1
|
Goto T, Teramoto Y, Nagata Y, Miyamoto H. Latrophilin-3 as a downstream effector of the androgen receptor induces bladder cancer progression. Discov Oncol 2024; 15:440. [PMID: 39269616 PMCID: PMC11399515 DOI: 10.1007/s12672-024-01324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Emerging evidence indicates that androgen receptor (AR) signaling plays a critical role in the pathogenesis of male-dominant urothelial cancer and its outgrowth. Meanwhile, latrophilins (LPHNs), a group of the G-protein-coupled receptors to which a spider venom latrotoxin (LTX) is known to bind, remain largely uncharacterized in neoplastic diseases. The present study aimed to determine the functional role of LPHN3 (encoded by the ADGRL3 gene), in association with AR signaling, in the progression of bladder cancer. In AR-positive bladder cancer lines, dihydrotestosterone considerably increased the expression levels of ADGRL3 and LPHN3, while chromatin immunoprecipitation assay revealed the binding of AR to the promoter region of ADGRL3. Treatment with LPHN3 ligands (e.g. α-LTX, FLRT3) resulted in the induction of ADGRL3 expression, as well as cell viability, in bladder cancer lines. By contrast, LPHN3 knockdown via shRNA virus infection significantly reduced the viability and migration of these cells. Immunohistochemistry in transurethral resection specimens further showed a strong correlation between LPHN3 and AR expression. Moreover, LPHN3 positivity in muscle-invasive bladder tumors, as an independent prognosticator, was associated with a significantly higher risk of disease progression and disease-specific mortality following radical cystectomy. These findings suggest that LPHN3 functions as a downstream effector of AR and promotes the growth of bladder cancer.
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Li L, Jin T, Hu L, Ding J. Alternative splicing regulation and its therapeutic potential in bladder cancer. Front Oncol 2024; 14:1402350. [PMID: 39132499 PMCID: PMC11310127 DOI: 10.3389/fonc.2024.1402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bladder cancer is one of the leading causes of mortality globally. The development of bladder cancer is closely associated with alternative splicing, which regulates human gene expression and enhances the diversity of functional proteins. Alternative splicing is a distinctive feature of bladder cancer, and as such, it may hold promise as a therapeutic target. This review aims to comprehensively discuss the current knowledge of alternative splicing in the context of bladder cancer. We review the process of alternative splicing and its regulation in bladder cancer. Moreover, we emphasize the significance of abnormal alternative splicing and splicing factor irregularities during bladder cancer progression. Finally, we explore the impact of alternative splicing on bladder cancer drug resistance and the potential of alternative splicing as a therapeutic target.
Collapse
Affiliation(s)
- Lina Li
- College of Medicine, Jinhua University of Vocational Technology, Jinhua, Zhejiang, China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liang Hu
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Amaya JM, Sips HCM, Viho EMG, Kroon J, Meijer OC. Restricted effects of androgens on glucocorticoid signaling in the mouse prefrontal cortex and midbrain. Front Endocrinol (Lausanne) 2024; 14:1292024. [PMID: 38303978 PMCID: PMC10830692 DOI: 10.3389/fendo.2023.1292024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Glucocorticoids are key executors of the physiological response to stress. Previous studies in mice showed that the androgen receptor (AR) influenced the transcriptional outcome of glucocorticoid treatment in white and brown adipocytes and in the liver. In the brain, we observed that chronic hypercorticism induced changes in gene expression that tended to be more pronounced in male mice. In the present study, we investigated if glucocorticoid signaling in the brain could be modulated by androgen. After chronic treatment with corticosterone, dihydrotestosterone, a combination of both, and corticosterone in combination with the AR antagonist enzalutamide, we compared the expression of glucocorticoid receptor (NR3C1, also abbreviated GR) target genes in brain regions where AR and GR are co-expressed, namely: prefrontal cortex, hypothalamus, hippocampus, ventral tegmental area and substantia nigra. We observed that androgen affected glucocorticoid signaling only in the prefrontal cortex and the substantia nigra. Dihydrotestosterone and corticosterone independently and inversely regulated expression of Sgk1 and Tsc22d3 in prefrontal cortex. AR antagonism with enzalutamide attenuated corticosterone-induced expression of Fkbp5 in the prefrontal cortex and of Fkbp5 and Sgk1 in the substantia nigra. Additionally, in the substantia nigra, AR antagonism increased expression of Th and Slc18a1, two genes coding for key components of the dopaminergic system. Our data indicate that androgen influence over glucocorticoid stimulation in the brain is not a dominant phenomenon in the context of high corticosterone levels, but can occur in the prefrontal cortex and substantia nigra.
Collapse
Affiliation(s)
- Jorge Miguel Amaya
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hetty C. M. Sips
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Eva M. G. Viho
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Kroon
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Onno C. Meijer
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Hou J, Pan T, Li F, Sang Q, Wu X, Li J, Yu B, Zang M, Zhu ZG, Su L, Liu B. Androgen receptor promotes cell stemness via interacting with co-factor YAP1 in gastric cancer. Biochem Pharmacol 2023; 217:115849. [PMID: 37806457 DOI: 10.1016/j.bcp.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Cancer stem cells (CSCs) have been proposed to explain tumor relapse and chemoresistance in various types of cancers, and androgen receptor (AR) has been emerged as a potential regulator of stemness in cancers. However, the underlying mechanism of AR-regulated CSCs properties and chemoresistance in gastric cancer (GC) remains unknown. Here, we shown that AR is upregulated in GC tissues and correlates with poor survival rate and CSCs phenotypes of GC patients. According to our experimental data, overexpression of AR upregulated the expression of CSCs markers and this was consistent with the result concluded from data analysis that the expression of AR was positively correlated with CD44 in GC patients. In addition, AR overexpression obviously enhanced the tumor sphere formation ability and chemoresistance of GC cells in vitro. Whereas these effects were attenuated by inhibition of AR. These results were further validated in vivo that MGC-803 cells overexpressing AR had stronger properties to initiate gastric tumorigenesis than the control cells, and inhibition of AR increased the chemosensitivity of GC cells. Mechanically, AR upregulated CD44 expression by directly binding to its promoter region and Yes-associated protein 1 (YAP1) served as the co-factor of AR, which was demonstrated by the fact that the promoting effects of AR on GC cells stemness were partially counteracted by YAP1 knockdown. Thus, this study revealed that AR facilitates CSCs properties and chemoresistance of GC cells via forming complex with YAP1and indicates a potential therapeutic approach to GC patients.
