1
|
Yilmaz F, Sagir S. Prognostic and predictive value of tertiary lymphoid structures in TURBT materials: Should it be seated in the routine pathological examination, and can it be used in deciding on the treatment method? Urol Oncol 2024; 42:450.e13-450.e22. [PMID: 39089974 DOI: 10.1016/j.urolonc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE This study aims to reveal the importance of tertiary lymphoid structures (TLS) in transurethral resection of bladder tumor (TURBT) materials with a practical and applicable method in which the effect of a certain threshold value on survival and treatment response can be implicated. METHODS TURBT materials that had not previously received any treatment (chemotherapy, radiotherapy, or immunotherapy) and were diagnosed for the first time at Mardin Training and Research Hospital between 2014 and 2022 were included in the study. The maximum TLS per 4× magnification field (field diameter: 4.5 mm) was recorded. Grouping and statistical analysis of the TLS number were performed using threshold values of "≥1", "≥2", and "≥3". RESULTS TLSs were more frequently found in high-grade tumors (P = 0.008) and showed a strong association with stage progression (P < 0.001). It was also significantly associated with many adverse histopathological parameters. Conversely, high TLS (≥1, ≥2, and ≥3) appeared to be associated with fewer recurrences (P = 0.032, P = 0.001, and P = 0.018, respectively), and cases with higher TLS showed longer recurrence-free survival (P = 0.089, P = 0.023, P = 0.037, respectively). TLS≥3 was found to be an independent parameter that was associated with favorable RFS (P = 0.019, HR = 0.401), and multifocality was found to be an independent risk factor for RFS (P = 0.023, HR = 2.302). CONCLUSION This study is the first to demonstrate the relationship between the presence and specific thresholds of TLS in TURBT materials with prognostic parameters. Including this information in the routine pathological examination of TURBT materials will allow a more accurate approach to treatment and follow-up, especially in patients with non-muscle invasive bladder cancer (NMIBC).
Collapse
Affiliation(s)
- Fatih Yilmaz
- Pathology Laboratory, Mardin Training and Research Hospital, Mardin, Turkey.
| | - Suleyman Sagir
- Department of Urology, Mardin Artuklu University, Mardin, Turkey.
| |
Collapse
|
2
|
Kavus H, Dorion RP. MSH2-Mutated Lynch Syndrome With 9 Synchronous Colon and Rectum Adenocarcinomas: An Extremely Rare Case Report. Int J Surg Pathol 2024:10668969241295691. [PMID: 39552452 DOI: 10.1177/10668969241295691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Synchronous colorectal carcinoma is having more than 1 primary carcinoma detected in a single patient at the same time or within 6 months of tumor diagnosis. Metachronous colorectal carcinoma is the presence of more than 1 primary carcinoma detected consecutively in a single person after a set time interval. Patients with Lynch syndrome and Muir-Torre syndrome (a subset of Lynch syndrome) inherit a germline mutation in 1 of the mismatch repair (MMR) genes. Patients with synchronous colorectal carcinoma have a higher proportion of MMR-mutated cancers than patients with solitary colorectal carcinoma. Most studies in the literature indicate that patients with synchronous colorectal cancers typically have only 2 carcinomas. However, there have been reports of a single patient having up to 6 synchronous carcinomas in the large intestine. This report discusses a patient with 9 simultaneous colorectal cancers at the initial diagnosis, along with a history of bladder cancer, sebaceous adenoma, and duodenal adenoma, associated with a germline mutS homolog 2 (MSH2) mutation. Additionally, the report explores various aspects of having synchronous colorectal cancers. More studies are needed to clarify the clinicopathologic and molecular landscape of these rare tumors and identify the best management and treatment strategies for these patients.
Collapse
Affiliation(s)
- Haluk Kavus
- Department of Laboratory Medicine and Pathology, Geisinger Medical Center, Danville, PA, USA
| | - Robert Patrick Dorion
- Department of Laboratory Medicine and Pathology, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
3
|
Antar RM, Fawaz C, Gonzalez D, Xu VE, Drouaud AP, Krastein J, Pio F, Murdock A, Youssef K, Sobol S, Whalen MJ. The Evolving Molecular Landscape and Actionable Alterations in Urologic Cancers. Curr Oncol 2024; 31:6909-6937. [PMID: 39590142 PMCID: PMC11593205 DOI: 10.3390/curroncol31110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The genetic landscape of urologic cancers has evolved with the identification of actionable mutations that impact diagnosis, prognosis, and therapeutic strategies. This narrative review consolidates existing literature on genetic mutations across key urologic cancers, including bladder, renal, prostate, upper tract urothelial, testicular, and penile. The review highlights mutations in DNA damage repair genes, such as BRCA1/2 and PTEN, as well as pathway alterations like FGFR and PD-L1 overexpression. These mutations influence tumor behavior and therapeutic outcomes, emphasizing the need for precision oncology approaches. Molecular profiling, through tools like next-generation sequencing, has revolutionized patient care by enabling targeted treatment strategies, especially in cancers with distinct molecular subtypes such as luminal or basal bladder cancer and clear cell renal carcinoma. Emerging therapies, including FGFR inhibitors and immune checkpoint blockade, offer new treatment avenues, although resistance mechanisms remain a challenge. We also emphasize the importance of biomarker identification for personalized management, especially in metastatic settings where treatment intensification is often required. Future research is needed to further elucidate our understanding of the genetics affecting urologic cancers, which will help develop novel, individualized therapies to enhance oncologic outcomes.
