eric Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Rafael L Quirino
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, United States of America
| |
Collapse
|
39
|
Ceci F, Oprea-Lager DE, Emmett L, Adam JA, Bomanji J, Czernin J, Eiber M, Haberkorn U, Hofman MS, Hope TA, Kumar R, Rowe SP, Schwarzenboeck SM, Fanti S, Herrmann K. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging 2021; 48:1626-1638. [PMID: 33604691 PMCID: PMC8113168 DOI: 10.1007/s00259-021-05245-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
RATIONALE The development of consensus guidelines for interpretation of Prostate-Specific Membrane Antigen (PSMA)-Positron Emission Tomography (PET) is needed to provide more consistent reports in clinical practice. The standardization of PSMA-PET interpretation may also contribute to increasing the data reproducibility within clinical trials. Finally, guidelines in PSMA-PET interpretation are needed to communicate the exact location of findings to referring physicians, to support clinician therapeutic management decisions. METHODS A panel of worldwide experts in PSMA-PET was established. Panelists were selected based on their expertise and publication record in the diagnosis or treatment of PCa, in their involvement in clinical guidelines and according to their expertise in the clinical application of radiolabeled PSMA inhibitors. Panelists were actively involved in all stages of a modified, nonanonymous, Delphi consensus process. RESULTS According to the findings obtained by modified Delphi consensus process, panelist recommendations were implemented in a structured report for PSMA-PET. CONCLUSIONS The E-PSMA standardized reporting guidelines, a document supported by the European Association of Nuclear Medicine (EANM), provide consensus statements among a panel of experts in PSMA-PET imaging, to develop a structured report for PSMA-PET in prostate cancer and to harmonize diagnostic interpretation criteria.
Collapse
Affiliation(s)
- Francesco Ceci
- Nuclear Medicine, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Daniela E Oprea-Lager
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Louise Emmett
- St. Vincent's Clinical School, University of New South Wales, Kensington, NSW, Australia
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
| | - Judit A Adam
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jamshed Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Matthias Eiber
- School of Medicine, Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael S Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Steven P Rowe
- Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| |
Collapse
|
40
|
Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021; 11:858-873. [PMID: 33811121 DOI: 10.1158/2159-8290.cd-20-1311] [Citation(s) in RCA: 444] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Over the past 10 years, circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) have received enormous attention as new biomarkers and subjects of translational research. Although both biomarkers are already used in numerous clinical trials, their clinical utility is still under investigation with promising first results. Clinical applications include early cancer detection, improved cancer staging, early detection of relapse, real-time monitoring of therapeutic efficacy, and detection of therapeutic targets and resistance mechanisms. Here, we propose a conceptual framework of CTC and ctDNA assays and point out current challenges of CTC and ctDNA research, which might structure this dynamic field of translational cancer research. SIGNIFICANCE: The analysis of blood for CTCs or cell-free nucleic acids called "liquid biopsy" has opened new avenues for cancer diagnostics, including early detection of tumors, improved risk assessment and staging, as well as early detection of relapse and monitoring of tumor evolution in the context of cancer therapies.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France. .,CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
41
|
Lawhn-Heath C, Salavati A, Behr SC, Rowe SP, Calais J, Fendler WP, Eiber M, Emmett L, Hofman MS, Hope TA. Prostate-specific Membrane Antigen PET in Prostate Cancer. Radiology 2021; 299:248-260. [PMID: 33787338 DOI: 10.1148/radiol.2021202771] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radiopharmaceuticals are playing a large role at the time of initial staging and biochemical recurrence for localizing prostate cancer, as well as in other emerging clinical settings. PSMA PET has demonstrated increased detection rate compared with conventional imaging and has been shown to change management plans in a substantial percentage of cases. The aims of this narrative review are to highlight the development and clinical impact of PSMA PET radiopharmaceuticals, to compare PSMA to other agents such as fluorine 18 fluciclovine and carbon 11 choline, and to highlight some of the individual PSMA PET agents that have contributed to the advancement of prostate cancer imaging.