Collapse
Affiliation(s)
- Junyi Hou
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fangyuan Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qingqing Sang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongyan Wu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zheng-Gang Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| |
Collapse
|
5
|
Culig Z. Response to Androgens and Androgen Receptor Antagonists in the Presence of Cytokines in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13122944. [PMID: 34204596 PMCID: PMC8231240 DOI: 10.3390/cancers13122944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Prostate cancer is the most frequently diagnosed non-cutaneous tumor in men in the Western world. Therapy for non-organ confined prostate cancer includes anti-androgens such as bicalutamide, enzalutamide and darolutamide. The androgen receptor is expressed during tumor initiation and progression. Androgen receptor could be activated by interleukins, which are produced by blood cells and adjacent stroma. These cytokines may affect response of tumor cells to anti-androgenic drugs, which are commonly used in prostate cancer therapy. There are several experimental studies showing an effect of anti-cytokine therapies in prostate cancer. However, the clinical translation is limited and more clinical trials are needed to improve action of anti-androgens in prostate cells which are stimulated by cytokines. Abstract Non-steroidal anti-androgens have a major role in the treatment of non-localized prostate cancer. Interleukins are involved in the regulation of many cellular functions in prostate cancer and also modify cellular response to anti-androgens. A specific role of selected IL is presented in this review. IL-8 is a cytokine expressed in prostate cancer tissue and microenvironment and promotes proliferation and androgen receptor-mediated transcription. In contrast, IL-1 displays negative effects on expression of androgen receptor and its target genes. A subgroup of prostate cancers show neuroendocrine differentiation, which may be in part stimulated by androgen ablation. A similar effect was observed after treatment of cells with IL-10. Another cytokine which is implicated in regulation of androgenic response is IL-23, secreted by myeloid cells. Most studies on androgens and IL were carried out with IL-6, which acts through the signal transducer and activator of the transcription (STAT) factor pathway. IL-6 is implicated in resistance to enzalutamide. Activation of the STAT-3 pathway is associated with increased cellular stemness. IL-6 activation of the androgen receptor in some prostate cancers is associated with increased growth in vitro and in vivo. Molecules such as galiellalactone or niclosamide have an inhibitory effect on both androgen receptor and STAT-3 pathways.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Ide H, Miyamoto H. Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy. Cells 2021; 10:1169. [PMID: 34064926 PMCID: PMC8150801 DOI: 10.3390/cells10051169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
There have been critical problems in the non-surgical treatment for bladder cancer, especially residence to intravesical pharmacotherapy, including BCG immunotherapy, cisplatin-based chemotherapy, and radiotherapy. Recent preclinical and clinical evidence has suggested a vital role of sex steroid hormone-mediated signaling in the progression of urothelial cancer. Moreover, activation of the androgen receptor and estrogen receptor pathways has been implicated in modulating sensitivity to conventional non-surgical therapy for bladder cancer. This may indicate the possibility of anti-androgenic and anti-estrogenic drugs, apart from their direct anti-tumor activity, to function as sensitizers of such conventional treatment. This article summarizes available data suggesting the involvement of sex hormone receptors, such as androgen receptor, estrogen receptor-α, and estrogen receptor-β, in the progression of urothelial cancer, focusing on their modulation for the efficacy of conventional therapy, and discusses their potential of overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Pellerin E, Caneparo C, Chabaud S, Bolduc S, Pelletier M. Endocrine-disrupting effects of bisphenols on urological cancers. ENVIRONMENTAL RESEARCH 2021; 195:110485. [PMID: 33212129 DOI: 10.1016/j.envres.2020.110485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenols are endocrine-disrupting chemicals found in a broad range of products that can modulate hormonal signalling pathways and various other biological functions. These compounds can bind steroid receptors, e.g. estrogen and androgen receptors, expressed by numerous cells and tissues, including the prostate and the bladder, with the potential to alter their homeostasis and normal physiological functions. In the past years, exposure to bisphenols was linked to cancer progression and metastasis. As such, recent pieces of evidence suggest that endocrine-disrupting chemicals can lead to the development of prostate cancer. Moreover, bisphenols are found in the urine of the wide majority of the population. They could potentially affect the bladder's normal physiology and cancer development, even if the bladder is not recognized as a hormone-sensitive tissue. This review will focus on prostate and bladder malignancies, two urological cancers that share standard carcinogenic processes. The description of the underlying mechanisms involved in cell toxicity, and the possible roles of bisphenols in the development of prostate and bladder cancer, could help establish the putative roles of bisphenols on public health.
Collapse
Affiliation(s)
- Eve Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| | - Martin Pelletier
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada.