Collapse
Affiliation(s)
- Ryan Michael Antar
- Department of Urology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA (M.J.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Seema Mustafa, Jansen CS, Jani Y, Evans S, Zhuang TZ, Brown J, Nazha B, Master V, Bilen MA. The Evolving Landscape of Biomarkers for Immune Checkpoint Blockade in Genitourinary Cancers. Biomark Insights 2024; 19:11772719241254179. [PMID: 38827239 PMCID: PMC11143877 DOI: 10.1177/11772719241254179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have been approved for treatment of genitourinary malignancies and have revolutionized the treatment landscape of these tumors. However, despite the remarkable success of these therapies in some GU malignancies, many patients' tumors do not respond to these therapies, and others may experience significant side effects, such as immune-related adverse events (iRAEs). Accordingly, biomarkers and improved prognostic tools are critically needed to help predict which patients will respond to ICI, predict and mitigate risk of developing immune-related adverse events, and inform personalized choice of therapy for each patient. Ongoing clinical and preclinical studies continue to provide an increasingly robust understanding of the mechanisms of the response to immunotherapy, which continue to inform biomarker development and validation. Herein, we provide a comprehensive review of biomarkers of the response to immunotherapy in GU tumors and their role in selection of therapy and disease monitoring.
Collapse
Affiliation(s)
- Seema Mustafa
- Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline S Jansen
- Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | - Sean Evans
- Emory University School of Medicine, Atlanta, GA, USA
| | - Tony Z Zhuang
- Emory University School of Medicine, Atlanta, GA, USA
| | - Jacqueline Brown
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bassel Nazha
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj Master
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Nagakawa S, Shiota M, Takamatsu D, Tsukahara S, Mastumoto T, Blas L, Inokuchi J, Oda Y, Eto M. Clinical features and oncological outcomes of bladder cancer microsatellite instability. Int J Urol 2024; 31:438-445. [PMID: 38193376 DOI: 10.1111/iju.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVES Excellent anticancer effect for solid tumors with microsatellite instability (MSI)-high by anti-PD-1 antibody has been reported. In this study, we investigated the clinical impact of MSI status in bladder cancer. METHODS This study included 205 Japanese patients who underwent transurethral resection for bladder cancer between 2005 and 2021. The prevalence rates of microsatellite stable (MSS), MSI-low (MSI-L), and MSI-high (MSI-H) were determined using molecular testing. We examined the association of MSI status (MSS versus MSI-L/H) with clinicopathological characteristics and oncological outcomes. RESULTS MSI-L/H tumors were associated with higher T-category in non-muscle invasive bladder cancer (NMIBC). Additionally, MSI-L/H tumors were associated with a higher risk of intravesical recurrence in NMIBC patients treated with intravesical bacillus Calmette-Guérin (BCG) but not with non-BCG therapy. CONCLUSIONS This study suggested that the MSI status might serve as a predictive marker for intravesical recurrence after BCG intravesical therapy in NMIBC and highlighted an unmet need for an alternative treatment in patients with MSI-L/H tumors.
Collapse
Affiliation(s)
- Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dai Takamatsu
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Mastumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Chandran EBA, Iannantuono GM, Atiq SO, Akbulut D, Sinaii N, Simon NI, Banday AR, Boudjadi S, Gurram S, Nassar AH, Rosenberg JE, Butera G, Teo MY, Sonpavde G, Coleman JA, Apolo AB. Mismatch repair deficiency and microsatellite instability in urothelial carcinoma: a systematic review and meta-analysis. BMJ ONCOLOGY 2024; 3:e000335. [PMID: 39086924 PMCID: PMC11203074 DOI: 10.1136/bmjonc-2024-000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Background Mismatch repair deficiency (dMMR) and microsatellite instability-high (MSI-H) occur in a subset of cancers and have been shown to confer sensitivity to immune checkpoint inhibition (ICI); however, there is a lack of prospective data in urothelial carcinoma (UC). Methods and analysis We performed a systematic review to estimate the prevalence of dMMR and MSI-H in UC, including survival and clinical outcomes. We searched for studies published up to 26 October 2022 in major scientific databases. We screened 1745 studies and included 110. Meta-analyses were performed if the extracted data were suitable. Results The pooled weighted prevalences of dMMR in bladder cancer (BC) and upper tract UC (UTUC) were 2.30% (95% CI 1.12% to 4.65%) and 8.95% (95% CI 6.81% to 11.67%), respectively. The pooled weighted prevalences of MSI-H in BC and UTUC were 2.11% (95% CI 0.82% to 5.31%) and 8.36% (95% CI 5.50% to 12.53%), respectively. Comparing localised versus metastatic disease, the pooled weighted prevalences for MSI-H in BC were 5.26% (95% CI 0.86% to 26.12%) and 0.86% (95% CI 0.59% to 1.25%), respectively; and in UTUC, they were 18.04% (95% CI 13.36% to 23.91%) and 4.96% (95% CI 2.72% to 8.86%), respectively. Cumulatively, the response rate in dMMR/MSI-H metastatic UC treated with an ICI was 22/34 (64.7%) compared with 1/9 (11.1%) with chemotherapy. Conclusion Both dMMR and MSI-H occur more frequently in UTUC than in BC. In UC, MSI-H occurs more frequently in localised disease than in metastatic disease. These biomarkers may predict sensitivity to ICI in metastatic UC and resistance to cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Elias B A Chandran