Collapse
Affiliation(s)
- Courtney Lawhn-Heath
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Ali Salavati
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Spencer C Behr
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Steven P Rowe
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Jeremie Calais
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Wolfgang P Fendler
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Mattias Eiber
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Louise Emmett
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Michael S Hofman
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Thomas A Hope
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| |
Collapse
|
42
|
Felber VB, Valentin MA, Wester HJ. Design of PSMA ligands with modifications at the inhibitor part: an approach to reduce the salivary gland uptake of radiolabeled PSMA inhibitors? EJNMMI Radiopharm Chem 2021; 6:10. [PMID: 33638060 PMCID: PMC7910394 DOI: 10.1186/s41181-021-00124-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate whether modifications of prostate-specific membrane antigen (PSMA)-targeted radiolabeled urea-based inhibitors could reduce salivary gland uptake and thus improve tumor-to-salivary gland ratios, several analogs of a high affinity PSMA ligand were synthesized and evaluated in in vitro and in vivo studies. METHODS Binding motifs were synthesized 'on-resin' or, when not practicable, in solution. Peptide chain elongations were performed according to optimized standard protocols via solid-phase peptide synthesis. In vitro experiments were performed using PSMA+ LNCaP cells. In vivo studies as well as μSPECT/CT scans were conducted with male LNCaP tumor xenograft-bearing CB17-SCID mice. RESULTS PSMA ligands with A) modifications within the central Zn2+-binding unit, B) proinhibitor motifs and C) substituents & bioisosteres of the P1'-γ-carboxylic acid were synthesized and evaluated. Modifications within the central Zn2+-binding unit of PSMA-10 (Glu-urea-Glu) provided three compounds. Thereof, only natLu-carbamate I (natLu-3) exhibited high affinity (IC50 = 7.1 ± 0.7 nM), but low tumor uptake (5.31 ± 0.94% ID/g, 1 h p.i. and 1.20 ± 0.55% ID/g, 24 h p.i.). All proinhibitor motif-based ligands (three in total) exhibited low binding affinities (> 1 μM), no notable internalization and very low tumor uptake (< 0.50% ID/g). In addition, four compounds with P1'-ɣ-carboxylate substituents were developed and evaluated. Thereof, only tetrazole derivative natLu-11 revealed high affinity (IC50 = 16.4 ± 3.8 nM), but also this inhibitor showed low tumor uptake (3.40 ± 0.63% ID/g, 1 h p.i. and 0.68 ± 0.16% ID/g, 24 h p.i.). Salivary gland uptake in mice remained at an equally low level for all compounds (between 0.02 ± 0.00% ID/g and 0.09 ± 0.03% ID/g), wherefore apparent tumor-to-submandibular gland and tumor-to-parotid gland ratios for the modified peptides were distinctly lower (factor 8-45) than for [177Lu]Lu-PSMA-10 at 24 h p.i. CONCLUSIONS The investigated compounds could not compete with the in vivo characteristics of the EuE-based PSMA inhibitor [177Lu]Lu-PSMA-10. Although two derivatives (3 and 11) were found to exhibit high affinities towards LNCaP cells, tumor uptake at 24 h p.i. was considerably low, while uptake in salivary glands remained unaffected. Optimization of the established animal model should be envisaged to enable a clear identification of PSMA-targeting radioligands with improved tumor-to-salivary gland ratios in future studies.
Collapse
Affiliation(s)
- Veronika Barbara Felber
- Technical University of Munich, Chair of Pharmaceutical Radiochemistry, Walther-Meißner-Str. 3, 85748, Garching, Germany.
| | - Manuel Amando Valentin
- Technical University of Munich, Chair of Pharmaceutical Radiochemistry, Walther-Meißner-Str. 3, 85748, Garching, Germany
| | - Hans-Jürgen Wester
- Technical University of Munich, Chair of Pharmaceutical Radiochemistry, Walther-Meißner-Str. 3, 85748, Garching, Germany
| |
Collapse
|
43
|
Juzeniene A, Stenberg VY, Bruland ØS, Larsen RH. Preclinical and Clinical Status of PSMA-Targeted Alpha Therapy for Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:779. [PMID: 33668474 PMCID: PMC7918517 DOI: 10.3390/cancers13040779] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Bone, lymph node, and visceral metastases are frequent in castrate-resistant prostate cancer patients. Since such patients have only a few months' survival benefit from standard therapies, there is an urgent need for new personalized therapies. The prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer and is a molecular target for imaging diagnostics and targeted radionuclide therapy (theragnostics). PSMA-targeted α therapies (PSMA-TAT) may deliver potent and local radiation more selectively to cancer cells than PSMA-targeted β- therapies. In this review, we summarize both the recent preclinical and clinical advances made in the development of PSMA-TAT, as well as the availability of therapeutic α-emitting radionuclides, the development of small molecules and antibodies targeting PSMA. Lastly, we discuss the potentials, limitations, and future perspectives of PSMA-TAT.