| |
Collapse
|
8
|
Identification of BXDC2 as a Key Downstream Effector of the Androgen Receptor in Modulating Cisplatin Sensitivity in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13050975. [PMID: 33652650 PMCID: PMC7956795 DOI: 10.3390/cancers13050975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 02/19/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary It remains unclear why chemotherapy is often ineffective in patients with bladder cancer. Meanwhile, we previously reported that male sex hormones (i.e., androgens) could considerably reduce the efficacy of cisplatin, an anti-cancer drug used as the first-line treatment against advanced bladder cancer. The present study aimed to investigate how androgen receptor signaling, which is activated by binding of androgenic hormones, modulates sensitivity to cisplatin treatment in bladder cancer, using cell line models and surgical specimens. We found that the expression levels of the androgen receptor and a molecule (BXDC2) were inversely correlated and that loss of BXDC2 was associated with cisplatin resistance. We thus provide evidence to suggest an underlying molecular mechanism responsible for androgen receptor-induced chemoresistance in bladder cancer. Abstract Underlying mechanisms for resistance to cisplatin-based chemotherapy in bladder cancer patients are largely unknown, although androgen receptor (AR) activity, as well as extracellular signal-regulated kinase (ERK) signaling, has been indicated to correlate with chemosensitivity. We also previously showed ERK activation by androgen treatment in AR-positive bladder cancer cells. Because our DNA microarray analysis in control vs. AR-knockdown bladder cancer lines identified BXDC2 as a potential downstream target of AR, we herein assessed its functional role in cisplatin sensitivity, using bladder cancer lines and surgical specimens. BXDC2 protein expression was considerably downregulated in AR-positive or cisplatin-resistant cells. BXDC2-knockdown sublines were significantly more resistant to cisplatin, compared with respective controls. Without cisplatin treatment, BXDC2-knockdown resulted in significant increases/decreases in cell proliferation/apoptosis, respectively. An ERK activator was also found to reduce BXDC2 expression. Immunohistochemistry showed downregulation of BXDC2 expression in tumor (vs. non-neoplastic urothelium), higher grade/stage tumor (vs. lower grade/stage), and AR-positive tumor (vs. AR-negative). Patients with BXDC2-positive/AR-negative muscle-invasive bladder cancer had a significantly lower risk of disease-specific mortality, compared to those with a BXDC2-negative/AR-positive tumor. Additionally, in those undergoing cisplatin-based chemotherapy, BXDC2 positivity alone (p = 0.083) or together with AR negativity (p = 0.047) was associated with favorable response. We identified BXDC2 as a key molecule in enhancing cisplatin sensitivity. AR-ERK activation may thus be associated with chemoresistance via downregulating BXDC2 expression in bladder cancer.
Collapse
|
9
|
Katleba K, Lombard AP, Tsamouri MM, Baek HB, Nishida KS, Libertini SJ, Platero AJ, Ma AH, Pan CX, Ghosh PM, Mudryj M. Depletion of androgen receptor low molecular weight isoform reduces bladder tumor cell viability and induces apoptosis. Cancer Lett 2021; 504:49-57. [PMID: 33549708 DOI: 10.1016/j.canlet.2021.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BlCa) exhibits a gender disparity where men are three times more likely to develop the malignancy than women suggesting a role for the androgen receptor (AR). Here we report that BlCa cells express low molecular weight (LMW) AR isoforms that are missing the ligand binding domain (LBD). Isoform expression was detected in most BlCa cells, while a few express the full-length AR. Immunofluorescence studies detect AR in the nucleus and cytoplasm, and localization is cell dependent. Cells with nuclear AR expression exhibit reduced viability and increased apoptosis on total AR depletion. A novel AR-LMW variant, AR-v19, that is missing the LBD and contains 15 additional amino acids encoded by intron 3 sequences was detected in most BlCa malignancies. AR-v19 localizes to the nucleus and can transactivate AR-dependent transcription in a dose dependent manner. AR-v19 depletion impairs cell viability and promotes apoptosis in cells that express this variant. Thus, AR splice variant expression is common in BlCa and instrumental in ensuring cell survival. This suggests that targeting AR or AR downstream effectors may be a therapeutic strategy for the treatment of this malignancy.
Collapse
Affiliation(s)
- Kimberley Katleba
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Alan P Lombard
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, USA
| | - Maria-Malvina Tsamouri
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Han Bit Baek
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | - Stephen J Libertini
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | - Ai-Hong Ma
- Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Chong-Xian Pan
- Department of Faculty of Medicine, Harvard Medical School, West Roxbury, MA, 02115, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA.
| |
Collapse
|
10
|
Nagata Y, Goto T, Jiang G, Teramoto Y, Miyamoto H. 5α-Reductase Inhibitors Do Not Prevent the Development and Progression of Urothelial Cancer: In Vitro Evidence. Bladder Cancer 2020. [DOI: 10.3233/blc-200380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Androgen receptor (AR) activation has been implicated in the pathogenesis of urothelial cancer. However, it remains controversial whether 5α-reductase inhibitors (5α-RIs), which are known for blocking the conversion of testosterone to the more potent androgen dihydrotestosterone and often prescribed for the treatment of, for instance, benign prostatic hyperplasia, contribute to preventing the development of bladder cancer. OBJECTIVE: To determine the role of 5α-RI therapy in urothelial tumorigenesis and tumor progression, using cell line models. METHODS: In a human non-neoplastic urothelial SVHUC subline stably expressing a full-length wild-type human AR (SVHUC-AR) with carcinogen/MCA challenge and human bladder cancer lines, we assessed the effects of three 5α-RIs, dutasteride (up to 100 nM), finasteride (up to 500 nM), and epristeride (up to 5μM), on neoplastic/malignant transformation and cell growth, respectively. RESULTS: In AR-positive bladder cancer UMUC3 and 5637-AR cells, an AR antagonist bicalutamide significantly inhibited their proliferation, whereas three 5α-RIs failed to do. Similarly, these 5α-RIs did not significantly inhibit the migration of bladder cancer cells induced by the treatment of testosterone which could be metabolized into dihydrotestosterone in culture medium. In MCA-SVHUC-AR cells, induction of their neoplastic transformation by testosterone, which was prevented by bicalutamide, was confirmed. However, no significant inhibitory effects of 5α-RIs on the neoplastic transformation of AR-positive urothelial cells treated with or without testosterone were observed. CONCLUSIONS: Using in vitro models for urothelial cancer, 5α-RI treatment even at supra-pharmacological doses was thus found to have no significant impact on the prevention of both tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Guiyang Jiang
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Kourbanhoussen K, McMartin C, Lodde M, Zlotta A, Bryan RT, Toren P. Switching Cancers: A Systematic Review Assessing the Role of Androgen Suppressive Therapy in Bladder Cancer. Eur Urol Focus 2020; 7:1044-1051. [PMID: 33132108 DOI: 10.1016/j.euf.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Bladder cancer demonstrates striking gender-based differences in incidence, with a role for androgens possibly implicated in the development and progression of the disease. Emerging preclinical and clinical evidence suggests that there may be a role for antiandrogen therapy in bladder cancer. OBJECTIVE This systematic review assessed the current clinical evidence evaluating androgen suppressive therapy (AST) for the treatment or prevention of bladder cancer. EVIDENCE ACQUISITION Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, MEDLINE was searched for full-text articles detailing clinical outcomes or incidence of bladder cancer among patients who received AST, defined as gonadotropin-releasing hormone agonists or equivalent, androgen receptor antagonists, or 5-alpha reductase inhibitors. EVIDENCE SYNTHESIS A total of 12 studies were included. Five studies focused on prostate cancer patients, with one study in men with lower urinary tract symptoms. Among these studies, a lower incidence of bladder cancer was observed in five, with adjusted risk reduction estimates ranging from 7% to 47%. Six studies evaluating 11 820 bladder cancer patients investigated clinical outcomes among men who received a form of AST. Three out of four studies evaluating recurrence-free survival found a benefit for AST, with adjusted hazard ratios for recurrence of non-muscle-invasive cancer ranging from 0.29 to 0.53. Limitations included large variability in data sources and methodologies, as well as no data on tolerability. CONCLUSIONS Current evidence indicates that antiandrogen therapies exert a favorable influence on bladder tumors. Further prospective studies are needed to assess their therapeutic potential. PATIENT SUMMARY Androgen suppressive therapy is commonly prescribed for the treatment of prostate-related problems. Prior research indicates that there may be a role for these treatments in patients with bladder cancer. In this review, we evaluate the current evidence that strongly suggests that these agents may be effective against bladder cancer.