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Saad O Atiq
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Dilara Akbulut
- Laboratory of Pathology, National Institutes of Health, Bethesda, Maryland, USA
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas I Simon
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Abdul Rouf Banday
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Salah Boudjadi
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Gurram
- Urologic Oncology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Amin H Nassar
- Department of Hematology/Oncology, Yale New Haven Hospital, New Haven, Connecticut, USA
| | | | - Gisela Butera
- Division of Library Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Yuen Teo
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guru Sonpavde
- Medical Oncology, AdventHealth Central Florida, Orlando, Florida, USA
| | | | - Andrea B Apolo
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Menz A, Gorbokon N, Viehweger F, Lennartz M, Hube-Magg C, Hornsteiner L, Kluth M, Völkel C, Luebke AM, Fraune C, Uhlig R, Minner S, Dum D, Höflmayer D, Sauter G, Simon R, Burandt E, Clauditz TS, Lebok P, Jacobsen F, Steurer S, Krech T, Marx AH, Bernreuther C. Pan-keratin Immunostaining in Human Tumors: A Tissue Microarray Study of 15,940 Tumors. Int J Surg Pathol 2023; 31:927-938. [PMID: 35946088 PMCID: PMC10492441 DOI: 10.1177/10668969221117243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
Abstract
To evaluate the efficiency of pan-keratin immunostaining, tissue microarrays of 13,501 tumor samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. In normal tissues, strong pan-keratin immunostaining was seen in epithelial cells. Staining intensity was lower in hepatocytes, islets of Langerhans, and pneumocytes but markedly reduced in the adrenal cortex. Pan-keratin was positive in ≥98% of samples in 62 (83%) of 75 epithelial tumor entities, including almost all adenocarcinomas, squamous cell and urothelial carcinomas. Only 17 of 121 tumor entities (13%) had a pan-keratin positivity rate between 25% and 98%, including tumors with mixed differentiation, endocrine/neuroendocrine tumors, renal cell carcinomas, adrenocortical tumors, and particularly poorly differentiated carcinoma subtypes. The 15 entities with pan-keratin positivity in 0.9%-25% were mostly of mesenchymal origin. Reduced/absent pan-keratin immunostaining was associated with high UICC stage (p = 0.0001), high Thoenes grade (p = 0.0183), high Fuhrman grade (p = 0.0049), advanced tumor stage (p < 0.0001) and lymph node metastasis (p = 0.0114) in clear cell renal cell carcinoma, advanced pT stage (p = 0.0007) in papillary renal cell carcinoma, and with advanced stage (p = 0.0023), high grade (p = 0.0005) as well as loss of ER and PR expression (each p < 0.0001) in invasive breast carcinoma of no special type (NST). In summary, pan-keratin can consistently be detected in the vast majority of epithelial tumors, although pan-keratin can be negative a fraction of renal cell, adrenocortical and neuroendocrine neoplasms. The data also link reduced pan-keratin immunostaining to unfavorable tumor phenotype in in epithelial neoplasms.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Hornsteiner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cosima Völkel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Alsaegh MA, Mahmoud O, Varma SR, Mathew A, Altaie AM, Zhu S. P63 and Ki-67 expression in radicular cyst. J Oral Biol Craniofac Res 2023; 13:575-580. [PMID: 37545663 PMCID: PMC10403738 DOI: 10.1016/j.jobcr.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Objectives The aim of the current study was to identify the expression of P63 and its relation to odontogenic epithelial cell proliferation, severity of the inflammatory infiltrate and size of radicular cysts (RCs). Methods In this retrospective cross-sectional study, 30 cases of paraffin-embedded RCs were randomly selected from the archive. P63 and Ki-67 expression was assessed by immunohistochemistry. Results Epithelial P63 expression was absent in four (13.3%), weak in 10 (33.3%), and moderate in 16 (53.3%) cases. In the connective tissue wall of RC, P63 expression was absent in two (6.7%) cases, weak in 24 (80.0%) cases, and moderate in four (13.3%) cases. Ki-67 was found to be weakly expressed in 12 (40.0%) cases, moderately expressed in 13 (43.3%), and strongly expressed in five (16.7%) cases. No correlation was found between Ki-67 expression in odontogenic epithelium and P63 expression in the odontogenic epithelium (rho = 0.110, p = .563) or fibrous capsule (rho = 0.160, p = .399). Nevertheless, we found a positive correlation between Ki-67 expression in the odontogenic epithelium and the size of the RC (rho = 0.450, p = .013). The inflammatory infiltrate was negatively correlated with P63 expression in the odontogenic epithelium (rho = -0.428, p = .018), and with the size of cysts (rho = -0.728, p < .001). Conclusions There is a high expression of P63 throughout the odontogenic epithelium and connective tissue capsule of the RC. P63 expression in the odontogenic epithelium is negatively correlated with the degree of the inflammatory infiltrate but not with epithelial cell proliferation or the size of the cyst.
