1
|
Yatung S, Trivedi AK. Daily and seasonal changes in steroidogenic markers in the hypothalamus and testes of tree sparrow (Passer montanus). J Neuroendocrinol 2024:e13478. [PMID: 39663742 DOI: 10.1111/jne.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
The population responds to environmental variability largely determined by the dynamic interactions between fitness components within- and among-individual variation in the expression of the environmentally sensitive phenotype. The study was conducted on daily and seasonal changes in the expression of steroidogenic gene markers and corresponding seasonal changes in the physiological characters in adult male tree sparrows. Two experiments were performed. In experiment one, birds (n = 5/time points) were sampled during the breeding season at 6-time points, i.e., ZT1, ZT5, ZT9, ZT13, ZT17, and ZT21 [Zeitgeber time (ZT) 0 = sun rise time at the respective time of the year], and daily variation in expression of steroidogenic markers was observed in hypothalamus and testes tissues. In experiment two, birds (n = 5/month) were sampled every month at mid-day for a year. Body mass, bill color, testes size, and molt in feathers were recorded. The hypothalamus and testes tissues were used for gene expression studies. Blood plasma cholesterol and testosterone levels were measured. Higher testicular volumes were recorded from March to May, whereas maximum molt was observed during the post-breeding phase. Plasma cholesterol levels were highest before the breeding phase. Higher testosterone levels corresponded with the breeding phase. Higher expressions of thyroid-stimulating hormone subunit beta (tshβ), type 2 deiodinase (dio2), and gonadotropin-releasing hormone (gnrh) during the breeding phase and higher expression of type 3 deiodinase (dio3) and gonadotropin-inhibitory hormone (gnih) were observed during the non-breeding phase. The steroidogenic transcripts showed seasonal changes in their expression in the hypothalamic and testicular tissue and were upregulated either during the pre-breeding or breeding phase. The study reveals that mRNA levels of steroidogenic enzymes exhibit daily rhythmicity both in the hypothalamus and testis tissues. Further, steroidogenic transcripts show seasonal variations that correspond to the annual reproductive cycle of the tree sparrow (Passer montanus).
Collapse
Affiliation(s)
- Subu Yatung
- Department of Zoology, Mizoram University, Aizawl, India
| | | |
Collapse
|
2
|
Lee O, Fought AJ, Shidfar A, Heinz RE, Kmiecik TE, Gann PH, Khan SA, Chatterton RT. Association of genetic polymorphisms with local steroid metabolism in human benign breasts. Steroids 2022; 177:108937. [PMID: 34762930 DOI: 10.1016/j.steroids.2021.108937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Although alterations of concentrations in circulating steroids have been linked to single nucleotide polymorphisms (SNPs) of steroidogenic enzymes, we hypothesized that SNPs of such enzymes located within the breast affect local steroid concentrations more than products of such SNPs absorbed from the circulation. METHODS Steroids (estradiol, estrone, testosterone, androstenedione, DHEA, DHEA sulfate, progesterone) in nipple aspirate fluid (NAF) were purified by HPLC and they along with serum steroids were quantified by immunoassays. Polymorphisms of the transporter SLCO2B1 and enzymes HSD3B1, CYP19A1, HSD17B12, AKR1C3, CYP1B1, and SRD5A1 were measured in white blood cell DNA. RESULTS Steroid concentrations in NAF of subjects with homozygous minor genotypes differed from those with heterozygotes, i.e., SLCO2B1 (rs2851069) decreased DHEAS (p = 0.04), HSD17B12 (rs11555762) increased estradiol (p < 0.004), and CYP1B1 (rs1056836) decreased estradiol (p = 0.017) and increased progesterone (p = 0.05). Also, in serum, CYP19A1 (rs10046 and rs700518) both decreased testosterone (p = 0.02) and SRD5A1 increased androstenedione (p = 0.006). Steroids in subjects with major homozygotes did not differ from those with heterozygotes indicating recessive characteristics. CONCLUSIONS In the breast, SNPs were associated with decreased uptake of DHEAS (SLCO2B1), increased estradiol concentrations through increased oxidoreductase activity (HSD17B12), or decreased estradiol concentrations by presumed formation of 4-hydroxyestradiol (CYP1B1). CYP19A1 was associated with decreased testosterone concentrations in serum but had no significant effect on estrogen or androgen concentrations within the breast. The hormone differences observed in NAF were not usually evident in serum, indicating the importance of assessing the effect of these SNPs within the breast.