Collapse
Affiliation(s)
- Kassim Kourbanhoussen
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Catherine McMartin
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Michele Lodde
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada; Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Alexandre Zlotta
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard T Bryan
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paul Toren
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada; Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
12
|
Soleymani Fard S, Yazdanbod M, Sotoudeh M, Bashash D, Mahmoodzadeh H, Saliminejad K, Mousavi SA, Ghaffari SH, Alimoghaddam K. Prognostic and Therapeutic Significance of Androgen Receptor in Patients with Gastric Cancer. Onco Targets Ther 2020; 13:9821-9837. [PMID: 33061460 PMCID: PMC7537849 DOI: 10.2147/ott.s265364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/29/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose The clinical studies carried out in the last few decades unequivocally introduced activated androgen receptor (AR) as a pathogenic feature of human malignancies which not only endows cancer cells with survival advantage, but also may be exploited for anticancer interventions. Patients and Methods In this study, we have investigated the expression profile of AR and EMT-related genes in fresh gastric cancer (GC), adjacent nontumor and normal gastric tissues, as well as the effect and molecular mechanisms of AR inhibition in GC cell lines. Results Amongst 60 GC patients, 66.7% overexpressed AR that was remarkably correlated with the overexpression of Snail, β-catenin, Twist1, and STAT3. AR overexpression was also remarkably associated with unfavorable outcome (HR=3.478, P=0.001); however, multivariate Cox regression analysis indicated that it was not an independent prognostic factor (HR=2.089, P=0.056). This study has investigated simultaneous assessment of AR and EMT-related genes expression and indicated that concurrent overexpression of AR and Snail is an independent unfavorable factor for GC overall survival after adjustment with other variables (HR=2.382, P=0.021). Interestingly, the inhibition of AR signaling by potent AR antagonist enzalutamide suppressed cell growth, migration and invasion of GC cells via regulation of apoptosis-, cell cycle-, and EMT-related gene expressions. Conclusion Our findings have clinical importance proposing AR as an important prognostic factor involved in GC progression and metastasis, and submit AR inhibition as an appealing therapeutic approach for GC patients, either as a single agent or in a combined-modal strategy.
Collapse
Affiliation(s)
- Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Histone Demethylase KDM7A Regulates Androgen Receptor Activity, and Its Chemical Inhibitor TC-E 5002 Overcomes Cisplatin-Resistance in Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21165658. [PMID: 32781788 PMCID: PMC7460860 DOI: 10.3390/ijms21165658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Histone demethylase KDM7A regulates many biological processes, including differentiation, development, and the growth of several cancer cells. Here, we have focused on the role of KDM7A in bladder cancer cells, especially under drug-resistant conditions. When the KDM7A gene was knocked down, bladder cancer cell lines showed impaired cell growth, increased cell death, and reduced rates of cell migration. Biochemical studies revealed that KDM7A knockdown in the bladder cancer cells repressed the activity of androgen receptor (AR) through epigenetic regulation. When we developed a cisplatin-resistant bladder cancer cell line, we found that AR expression was highly elevated. Upon treatment with TC-E 5002, a chemical inhibitor of KDM7A, the cisplatin-resistant bladder cancer cells, showed decreased cell proliferation. In the mouse xenograft model, KDM7A knockdown or treatment with its inhibitor reduced the growth of the bladder tumor. We also observed the upregulation of KDM7A expression in patients with bladder cancer. The findings suggest that histone demethylase KDM7A mediates the growth of bladder cancer. Moreover, our findings highlight the therapeutic potential of the KMD7A inhibitor, TC-E 5002, in patients with cisplatin-resistant bladder cancer.