Collapse
Affiliation(s)
- Mohammed Amjed Alsaegh
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Okba Mahmoud
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Asok Mathew
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shengrong Zhu
- Department of Oral and Maxillofacial Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| |
Collapse
|
9
|
Wong K, Abascal F, Ludwig L, Aupperle-Lellbach H, Grassinger J, Wright CW, Allison SJ, Pinder E, Phillips RM, Romero LP, Gal A, Roady PJ, Pires I, Guscetti F, Munday JS, Peleteiro MC, Pinto CA, Carvalho T, Cota J, Du Plessis EC, Constantino-Casas F, Plog S, Moe L, de Brot S, Bemelmans I, Amorim RL, Georgy SR, Prada J, Del Pozo J, Heimann M, de Carvalho Nunes L, Simola O, Pazzi P, Steyl J, Ubukata R, Vajdovich P, Priestnall SL, Suárez-Bonnet A, Roperto F, Millanta F, Palmieri C, Ortiz AL, Barros CSL, Gava A, Söderström ME, O'Donnell M, Klopfleisch R, Manrique-Rincón A, Martincorena I, Ferreira I, Arends MJ, Wood GA, Adams DJ, van der Weyden L. Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer. Genome Biol 2023; 24:191. [PMID: 37635261 PMCID: PMC10464500 DOI: 10.1186/s13059-023-03026-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND In humans, muscle-invasive bladder cancer (MIBC) is highly aggressive and associated with a poor prognosis. With a high mutation load and large number of altered genes, strategies to delineate key driver events are necessary. Dogs and cats develop urothelial carcinoma (UC) with histological and clinical similarities to human MIBC. Cattle that graze on bracken fern also develop UC, associated with exposure to the carcinogen ptaquiloside. These species may represent relevant animal models of spontaneous and carcinogen-induced UC that can provide insight into human MIBC. RESULTS Whole-exome sequencing of domestic canine (n = 87) and feline (n = 23) UC, and comparative analysis with human MIBC reveals a lower mutation rate in animal cases and the absence of APOBEC mutational signatures. A convergence of driver genes (ARID1A, KDM6A, TP53, FAT1, and NRAS) is discovered, along with common focally amplified and deleted genes involved in regulation of the cell cycle and chromatin remodelling. We identify mismatch repair deficiency in a subset of canine and feline UCs with biallelic inactivation of MSH2. Bovine UC (n = 8) is distinctly different; we identify novel mutational signatures which are recapitulated in vitro in human urinary bladder UC cells treated with bracken fern extracts or purified ptaquiloside. CONCLUSION Canine and feline urinary bladder UC represent relevant models of MIBC in humans, and cross-species analysis can identify evolutionarily conserved driver genes. We characterize mutational signatures in bovine UC associated with bracken fern and ptaquiloside exposure, a human-linked cancer exposure. Our work demonstrates the relevance of cross-species comparative analysis in understanding both human and animal UC.
Collapse
Affiliation(s)
- Kim Wong
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Federico Abascal
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Latasha Ludwig
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany and Institute of Pathology, Department Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Grassinger
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany and Institute of Pathology, Department Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Colin W Wright
- School of Pharmacy and Medical Sciences, University of Bradford, West Yorkshire, UK
| | - Simon J Allison
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Emma Pinder
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Laura P Romero
- Departmento de Patología, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico City, México
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patrick J Roady
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isabel Pires
- Department of Veterinary Science, CECAV-Veterinary and Animal Research Center, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - John S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Maria C Peleteiro
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | - Carlos A Pinto
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | | | - João Cota
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | | | | | | | - Lars Moe
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, Bern, Switzerland
| | | | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil
| | - Smitha R Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Justina Prada
- Department of Veterinary Science, CECAV-Veterinary and Animal Research Center, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| | - Jorge Del Pozo
- Royal Dick School of Veterinary Sciences, University of Edinburgh, Roslin, Scotland, UK
| | | | | | | | - Paolo Pazzi
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Johan Steyl
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Rodrigo Ubukata
- E+ Especialidades Veterinárias - Veterinary Oncology, São Paulo, Brazil
| | - Peter Vajdovich
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Franco Roperto
- Dipartimento Di Biologia, Università Degli Studi Di Napoli Federico II, Napoli, Italy
| | | | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ana L Ortiz
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Claudio S L Barros
- Faculdade de Medicina Veterinária E Zootecnia, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Aldo Gava
- Pathology Laboratory of the Centro de Ciencias Agro-Veterinarias, Universidade Do Estado de Santa Catarina, Lages, SC, Brazil
| | - Minna E Söderström
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marie O'Donnell
- Department of Pathology, Western General Hospital, Edinburgh, Scotland, UK
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Andrea Manrique-Rincón
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Inigo Martincorena
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark J Arends
- University of Edinburgh Division of Pathology, Cancer Research UK Edinburgh Cancer Centre, Institute of Genetics & Cancer, Edinburgh, Scotland, UK