Collapse
Affiliation(s)
- Oukseub Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Angela J Fought
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Ali Shidfar
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard E Heinz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Thomas E Kmiecik
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter H Gann
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Seema A Khan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Robert T Chatterton
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Departments of Obstetrics/Gynecology, Physiology, and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Liu X, Wei D, Jiang J, Liu X, Tu R, Luo Z, Wang Y, Dong X, Qiao D, Shen F, Li R, Wang Y, Jin Y, Yu S, Huo W, Li L, Li W, Jing T, Wang C, Mao Z. Associations of SRD5A1 gene variants and testosterone with dysglycemia: Henan Rural Cohort study. Nutr Metab Cardiovasc Dis 2020; 30:599-607. [PMID: 31870594 DOI: 10.1016/j.numecd.2019.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Multiple studies support a complex relationship between testosterone and type 2 diabetes mellitus (T2DM) and the transformation of testosterone is affected by several reductases. Thus, we aimed to explore the associations of steroid-5α-reductase type 1 (SRD5A1) gene polymorphism with impaired fasting glucose (IFG) and T2DM and the interactive effects of testosterone and genotypes on glycometabolism. METHODS AND RESULTS A case-control study including 2365 participants was performed. Genomic DNA was extracted from the whole blood and genotyped for the SRD5A1 single nucleotide polymorphisms (SNP) rs1691053. Multivariable logistic regression and linear regression were performed to estimate the associations of SRD5A1 rs1691053 alleles and genotypes with glycometabolism. Generalized linear models were used to investigate the modulatory effects of serum testosterone on glycometabolism indexes in males. After multivariable adjustment, the odds ratio (OR) of homozygous CC genotypes in male carriers was 2.62 (95%CI: 1.11-6.18) for IFG. Furthermore, significant associations of SRD5A1 rs1691053 polymorphisms with adverse indices of glycometabolism were observed in males. Interestingly, the opposite associations in females were observed. The interactive associations of SNP and testosterone were found and mutations were more likely to lead unfavorable metabolic phenotypes. CONCLUSION These results showed that SRD5A1 rs1691053 gene polymorphism was independently associated with glycometabolism. The interaction between a genetic polymorphism from SRD5A1 and testosterone involved glycometabolism was identified in males. Although this preliminary data should be replicated with other rigorous researches, it highlighted the importance of the SNP-testosterone interaction over the present of glycometabolism.
Collapse
Affiliation(s)
- Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jingjing Jiang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Fang Shen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yikang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuxi Jin
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, PR China.
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
5
|
Wan J, Zhang J, Zhang J. Expression of p53 and its mechanism in prostate cancer. Oncol Lett 2018; 16:378-382. [PMID: 29928424 PMCID: PMC6006473 DOI: 10.3892/ol.2018.8680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to investigate the expression of tumor protein p53 (p53), and its mechanism of function, in prostate cancer (PC). Small interfering RNA (siRNA) was used to interfere with p53 expression in the PC cell line, DU145. Cell viability and p53 expression were analyzed using cell counting kit-8 (CCK-8) and western blotting. The effects of p53 expression on the proliferation, migration and adhesion abilities of PC cells were analyzed using Cell Counting kit-8, Transwell and adhesion assays. Changes in cell proliferation, migration and adhesion ability were observed following treatment with extracellular signal-regulated kinase (ERK) inhibitor, PD184352, and janus kinase (JNK) inhibitor, SP60012. The expression level of p53 declined 24 h after siRNA transfection (P<0.05). Furthermore, JNK and ERK, downstream proteins of the focal adhesion kinase (FAK)-Src proto-oncogene, non-receptor tyrosine kinase (Src) signaling pathway, were activated. These effects were associated with reduced proliferation, migration and adhesion abilities of PC cells compared with untransfected control cells (P<0.05). PD184352 and SP600125 treatments also resulted in reduced proliferation, migration and adhesion abilities of PC cells (P<0.05). In conclusion, PC cells exhibited low p53 expression, and the proliferation, migration and adhesion abilities of PC cells were promoted by inhibiting the activation of JNK and ERK. Together, these results suggest that p53 has potential as a therapeutic target in PC.
Collapse
Affiliation(s)
- Jiukai Wan
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jun Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Junqiang Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|