Collapse
|
14
|
Tripathi A, Gupta S. Androgen receptor in bladder cancer: A promising therapeutic target. Asian J Urol 2020; 7:284-290. [PMID: 32742928 PMCID: PMC7385521 DOI: 10.1016/j.ajur.2020.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/07/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
There has been a significant progress in the treatment of metastatic urothelial carcinoma in the last few years with the advent of immunotherapy after a long gap of no drug approvals for over 4 decades. While immunotherapy with checkpoint inhibitors has revolutionized the treatment of urothelial carcinoma, unfortunately, only a minority of patients respond to immunotherapy. Treatment options for patients who do not respond and/or progress on immunotherapy are very limited and overall prognosis remains dismal in metastatic urothelial carcinoma. The first targeted therapy targeting the fibroblast growth factor receptor (FGFR) was recently approved for bladder cancer, but it is effective only in select patients harboring the FGFR2 and FGFR 3 mutations. Antibody drug conjugates like enfortumab vedotin have shown promising activity in clinical trials. Development of novel targeted therapies remains an area of investigation and an unmet need in bladder cancer. Exploitation of androgen receptor (AR) is a potential strategy for targeted drug development in bladder cancer. A significant proportion of urothelial carcinoma patients express AR irrespective of gender. AR signaling in urothelial carcinoma has been linked to progression through multiple mechanisms, including activation of human epidermal growth factor receptor-2 (EGFR or HER-2) signaling and epithelial to mesenchymal transition (EMT). Furthermore, AR is enriched in the luminal papillary mRNA subtype of urothelial carcinoma and also mediates resistance to cisplatin-based chemotherapy. Preclinical evidence suggests that AR inhibition can successfully inhibit urothelial carcinoma growth as monotherapy and is synergistic with cisplatin-based chemotherapy. We review the preclinical and clinical evidence supporting the putative role of AR signaling in urothelial carcinoma pathogenesis, progression and its role as a novel therapeutic target and future directions.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Section of Hematology Oncology, University of Oklahoma Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Shilpa Gupta
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| |
Collapse
|
15
|
Guszcz T, Szymańska B, Kozlowski R, Lukaszewski Z, Laskowski P, Gorodkiewicz E. Plasma aromatase as a sensitive and selective potential biomarker of bladder cancer and its role in tumorigenesis. Oncol Lett 2020; 19:562-568. [PMID: 31897172 PMCID: PMC6923837 DOI: 10.3892/ol.2019.11080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/26/2019] [Indexed: 11/05/2022] Open
Abstract
Bladder cancer (BCa) is the ninth most common cancer in the world and its early detection is crucial for successful therapy. Unfortunately, there are no satisfactory tools to detect BCa at early stages and BCa's confirmation muscle-invasive. The search for a suitable biomarker is therefore necessary and aromatase is a potential candidate. The purpose of the current study was to determine if aromatase serves as a biomarker of BCa. A Surface Plasmon Resonance Imaging biosensor was applied for the quantification and determination of aromatase. A total of 3 µl blood plasma was used for a single measurement. The results revealed that the aromatase concentration in the plasma of patients with BCa (n=78) ranged from 17.41-57.44 ng/ml. The range determined in healthy donors (n=18) was 2.59-7.74 ng/ml. Additionally, it was revealed that muscle invasive BCa samples exhibited elevated, statistically significant (P=0.01) average aromatase concentrations in blood plasma (38.64 ng/ml) when compared with non-muscle invasive samples (29.83 ng/ml). The results demonstrated that plasma aromatase may serve as an excellent bimarker of BCa with 100% sensitivity, 100% selectivity and an area under the curve value of the reciever operating characteristic curve equal to 1.0. Furthermore, the marker differenciated between muscle-invasive and non muscle-invasive BCa with a sensitivity of 60% and a specificity of 81%. In conclusion, aromatase may serve a role in bladder tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Guszcz
- Department of Urology, J. Sniadecki Provincial Hospital of Białystok, 15-950 Białystok, Poland
| | - Beata Szymańska
- Institute of Chemistry, University of Białystok, 15-245 Białystok, Poland
| | - Robert Kozlowski
- Department of Urology, J. Sniadecki Provincial Hospital of Białystok, 15-950 Białystok, Poland
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Pawel Laskowski
- Department of Human Anatomy, Medical University of Białystok, 15-230 Białystok, Poland
| | - Ewa Gorodkiewicz
- Institute of Chemistry, University of Białystok, 15-245 Białystok, Poland
| |
Collapse
|
16
|
Sanguedolce F, Cormio L, Carrieri G, Calò B, Russo D, Menin A, Pastore AL, Greco F, Bozzini G, Galfano A, Pini G, Porreca A, Mugavero F, Falsaperla M, Ceruti C, Cindolo L, Antonelli A, Minervini A. Role of androgen receptor expression in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. Histol Histopathol 2019; 35:423-432. [PMID: 31803932 DOI: 10.14670/hh-18-189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to evaluate the potential prognostic/predictive role of androgen receptor (AR) expression in non-muscle-invasive bladder cancer (NMIBC), and whether it may represent a therapeutic target, we conducted a systematic search of the literature using 'androgen receptor or AR', 'testosterone', 'bladder cancer' and 'non-muscle invasive bladder cancer or NMIBC' as keywords. Eleven studies met the inclusion/exclusion criteria. No significant association was found between AR status and patients' gender (p=0.232), tumor size (p=0.975), tumor stage (p=0.237), tumor grade (p=0.444), tumor multicentricity (p=0.397), concomitant CIS (p=0.316) and progression of disease (p=0.397). On the other hand, relative lack of AR expression was significantly correlated to recurrent disease (p=0.001). Evidence for a direct correlation between AR expression and recurrence-free survival of patients with NMIBC indicate ARs as potential markers of BC behavior; moreover, the finding of a role of androgen blockade therapy in improving survival highlights the potential clinical application of this pathway, which deserves to be further explored.