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
10
|
Weidemann S, Gorbokon N, Lennartz M, Hube-Magg C, Fraune C, Bernreuther C, Clauditz TS, Jacobsen F, Jansen K, Schmalfeldt B, Wölber L, Paluchowski P, Berkes E, Heilenkötter U, Sauter G, Uhlig R, Wilczak W, Steurer S, Simon R, Krech T, Marx A, Burandt E, Lebok P. High Homogeneity of Mesothelin Expression in Primary and Metastatic Ovarian Cancer. Appl Immunohistochem Mol Morphol 2023; 31:77-83. [PMID: 36728364 PMCID: PMC9928564 DOI: 10.1097/pai.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2022] [Indexed: 02/03/2023]
Abstract
To study the extent of heterogeneity of mesothelin overexpression in primary ovarian cancers and their peritoneal and lymph node metastases, a tissue microarray (TMA) was constructed from multiple sites of 220 ovarian cancers and analyzed by immunohistochemistry. One tissue core each was taken from up to 18 different tumor blocks per cancer, resulting in a total of 2460 tissue spots from 423 tumor sites (188 primary cancers, 162 peritoneal carcinosis, and 73 lymph node metastases). Positive mesothelin expression was found in 2041 of the 2342 (87%) arrayed tissue spots and in 372 of the 392 (95%) tumor sites that were interpretable for mesothelin immunohistochemistry. Intratumoral heterogeneity was found in 23% of 168 primary cancer sites interpretable for mesothelin and decreased to 12% in 154 peritoneal carcinosis and to 6% in 71 lymph node metastases ( P <0.0001). Heterogeneity between the primary tumor and matched peritoneal carcinosis was found in 16% of 102 cancers with interpretable mesothelin results. In these cancers, the mesothelin status switched from positive in the primary tumor to negative in the peritoneal carcinosis (3 cancers) in or vice versa (2 cancers), or a mixture of positive and negative peritoneal carcinoses was found (11 cancers). No such switch was seen between the mesothelin-interpretable primary tumors and their nodal metastases of 59 cancers, and only 1 mesothelin-positive tumor had a mixture of positive and negative lymph node metastases. In conclusion, mesothelin expression is frequent and highly homogeneous in ovarian cancer.
Collapse
Affiliation(s)
- Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | | | | | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | | | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Kristina Jansen
- General, Visceral and Thoracic Surgery Department and Clinic
| | | | - Linn Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf
| | | | - Enikö Berkes
- Department of Gynecology, Regio Clinic Itzehoe, Itzehoe
| | | | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
- Clinical Center Osnabrueck, Institute of Pathology, Osnabrueck
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| |
Collapse
|
11
|
Chan EM, Foster KJ, Bass AJ. WRN Is a Promising Synthetic Lethal Target for Cancers with Microsatellite Instability (MSI). Cancer Treat Res 2023; 186:313-328. [PMID: 37978143 DOI: 10.1007/978-3-031-30065-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Microsatellite instability (MSI), a type of genetic hypermutability arising from impaired DNA mismatch repair (MMR), is observed in approximately 3% of all cancers. Preclinical work has identified the RecQ helicase WRN as a promising synthetic lethal target for patients with MSI cancers. WRN depletion substantially impairs the viability of MSI, but not microsatellite stable (MSS), cells. Experimental evidence suggests that this synthetic lethal phenotype is driven by numerous TA dinucleotide repeats that undergo expansion mutations in the setting of long-standing MMR deficiency. The lengthening of TA repeats increases their propensity to form secondary DNA structures that require WRN to resolve. In the absence of WRN helicase activity, these unresolved DNA secondary structures stall DNA replication forks and induce catastrophic DNA damage.
Collapse
Affiliation(s)
- Edmond M Chan
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA.
- Broad Institute of MIT and Harvard, Cambridge, USA.
- New York Genome Center, New York, USA.
| | | | - Adam J Bass
- Novartis Institutes for BioMedical Research, Cambridge, USA
| |
Collapse
|
12
|
Goutas D, Palamaris K, Stofas A, Politakis N, Despotidi A, Giannopoulou I, Goutas N, Vlachodimitropoulos D, Kavantzas N, Lazaris AC, Gakiopoulou H. Immunohistochemical Study of Bladder Cancer Molecular Subtypes and Their Association with PD-L1 Expression. Cancers (Basel) 2022; 15:cancers15010188. [PMID: 36612181 PMCID: PMC9818420 DOI: 10.3390/cancers15010188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
The significant heterogeneity in clinical outcomes among patients with bladder cancer has highlighted the existence of different biological subtypes of muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Meanwhile, immune checkpoint proteins and their interference with tumor-related immune-evasive strategies has led to the development of several immunotherapeutic drugs targeting programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1). However, the lack of any known biomarker that could predict responses to immunotherapy has led to a more agnostic therapeutic approach. Here, we present a study conducted in 77 bladder cancer (BC) patients (n = 77), ranging from stages pTa to pT2. Tumor specimens were resected via transurethral resection of bladder tumor (TURBT) and consistuted of 24 low-grade (LG) and 53 high-grade (HG) tumors. Patients' tumors were then categorized into molecular subtypes, via immunohistochemistry (CK5/6 and GATA3). Furthermore, all tumor specimens were stained with anti-PD-L1 and demonstrated significant correlations with basal immunophenotype, stage pT2 and HG tumors. As such, we attempted to stratify patients into groups of likely-responders and likely-not-responders to immunotherapy with anti-PD-L1, based on their molecular phenotype. Finally, in acknowledging the fact that there is a universal lack of biomarkers associated with predicting BC response to immunotherapeutic drugs, we tested all tumors for deficiency of mismatch repair proteins (MMR).