Collapse
Affiliation(s)
- Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
- Nucligen, Ullernchausséen 64, 0379 Oslo, Norway;
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
| | - Øyvind Sverre Bruland
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | |
Collapse
|
44
|
Deegen P, Thomas O, Nolan-Stevaux O, Li S, Wahl J, Bogner P, Aeffner F, Friedrich M, Liao MZ, Matthes K, Rau D, Rattel B, Raum T, Kufer P, Coxon A, Bailis JM. The PSMA-targeting Half-life Extended BiTE Therapy AMG 160 has Potent Antitumor Activity in Preclinical Models of Metastatic Castration-resistant Prostate Cancer. Clin Cancer Res 2021; 27:2928-2937. [DOI: 10.1158/1078-0432.ccr-20-3725] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
|
45
|
Bois F, Noirot C, Dietemann S, Mainta IC, Zilli T, Garibotto V, Walter MA. [ 68Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:349-374. [PMID: 33329937 PMCID: PMC7724278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Imaging of the prostate-specific membrane antigen (PSMA) has become an important tool for managing patients with recurrent prostate cancer, and one of the most frequently employed radiopharmaceuticals is [68Ga]Ga-PSMA-11. Herein, we summarize the preclinical development and the clinical applications of [68Ga]Ga-PSMA-11 and present side-by-side comparisons with other radiopharmaceuticals or imaging modalities, in order to assist imagers and clinicians in recommending, performing, and interpreting the results of [68Ga]Ga-PSMA-11 PET scans in patients with prostate cancer.
Collapse
Affiliation(s)
- Frédéric Bois
- Division of Nuclear Medicine, Diagnostic Department, University Hospital of GenevaGeneva, Switzerland
| | - Camille Noirot
- Division of Nuclear Medicine, Diagnostic Department, University Hospital of GenevaGeneva, Switzerland
| | - Sébastien Dietemann
- Division of Nuclear Medicine, Diagnostic Department, University Hospital of GenevaGeneva, Switzerland
| | - Ismini C Mainta
- Division of Nuclear Medicine, Diagnostic Department, University Hospital of GenevaGeneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Oncology Department, University Hospital of GenevaGeneva, Switzerland
- Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine, Diagnostic Department, University Hospital of GenevaGeneva, Switzerland
- Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Martin A Walter
- Division of Nuclear Medicine, Diagnostic Department, University Hospital of GenevaGeneva, Switzerland
- Faculty of Medicine, University of GenevaGeneva, Switzerland
- Center for Biomedical Imaging (CIBM)Lausanne, Switzerland
| |
Collapse
|
46
|
Snow H, Hazell S, Francis N, Mohammed K, O'Neill S, Davies E, Mansfield D, Messiou C, Hujairi N, Nicol D, Harrington K, Smith M. Prostate-specific membrane antigen expression in melanoma metastases. J Cutan Pathol 2020; 47:1115-1122. [PMID: 32529651 DOI: 10.1111/cup.13774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) is a prostatic epithelial protein that is used as a radiotracer (68Ga-PSMA-11) for prostate cancer staging. PSMA-PET/CT (positron emission tomography/computed tomography) performed for prostate cancer has been observed to detect melanoma metastases. The aim of this study was to investigate the performance of PSMA immunohistochemistry on resected melanoma metastases to explore its use as a diagnostic imaging biomarker for melanoma. METHODS A total of 41 specimens with stage III/IV melanoma were stained with PSMA immunohistochemistry. All specimens required both disease and control regions. Two pathologists scored the specimens and a receiver operating characteristic (ROC) curve was plotted. Western blot and multiplex immunofluorescence were also performed. RESULTS The area under the ROC curve was 0.82, suggesting that PSMA has excellent discriminatory power in melanoma metastases. Sensitivity is 82.9% and specificity 73.2%. Immunohistochemistry and Western blot reveal that PSMA staining in melanoma consistently and most intensely occurs in tumor neovasculature. Multiplex immunofluorescence shows that melanocytes may also weakly express PSMA. CONCLUSION The performance of PSMA immunohistochemistry in melanoma metastases contrasts with that reported in prostate cancer studies. This study indicates that PSMA shows promise for use as a novel biomarker in melanoma and justifies further research in the clinical setting with potential as a PET/CT radiotracer and intraoperative fluorescence marker for melanoma.