Collapse
Affiliation(s)
- Francesca Sanguedolce
- Department of Pathology, University Hospital, Foggia, Italy. .,AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
| | - Luigi Cormio
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Beppe Calò
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Davide Russo
- Department of Pathology, University Hospital, Foggia, Italy
| | - Andrea Menin
- Department of Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Antonio Luigi Pastore
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Urology Unit, Sapienza University of Rome, Latina, Italy
| | - Francesco Greco
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Department of Urology, Humanitas Gavazzeni, Bergamo, Italy
| | - Giorgio Bozzini
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Department of Urology, ASST Valle Olona, Busto A. (VA), Italy
| | - Antonio Galfano
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovannalberto Pini
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Department of Urology, San Raffaele Turro Hospital, San Raffaele University, Milan, Italy
| | - Angelo Porreca
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Urology Unit, Policlinico of Abano, Abano Terme, Italy
| | - Filippo Mugavero
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Urology Unit, Ospedale Vittorio Emanuele, Catania, Italy
| | - Mario Falsaperla
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Urology Unit, Ospedale Vittorio Emanuele, Catania, Italy
| | - Carlo Ceruti
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Urology Clinic, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Luca Cindolo
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Department of Urology, ASL02 Abruzzo, Chieti, Italy
| | - Alessandro Antonelli
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Urology Unit, ASST-Spedali Civili, Brescia, Italy
| | - Andrea Minervini
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy.,Department of Oncologic, Minimally-Invasive Urology and Andrology, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Tyagi A, Chandrasekaran B, Kolluru V, Rai S, Jordan AC, Houda A, Messer J, Ankem M, Damodaran C, Haddad A. Combination of androgen receptor inhibitor and cisplatin, an effective treatment strategy for urothelial carcinoma of the bladder. Urol Oncol 2019; 37:492-502. [PMID: 31006613 DOI: 10.1016/j.urolonc.2019.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Accepted: 03/10/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE The role of androgen receptor (AR) signaling in bladder cancer (BCa) is not fully characterized. This study aimed to delineate the role of AR signaling in BCa and to determine whether the combination of AR inhibitor, Enzalutamide (Enz), and Cisplatin (Cis) efficiently inhibit the growth of BCa cells. METHODS AR expression was determined in 89 human urothelial BCa specimens by immunohistochemistry. A panel of BCa cell lines was treated with Cis, Enz, or a combination of both (Enz + Cis). We determined the expression of AR, changes in apoptotic signaling, DNA damage, and analyzed effect on epithelial mesenchymal transformation markers. RESULT AR expression was detected in 61.4% of tumors from male BCa patients. Inhibition of AR signaling by Enz effectively inhibited the growth of AR+ BCa cells by inducing apoptosis (26%) in AR+ TCCSUP (P = 0.0201) and J82 (15%, P = 0.0386) cells. Interestingly, Enz + Cis synergistically inhibited the proliferation of BCa cells even at low concentrations by inducing proapoptotic signaling in AR+ BCa cells. Invasive and migratory potential of TCCSUP and J82 cells were reduced with Enz + Cis treatment, and associated with down-regulation of mesenchymal markers. CONCLUSIONS A high percentage of the bladder tumors from male patients in our cohort expressed AR. The combination of Enz and Cis synergistically inhibited growth of BCa cells more efficiently than single agent alone. This supports the rationale for future investigation of AR antagonists in combination with standard chemotherapy in MIBC.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY
| | | | | | - Samarpit Rai
- Department of Urology, University of Louisville, Louisville, KY
| | | | - Alatassi Houda
- Department of Pathology, University of Louisville, Louisville, KY
| | - Jamie Messer
- Department of Urology, University of Louisville, Louisville, KY
| | - Murali Ankem
- Department of Urology, University of Louisville, Louisville, KY
| | | | - Ahmed Haddad
- Department of Urology, University of Louisville, Louisville, KY.
| |
Collapse
|
18
|
Yasui M, Kawahara T, Izumi K, Yao M, Ishiguro Y, Ishiguro H, Uemura H, Miyoshi Y. Androgen receptor mRNA expression is a predictor for recurrence-free survival in non-muscle invasive bladder cancer. BMC Cancer 2019; 19:331. [PMID: 30961575 PMCID: PMC6454612 DOI: 10.1186/s12885-019-5512-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Non-muscular invasive bladder cancer (NMIBC) has a high risk of recurrence. As androgen receptor (AR) reportedly affects bladder cancer, we assessed the correlation between NMIBC recurrence and tumor AR expression in Japanese patients. METHODS We retrospectively reviewed 53 specimens of non-metastatic NMIBC, with recurrence-free survival (RFS) as the primary endpoint. We used real-time quantitative polymerase chain reaction to quantify AR mRNA expression. Kaplan-Meier product-limit estimators were used to assess RFS distribution, log-rank tests to analyze differences in RFS between high- and low-risk groups; and multivariate analyses of AR mRNA expression and other clinicopathological factors to predict independent factors for RFS. RESULTS The high AR mRNA-expressing group (n = 43) tended to have a longer median RFS (not reached) than did the low-AR group (n = 10; 9.04 months; P = 0.112). Multivariate analysis showed female sex (hazard ratio [HR]: 7.360, 95% CI: 1.649-32.856, P = 0.009), tumor size ≥3 cm (HR: 23.697, 95% CI: 4.383-128.117, P < 0.001) and low AR mRNA expression (HR: 0.202, 95% CI: 0.048-0.841, P = 0.028) to be independent predictors of shorter RFS. CONCLUSION Our study showed that low AR mRNA expression level is an independent risk factor for RFS in Japanese patients with NMIBC. Further studies are necessary but AR expression might be a new indicator of recurrence of NMIBC.
Collapse
Affiliation(s)
- Masato Yasui
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Takashi Kawahara
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Koji Izumi
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukari Ishiguro
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Hitoshi Ishiguro
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Photocatalyst Group, Special Research Laboratory, Kanagawa Academy of Science and Technology, Kawasaki, Japan
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Yasuhide Miyoshi
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| |
Collapse
|
19
|
Zheng D, Williams C, Vold JA, Nguyen JH, Harnois DM, Bagaria SP, McLaughlin SA, Li Z. Regulation of sex hormone receptors in sexual dimorphism of human cancers. Cancer Lett 2018; 438:24-31. [PMID: 30223066 PMCID: PMC6287770 DOI: 10.1016/j.canlet.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Gender differences in the incidences of cancers have been found in almost all human cancers. However, the mechanisms that underlie gender disparities in most human cancer types have been under-investigated. Here, we provide a comprehensive overview of potential mechanisms underlying sexual dimorphism of each cancer regarding sex hormone signaling. Fully addressing the mechanisms of sexual dimorphism in human cancers will greatly benefit current development of precision medicine. Our discussions of potential mechanisms underlying sexual dimorphism in each cancer will be instructive for future cancer research on gender disparities.
Collapse
Affiliation(s)
- Daoshan Zheng
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Cecilia Williams
- Department of Biosciences and Nutrition, KTH Royal Institute of Technology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Jeremy A Vold
- Mayo Cancer Registry, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Justin H Nguyen
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Denise M Harnois
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sanjay P Bagaria
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sarah A McLaughlin
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zhaoyu Li
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
20
|
Siddiqui MR, Grant C, Sanford T, Agarwal PK. Current clinical trials in non-muscle invasive bladder cancer. Urol Oncol 2018; 35:516-527. [PMID: 28778250 DOI: 10.1016/j.urolonc.2017.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The treatment options for non-muscle invasive bladder cancer (NMIBC) remain limited. Bacillus Calmette-Guerin (BCG) was the last major breakthrough in bladder cancer therapy almost 4 decades ago. There have been improvements in the understanding of immune therapies and cancer biology, leading to the development of novel agents. This has led to many clinical trials that are currently underway to find the next generation of therapies for NMIBC. METHOD We reviewed clinicaltrials.org and pubmed.gov to find the recently completed and ongoing clinical trials in NIMBC. Included in this review are clinical trials that are currently active and trials that were completed in and after 2014. RESULT Many trials with BCG-naive and BCG-unresponsive/recurrent/refractory/failure patients with NMIBC are either currently underway or have been recently completed. A wide variety of novel therapeutic agents are being investigated that range from cytotoxic agents to immunomodulatory agents to targeted molecular therapies. Other approaches include cancer vaccines, gene therapies, and chemoradiation potentiation agents. Novel drug-delivery methods are also being tested. CONCLUSION This comprehensive update of current trials provides researchers an overview of the current clinical trial landscape for patients with NMIBC.