Collapse
Affiliation(s)
- Dimitrios Goutas
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Correspondence:
| | - Kostas Palamaris
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasios Stofas
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nektarios Politakis
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Antonia Despotidi
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Ioanna Giannopoulou
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nikolaos Goutas
- Department of Forensic Medicine and Toxicology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios Vlachodimitropoulos
- Department of Forensic Medicine and Toxicology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Andreas C. Lazaris
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Hariklia Gakiopoulou
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
13
|
Papadopoulou K, Koliou GA, Tsimiliotis D, Kotoula V, Foukas P, Goussia A, Tsiatas M, Visvikis A, Chatzopoulos K, Nifora M, Charchanti A, Koumarianou A, Christodoulou C, Pectasides D, Psyrri A, Fostira F, Fountzilas G, Samantas E. Investigation of prognostic biomarkers in patients with urothelial carcinoma treated with platinum-based regimens. Urol Oncol 2022; 40:538.e15-538.e24. [PMID: 36041976 DOI: 10.1016/j.urolonc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Bladder cancer (BC) is a heterogeneous malignancy with dismal outcome. PATIENTS AND METHODS Mutations in genes, altered or linked to platinum sensitivity in BC, were examined in 66 patients' tumors along with tumor infiltrating lymphocytes (TILs) density and MMR, PD-L1 and CD8 protein expression, as well as basal and luminal subtypes, defined by protein expression of markers, including CK5/6 and GATA3 or CK20, respectively. RESULTS 41 tumors harbored mutations, mainly in TP53 (38%), ARID1A (17%) and the DNA damage response and repair (DDR) genes ERCC2 (17%) and BRCA2 (15%). Mutations in other DDR relevant genes were also present. Age showed unfavorable prognosis for overall survival (HR=1.07, P = 0.026); no benefit was seen for patients with TP53, ARID1A, ERCC2 or BRCA2 mutations or mutations in 1 or more DDR genes. PD-L1 status positively correlated with stromal (rho=0.46, P < 0.001) and intratumoral (rho=0.53, P < 0.001) CD8 expression or TILs (rho=0.29, P = 0.018); none associated with overall survival (OS). A statistically significant difference was observed between PD-L1 status and immunohistochemistry (IHC)‑based subtypes, with tumors classified as luminal (GATA3+ and/or CK20+ and CK5/6-) showing lower PD-L1 expression relative to basal (CK5/6+ and GATA3- and/or CK20-) (median value 0 vs. 2.5, P = 0.029). Concerning OS, no statistically significant difference was seen among patients with basal or luminal tumors. CONCLUSION No association was seen herein between DDR mutations, TILs, PD-L1, CD8 expression or IHC-based subtypes and patient survival; these observations warrant validation within a larger cohort.
Collapse
Affiliation(s)
- Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Haidari, Greece
| | - Anna Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Marinos Tsiatas
- Department of Oncology, Athens Medical Center, Marousi, Greece
| | - Anastasios Visvikis
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Kyriakos Chatzopoulos
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Martha Nifora
- Second Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Haidari, Greece
| | - Antonia Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | | | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Section of Medical Oncology, Athens, Greece
| | - Amanda Psyrri
- Attikon University Hospital, Faculty of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, InRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece; Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Medical Oncology, German Oncology Center, Limassol, Cyprus
| | - Epaminontas Samantas
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| |
Collapse
|
14
|
Microsatellite Instability: From the Implementation of the Detection to a Prognostic and Predictive Role in Cancers. Int J Mol Sci 2022; 23:ijms23158726. [PMID: 35955855 PMCID: PMC9369169 DOI: 10.3390/ijms23158726] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023] Open
Abstract
Microsatellite instability (MSI) has been identified in several tumors arising from either germline or somatic aberration. The presence of MSI in cancer predicts the sensitivity to immune checkpoint inhibitors (ICIs), particularly PD1/PD-L1 inhibitors. To date, the predictive role of MSI is currently used in the selection of colorectal cancer patients for immunotherapy; moreover, the expansion of clinical trials into other cancer types may elucidate the predictive value of MSI for non-colorectal tumors. In clinical practice, several assays are used for MSI testing, including immunohistochemistry (IHC), polymerase chain reaction (PCR) and next-generation sequencing (NGS). In this review, we provide an overview of MSI in various cancer types, highlighting its potential predictive/prognostic role and the clinical trials performed. Finally, we focus on the comparison data between the different assays used to detect MSI in clinical practice.