Collapse
Affiliation(s)
- Hayden Snow
- Department of Academic Surgery, Melanoma and Sarcoma, The Royal Marsden NHS Foundation Trust, London, UK
| | - Stephen Hazell
- Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Nicholas Francis
- North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Kabir Mohammed
- Clinical Research and Development Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Stephanie O'Neill
- Department of Academic Surgery, Melanoma and Sarcoma, The Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Davies
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - David Mansfield
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Christina Messiou
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- Department of Diagnostic Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Nabil Hujairi
- Department of Diagnostic Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - David Nicol
- Department of Academic Surgery, Urology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Kevin Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Myles Smith
- Department of Academic Surgery, Melanoma and Sarcoma, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
47
|
Wang CY, Lin BL, Chen CH. Targeted drug delivery using an aptamer against shared tumor-specific peptide antigen of MAGE-A3. Cancer Biol Ther 2020; 22:12-18. [PMID: 33249980 DOI: 10.1080/15384047.2020.1833156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We developed a DNA aptamer, Ap52, against the shared tumor-specific MAGE-A3111-125 peptide antigen that was used to target multiple types of cancer cells. Here we report the in vivo study of mice implanted with pancreatic tumor cells AsPC-1, which demonstrates accumulation of phosphorothioate-modified Ap52 (ThioAp52) at the xenograft tumor following either intravenous or in situ injection. When complexed with antitumor drug doxorubicin (Dox), ThioAp52 achieves targeted delivery to four types of cancer cells, including breast, oral, pancreatic, and skin. Image analysis shows that ThioAp52-Dox complex selectively enters cancer cells, while free Dox is taken up by all cell lines. The cytotoxicity of ThioAp52-Dox for cancer cells is enhanced as compared to that for the corresponding normal/noncancerous cells. These results indicate that this aptamer against shared tumor-specific antigen can be a potential delivery vehicle for therapeutics to treat multiple cancers.
Collapse
Affiliation(s)
- Chin-Yu Wang
- Genomics Research Center, Academia Sinica , Taipei, Taiwan
| | - Bai-Ling Lin
- Genomics Research Center, Academia Sinica , Taipei, Taiwan
| | | |
Collapse
|
48
|
Mínguez Gabiña P, Roeske JC, Mínguez R, Rodeño E, Gómez de Iturriaga A. Microdosimetry-based determination of tumour control probability curves for treatments with 225Ac-PSMA of metastatic castration resistant prostate cancer. Phys Med Biol 2020; 65:235012. [PMID: 33245058 DOI: 10.1088/1361-6560/abbc81] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We performed Monte Carlo simulations in order to determine, by means of microdosimetry calculations, tumour control probability (TCP) curves for treatments with 225Ac-PSMA of metastatic castration resistant prostate cancer (mCRPC). Realistic values of cell radiosensitivity, nucleus size and lesion size were used for calculations. As the cell radiosensitivity decreased, the nucleus size decreased and the lesion size increased, the absorbed dose to reach a given TCP increased. The widest variations occurred with regard to the cell radiosensitivity. For the Monte Carlo simulations, in order to address a non-uniform PSMA expression, different 225Ac-PSMA distributions were considered. The effect of these different PSMA distributions resulted in small variations in the TCP curves (maximum variation of 5%). Absorbed doses to reach a TCP of 0.9 for a uniform 225Ac-PSMA distribution, considering a relative biological effectiveness (RBE) of 5, ranged between 35.0 Gy and 116.5 Gy. The lesion absorbed doses per administered activity reported in a study on treatments with 225Ac-PSMA of mCRPC ranged between 1.3 Gy MBq-1 and 9.8 Gy MBq-1 for a RBE = 5. For a 70 kg-patient to whom 100 kBq kg-1 of 225Ac-PSMA are administered, the range of lesion absorbed doses would be between 9.1 Gy and 68.6 Gy. Thus, for a single cycle of 100 kBq kg-1, a number of lesions would not receive an absorbed dose high enough to reach a TCP of 0.9.