Collapse
Affiliation(s)
| | - Campbell Grant
- Department of Urology, George Washington University Medical Center, Washington, D.C
| | - Thomas Sanford
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD
| | - Piyush K Agarwal
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD.
| |
Collapse
|
21
|
Ide H, Inoue S, Mizushima T, Jiang G, Chuang KH, Oya M, Miyamoto H. Androgen Receptor Signaling Reduces Radiosensitivity in Bladder Cancer. Mol Cancer Ther 2018; 17:1566-1574. [PMID: 29720561 DOI: 10.1158/1535-7163.mct-17-1061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/28/2017] [Accepted: 04/27/2018] [Indexed: 11/16/2022]
Abstract
Although radiotherapy often with chemotherapy has been shown to offer a survival benefit comparable with that of radical cystectomy in select patients with bladder cancer, the development of radiosensitization strategies may significantly enhance its application. Notably, emerging preclinical evidence has indicated the involvement of androgen receptor (AR) signaling in urothelial cancer progression. We here assessed whether AR signals could contribute to modulating radiosensitivity in bladder cancer cells. Ionizing radiation reduced the numbers of viable cells or colonies of AR-negative lines more significantly than those of AR-positive lines. Similarly, in AR-positive cells cultured in androgen-depleted conditions, dihydrotestosterone treatment lowered the effects of irradiation. Meanwhile, an antiandrogen hydroxyflutamide enhanced them in AR-positive cells cultured in the presence of androgens. AR knockdown or hydroxyflutamide treatment also resulted in a delay in DNA double-strand break repair 4-24 hours after irradiation. We then established "radiation-resistant" sublines and found considerable elevation of the expression of AR as well as DNA repair genes, such as ATR, CHEK1, and PARP-1, in these sublines, compared with respective controls. Furthermore, dihydrotestosterone induced the expression of these DNA repair genes in irradiated AR-positive cells, and hydroxyflutamide antagonized the androgen effects. Finally, in a mouse xenograft model, low-dose flutamide was found to enhance the inhibitory effects of irradiation, and its tumor size was similar to that of AR knockdown line with radiation alone. These findings suggest that AR activity inversely correlates with radiosensitivity in bladder cancer. Accordingly, antiandrogenic drugs may function as sensitizers of irradiation, especially in patients with AR-positive urothelial cancer. Mol Cancer Ther; 17(7); 1566-74. ©2018 AACR.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Guiyang Jiang
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Kuang-Hsiang Chuang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York.,Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
22
|
Inoue S, Mizushima T, Miyamoto H. Role of the androgen receptor in urothelial cancer. Mol Cell Endocrinol 2018; 465:73-81. [PMID: 28652170 DOI: 10.1016/j.mce.2017.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Men have had a substantially higher risk of developing bladder cancer than women. This has prompted research on androgen-mediated androgen receptor (AR) signaling in urothelial cancer. Indeed, increasing preclinical evidence indicates that AR activation correlates with the promotion of urothelial carcinogenesis and tumor outgrowth. In this article, we summarize and discuss available data suggesting the involvement of androgens and the AR pathway in the development and progression of urothelial cancer. Although precise mechanisms for the functions of AR and related signals in urothelial cells remain far from being fully understood, current observations may offer effective chemopreventive and therapeutic approaches for urothelial cancer. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to urothelial cancer patients is thus anticipated.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Taichi Mizushima
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA; Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
23
|
Inoue S, Ide H, Mizushima T, Jiang G, Netto GJ, Gotoh M, Miyamoto H. Nuclear Factor-κB Promotes Urothelial Tumorigenesis and Cancer Progression via Cooperation with Androgen Receptor Signaling. Mol Cancer Ther 2018; 17:1303-1314. [PMID: 29592878 DOI: 10.1158/1535-7163.mct-17-0786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
We investigated the role of NF-κB in the development and progression of urothelial cancer as well as cross-talk between NF-κB and androgen receptor (AR) signals in urothelial cells. Immunohistochemistry in surgical specimens showed that the expression levels of NF-κB/p65 (P = 0.015)/phospho-NF-κB/p65 (P < 0.001) were significantly elevated in bladder tumors, compared with those in nonneoplastic urothelial tissues. The rates of phospho-NF-κB/p65 positivity were also significantly higher in high-grade (P = 0.015)/muscle-invasive (P = 0.033) tumors than in lower grade/non-muscle-invasive tumors. Additionally, patients with phospho-NF-κB/p65-positive muscle-invasive bladder cancer had significantly higher risks of disease progression (P < 0.001) and cancer-specific mortality (P = 0.002). In immortalized human normal urothelial SVHUC cells stably expressing AR, NF-κB activators and inhibitors accelerated and prevented, respectively, their neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene. Bladder tumors were identified in 56% (mock), 89% (betulinic acid), and 22% (parthenolide) of N-butyl-N-(4-hydroxybutyl)nitrosamine-treated male C57BL/6 mice at 22 weeks of age. NF-κB activators and inhibitors also significantly induced and reduced, respectively, cell proliferation/migration/invasion of AR-positive bladder cancer lines, but not AR-knockdown or AR-negative lines, and their growth in xenograft-bearing mice. In both nonneoplastic and neoplastic urothelial cells, NF-κB activators/inhibitors upregulated/downregulated, respectively, AR expression, whereas AR overexpression was associated with increases in the expression levels of NF-κB/p65 and phospho-NF-κB/p65. Thus, NF-κB appeared to be activated in bladder cancer, which was associated with tumor progression. NF-κB activators/inhibitors were also found to modulate tumorigenesis and tumor outgrowth in AR-activated urothelial cells. Accordingly, NF-κB inhibition, together with AR inactivation, has the potential of being an effective chemopreventive and/or therapeutic approach for urothelial carcinoma. Mol Cancer Ther; 17(6); 1303-14. ©2018 AACR.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Taichi Mizushima