Collapse
|
15
|
Eckstein M. [Immunological biomarker research in uro-oncology-using the example of urothelial cancer]. UROLOGIE (HEIDELBERG, GERMANY) 2022; 61:734-738. [PMID: 35925244 DOI: 10.1007/s00120-022-01852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The most common malignant tumor of the urinary tract system is urothelial carcinoma (UC). With the introduction of novel immunologic therapy options in both metastatic and localized settings, the exploration of immunologic biomarkers to predict potential treatment success has become a focus of clinical translational research. For example, expression levels of programmed cell death ligand 1 (PD-L1) in UC tumors can help clinicians decide which patients are more likely to respond to immuno-oncology therapies; in light of new approvals with mandated PD-L1 testing (e.g., adjuvant nivolumab therapy after radical cystectomy), harmonization of PD-L1 testing is becoming increasingly important. However, in addition to PD-L1 determination, broader potentially predictive biomarkers such as tumor mutational burden and immune signatures/phenotypes have been and continue to be investigated in clinical trials. This review will provide a streamlined overview of existing evidence and new developments in the field of urothelial carcinoma.
Collapse
Affiliation(s)
- Markus Eckstein
- Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91052, Erlangen, Deutschland.
| |
Collapse
|
16
|
Sobrino-Reig E, Meizoso T, García J, Varillas-Delgado D, Martin YB. Morphological predictors for microsatellite instability in urothelial carcinoma. Diagn Pathol 2021; 16:106. [PMID: 34801034 PMCID: PMC8606048 DOI: 10.1186/s13000-021-01168-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Microsatellite instability occurs due to a series of mutations in the DNA pairing error repair (Mismatch repair; MMR) genes, which can affect germ cells as occurs in Lynch syndrome, whose patients are at high risk of developing multiple cancers. The loss of MMR protein is commonly determined by immunohistochemical studies. Although the relation between microsatellite instability and urothelial carcinomas has been widely studied, its evaluation is not currently performed in the analysis of urothelial carcinomas. Methods In this study, the microsatellite status of 139 urothelial carcinomas was analyzed and their clinicopathological characteristics were evaluated. We identified that 10.3% (13 patients) of urothelial carcinomas had loss of MMR protein expression (9 MLH1; 5 MSH2; 2 PMS2; 2 PSH6; n = 139). Results Results suggest that these tumors occur more frequently in males, are more frequently located in the bladder or ureters, and present a high tumor grade with a papillary histological pattern that does not infiltrate the lamina propria or, in the case of infiltrating tumors, that grows into perivesical tissues. Conclusions We identified patients with the aforementioned tumor characteristics as patients with a high probability of presenting loss of MMR protein expression, and consider that only these patients should undergo further immunohistochemical and molecular techniques for proper diagnosis. Therefore, we propose that the clinicopathological characteristics found in the present study could become possible markers to determine which cases should undergo additional tests.
Collapse
Affiliation(s)
| | - Telma Meizoso
- Hospital Universitario de Móstoles, Móstoles, Madrid, Spain.,Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jesús García
- Hospital Universitario de Móstoles, Móstoles, Madrid, Spain.,Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - David Varillas-Delgado
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Yasmina B Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
17
|
Prognostic influence of microsatellite alterations of muscle-invasive bladder cancer treated with radical cystectomy. Urol Oncol 2021; 40:64.e9-64.e15. [PMID: 34538725 DOI: 10.1016/j.urolonc.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To examine the prognostic effect of microsatellite instability (MSI) and loss of heterozygosity (LOH) on cancer-specific survival (CSS) in patients with muscle-invasive bladder cancer (MIBC). PATIENTS AND METHODS The liquid nitrogen-preserved specimens of 220 patients between March 2009 and December 2012 were analyzed for the presence of MSI and LOH in 12 loci (ACTBP2, D16S310, D16S476, D18S51, D4S243, D9S162, D9S171, D9S747, FGA, INF-α, MBP, MJD) using polymerase chain reaction. MSI was defined as MSI-stable, MSI-Low, or MSI-High if instability was detected in 0, 1, or 2 or more of the examined markers, respectively. The association between MSI-High and LOH and CSS was analyzed using uni- and multivariate analyses and the degree of agreement between tumor and urine samples were determined. RESULTS MSI were found in 1030 (39%) and 1148 (43.5%) in tumor and urine specimens, respectively (Kappa = 0.77). On the other hand, LOH was found in 163 (6.2%) of tumor tissues and 44 (1.7%) in urine specimens (Kappa = 0.34). Microsatellite alterations were significantly associated with worse CSS at 1- and 5-year in tumor tissue (95% and 83.7% vs. 65.8% and 3.5%, respectively; P < 0.001) and in urine sample (90% and 64% vs. 46.5% and 9.3%, respectively; P < 0.001). MSI and/or LOH was an independent predictor of CSS (HR: 9.8; 95%CI: 5.1-18.9; P < 0.001). CONCLUSIONS Microsatellite alterations were potentially an independent predictor of CSS in patients with MIBC. The agreement was good between tumor and urine MSI but weak for LOH.