Collapse
Affiliation(s)
- Pablo Mínguez Gabiña
- Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital/Biocruces Health Research Institute, 48903 Barakaldo, Spain. Department of Applied Physics I, Faculty of Engineering, UPV/EHU, 48013 Bilbao, Spain
| | | | | | | | | |
Collapse
|
49
|
The prostate-specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL detects tumor neovasculature in metastatic, advanced, radioiodine-refractory, differentiated thyroid cancer. Med Oncol 2020; 37:98. [PMID: 33034761 DOI: 10.1007/s12032-020-01427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Prostate-specific membrane antigen (PSMA; also termed glutamate carboxypeptidase II (GCP II)) is abundantly expressed in prostate cancer. It has been shown recently that PSMA is expressed in neovasculature of differentiated thyroid cancer. In this study, we show that 18F-DCFPyl might detect neovasculature in advanced, metastatic differentiated thyroid cancer (DTC). We first stained the preserved lymph node samples of three patients with DTC who had undergone total thyroidectomy and neck dissection for cervical lymph node metastatic disease to identify PSMA expression, with the PSMA antibody (DAKO Monoclonal). Then, we performed 18F-DCFPyl imaging in two other advanced DTC patients with elevated serum thyroglobulin (Tg), indicative of residual disease. We compared the findings with contemporaneous FDG PET/CT scan, conventional Imaging (CT,MRI) and whole-body scan performed with I123/I131. All the three lymph node samples stained positive for PSMA expression in the neovasculature. In the first imaged patient, 18F-DCFPyl detected activity within the retropharyngeal CT contrast-enhancing lymph node. Compared to FDG PET/CT, the 18F-DCFPyl scan showed a greater SUV (3.1 vs 1.8). In the second imaged patient, 18F-DCFPyl showed intense uptake in the L3 vertebra (not seen on the post treatment 131I scan or the 18F-FDG PET/CT). MRI of the lumbar spine confirmed the presence of sclerotic-lytic lesion at the location, consistent with metastatic disease. Our exploratory study is proof of principle, that the prostate cancer imaging agent 18F-DCFPyl may prove useful for the localization of metastases, in patients with metastatic RAI-refractory DTC by detecting neoangiogenesis within the tumor.
Collapse
|
50
|
PSMA-Directed CAR T Cells Combined with Low-Dose Docetaxel Treatment Induce Tumor Regression in a Prostate Cancer Xenograft Model. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:226-235. [PMID: 32728611 PMCID: PMC7372156 DOI: 10.1016/j.omto.2020.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
While chimeric antigen receptor (CAR) T cell immunotherapy targeting CD19 has shown remarkable success in patients with lymphoid malignancies, the potency of CAR T cells in solid tumors is low so far. To improve the efficacy of CAR T cells targeting prostate carcinoma, we designed a novel CAR that recognizes a new epitope in the prostate-specific membrane antigen (PSMA) and established novel paradigms to apply CAR T cells in a preclinical prostate cancer model. In vitro characterization of the D7 single-chain antibody fragment-derived anti-PSMA CAR confirmed that the choice of the co-stimulatory domain is a major determinant of CAR T cell activation, differentiation, and exhaustion. In vivo, focal injections of the PSMA CAR T cells eradicated established human prostate cancer xenografts in a preclinical mouse model. Moreover, systemic intravenous CAR T cell application significantly inhibited tumor growth in combination with non-ablative low-dose docetaxel chemotherapy, while docetaxel or CAR T cell application alone was not effective. In conclusion, the focal application of D7-derived CAR T cells and their combination with chemotherapy represent promising immunotherapeutic avenues to treat local and advanced prostate cancer in the clinic.
Collapse
|