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guiyang Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer. Oncotarget 2018; 7:49169-49179. [PMID: 27322140 PMCID: PMC5226499 DOI: 10.18632/oncotarget.9994] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/01/2016] [Indexed: 01/26/2023] Open
Abstract
Cisplatin (CDDP)-based combination chemotherapy remains the mainstream treatment for advanced bladder cancer. However, its efficacy is often limited due to the development of resistance for which underlying mechanisms are poorly understood. Meanwhile, emerging evidence has indicated the involvement of androgen-mediated androgen receptor (AR) signals in bladder cancer progression. In this study, we aimed to investigate whether AR signals have an impact on sensitivity to CDDP in bladder cancer cells. UMUC3-control-short hairpin RNA (shRNA) cells with endogenous AR and AR-negative 647V/5637 cells stably expressing AR were significantly more resistant to CDDP treatment at its pharmacological concentrations, compared with UMUC3-AR-shRNA and 647V-vector/5637-vector control cells, respectively. A synthetic androgen R1881 significantly reduced CDDP sensitivity in UMUC3, 647V-AR, or 5637-AR cells, and the addition of an anti-androgen hydroxyflutamide inhibited the effect of R1881. In these AR-positive cells, R1881 treatment also induced the expression levels of NF-κB, which is known to involve CDDP resistance, and its phosphorylated form, as well as nuclear translocation of NF-κB. In CDDP-resistant bladder cancer sublines established following long-term culture with CDDP, the expression levels of AR as well as NF-κB and phospho-NF-κB were considerably elevated, compared with respective control sublines. In bladder cancer specimens, there was a strong trend to correlate between AR positivity and chemoresistance. These results suggest that AR activation correlates with CDDP resistance presumably via modulating NF-κB activity in bladder cancer cells. Targeting AR during chemotherapy may thus be a useful strategy to overcome CDDP resistance in patients with AR-positive bladder cancer.
Collapse
|
25
|
Rayn KN, Hale GR, Grave GPL, Agarwal PK. New therapies in nonmuscle invasive bladder cancer treatment. Indian J Urol 2018; 34:11-19. [PMID: 29343907 PMCID: PMC5769243 DOI: 10.4103/iju.iju_296_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction: Nonmuscle invasive bladder cancer (NMIBC) remains a very challenging disease to treat with high rates of recurrence and progression associated with current therapies. Recent technological and biological advances have led to the development of novel agents in NMIBC therapy. Methods: We reviewed existing literature as well as currently active and recently completed clinical trials in NMIBC by querying PubMed.gov and clinicaltrials.gov. Results: A wide variety of new therapies in NMIBC treatment are currently being developed, utilizing recent developments in the understanding of immune therapies and cancer biology. Conclusion: The ongoing efforts to develop new therapeutic approaches for NMIBC look very promising and are continuing to evolve.
Collapse
Affiliation(s)
- Kareem N Rayn
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Graham R Hale
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
26
|
Androgen Receptor Signaling in Bladder Cancer. Cancers (Basel) 2017; 9:cancers9020020. [PMID: 28241422 PMCID: PMC5332943 DOI: 10.3390/cancers9020020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 01/21/2023] Open
Abstract
Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.
Collapse
|
27
|
Mizushima T, Tirador KA, Miyamoto H. Androgen receptor activation: a prospective therapeutic target for bladder cancer? Expert Opin Ther Targets 2017; 21:249-257. [PMID: 28064545 DOI: 10.1080/14728222.2017.1280468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.
Collapse
Affiliation(s)
- Taichi Mizushima
- a Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA.,b Wilmot Cancer Institute , University of Rochester Medical Center , Rochester , NY , USA
| | - Kathleen A Tirador
- a Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Hiroshi Miyamoto
- a Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA.,b Wilmot Cancer Institute , University of Rochester Medical Center , Rochester , NY , USA.,c Department of Urology , University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
28
|
AR-Signaling in Human Malignancies: Prostate Cancer and Beyond. Cancers (Basel) 2017; 9:cancers9010007. [PMID: 28085048 PMCID: PMC5295778 DOI: 10.3390/cancers9010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
In the 1940s Charles Huggins reported remarkable palliative benefits following surgical castration in men with advanced prostate cancer, and since then the androgen receptor (AR) has remained the main therapeutic target in this disease. Over the past couple of decades, our understanding of AR-signaling biology has dramatically improved, and it has become apparent that the AR can modulate a number of other well-described oncogenic signaling pathways. Not surprisingly, mounting preclinical and epidemiologic data now supports a role for AR-signaling in promoting the growth and progression of several cancers other than prostate, and early phase clinical trials have documented preliminary signs of efficacy when AR-signaling inhibitors are used in several of these malignancies. In this article, we provide an overview of the evidence supporting the use of AR-directed therapies in prostate as well as other cancers, with an emphasis on the rationale for targeting AR-signaling across tumor types.
Collapse
|
29
|
Kameyama K, Horie K, Mizutani K, Kato T, Fujita Y, Kawakami K, Kojima T, Miyazaki T, Deguchi T, Ito M. Enzalutamide inhibits proliferation of gemcitabine-resistant bladder cancer cells with increased androgen receptor expression. Int J Oncol 2016; 50:75-84. [PMID: 27909718 DOI: 10.3892/ijo.2016.3781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/17/2016] [Indexed: 11/05/2022] Open
Abstract
Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.
Collapse
Affiliation(s)
- Koji Kameyama
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Kengo Horie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Taku Kato
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Yasunori Fujita
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Toshio Kojima
- Health Support Center, Toyohashi University of Technology, Tenpaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Tatsuhiko Miyazaki
- Division of Pathology, Gifu University Hospital, Gifu, Gifu 501-1194, Japan
| | - Takashi Deguchi
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|