Collapse
|
18
|
Steurer S, Schneider J, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Menz A, Bernreuther C, Lebok P, Sauter G, Simon R, Jacobsen F, Uhlig R, Wilczak W, Minner S, Burandt E, Krech RH, Dum D, Krech T, Marx AH, Clauditz TS. Immunohistochemically detectable thyroglobulin expression in extrathyroidal cancer is 100% specific for thyroidal tumor origin. Ann Diagn Pathol 2021; 54:151793. [PMID: 34425503 DOI: 10.1016/j.anndiagpath.2021.151793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
Thyroglobulin is a secreted 660 kDa glycoprotein produced by thyroid follicular cells used in diagnostic pathology to secure or exclude a thyroidal origin of metastases of unknown primary tumors. This study was performed to estimate specificity of thyroglobulin immunohistochemistry. 9974 tumor samples from 109 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. Thyroglobulin was strongly expressed in all normal thyroid samples but not in any other normal tissues. Thyroglobulin immunostaining was detected in 99.1% of 106 thyroid adenomas, 98.1% of 364 papillary, 95.2% of 147 follicular, and 7.5% of 40 anaplastic thyroid cancers. Twelve of 15 thyroid samples that were thyroglobulin negative on TMAs showed at least a weak focal thyroglobulin positivity in corresponding large sections, suggesting higher sensitivity of large section analysis. Thyroglobulin positivity in one diffuse large B-cell lymphoma of the thyroid, one chondrosarcoma metastasis to the thyroid, and 42.4% of 92 medullary thyroid cancers was considered to be caused by diffusion of thyroidal colloid from destroyed or even intact adjacent follicles. Thyroglobulin positivity was, however, not seen in 6403 extrathyroidal tumors from 104 different tumor types and subtypes. Our data demonstrate a complete specificity of positive thyroglobulin immunostaining for thyroid origin in tumor tissues obtained from extrathyroidal locations. However, for all tumors located within the thyroid, false positivity can occur as a result of tissue contamination by thyroglobulin rich thyroid colloid from adjacent normal tissue.
Collapse
Affiliation(s)
- Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Schneider
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer H Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Galsky MD, Balar AV, Black PC, Campbell MT, Dykstra GS, Grivas P, Gupta S, Hoimes CJ, Lopez LP, Meeks JJ, Plimack ER, Rosenberg JE, Shore N, Steinberg GD, Kamat AM. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of urothelial cancer. J Immunother Cancer 2021; 9:e002552. [PMID: 34266883 PMCID: PMC8286774 DOI: 10.1136/jitc-2021-002552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
A number of immunotherapies have been developed and adopted for the treatment of urothelial cancer (encompassing cancers arising from the bladder, urethra, or renal pelvis). For these immunotherapies to positively impact patient outcomes, optimal selection of agents and treatment scheduling, especially in conjunction with existing treatment paradigms, is paramount. Immunotherapies also warrant specific and unique considerations regarding patient management, emphasizing both the prompt identification and treatment of potential toxicities. In order to address these issues, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts in the field of immunotherapy for urothelial cancer. The expert panel developed this clinical practice guideline (CPG) to inform healthcare professionals on important aspects of immunotherapeutic treatment for urothelial cancer, including diagnostic testing, treatment planning, immune-related adverse events (irAEs), and patient quality of life (QOL) considerations. The evidence- and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers treating patients with urothelial cancer.
Collapse
Affiliation(s)
- Matthew D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arjun V Balar
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Peter C Black
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gail S Dykstra
- Bladder Cancer Advocacy Network (BCAN), Bethesda, Maryland, USA
- Dykstra Research, Seattle, Washington, USA
| | - Petros Grivas
- Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington, USA
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shilpa Gupta
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Christoper J Hoimes
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Lidia P Lopez
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Joshua J Meeks
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Elizabeth R Plimack
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Deparment of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, South Carolina, USA
| | - Gary D Steinberg
- Department of Urology and Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Ashish M Kamat
- Department of Urology under Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Menz A, Bauer R, Kluth M, Marie von Bargen C, Gorbokon N, Viehweger F, Lennartz M, Völkl C, Fraune C, Uhlig R, Hube-Magg C, De Wispelaere N, Minner S, Sauter G, Kind S, Simon R, Burandt E, Clauditz T, Lebok P, Jacobsen F, Steurer S, Wilczak W, Krech T, Marx AH, Bernreuther C. Diagnostic and prognostic impact of cytokeratin 19 expression analysis in human tumors: a tissue microarray study of 13,172 tumors. Hum Pathol 2021; 115:19-36. [PMID: 34102222 DOI: 10.1016/j.humpath.2021.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
To evaluate cytokeratin 19 (CK19) expression in normal and cancerous tissues, 15,977 samples from 122 tumor types and 608 samples of 76 normal tissue types were analyzed by immunohistochemistry (IHC). In normal tissues, CK19 expression occurred in epithelial cells of most glandular organs but was strictly limited to the basal cell layer of nonkeratinizing squamous epithelium and absent in the skin. CK19 expression in ≥90% of cases was seen in 34% of the tumor entities including the adenocarcinomas of the pancreas (99.4%), colorectum (99.8%), esophagus (98.7%), and stomach (97.7%), as well as breast cancer (90.0%-100%), high-grade serous (99.1%) or endometrioid (97.8%) ovarian cancer, and urothelial carcinoma (92.6%-100%). A low CK19 positivity rate (0.1-10%) was seen in 5 of 122 tumor entities including hepatocellular carcinoma and seminoma. A comparison of tumor versus normal tissue findings demonstrated that upregulation and downregulation of CK19 can occur in cancer and that both alterations can be linked to unfavorable phenotypes. CK19 downregulation was linked to high grade (p = 0.0017) and loss of estrogen receptor- and progesterone receptor-expression (p < 0.0001 each) in invasive breast carcinoma of no special type. CK19 upregulation was linked to nodal metastases in neuroendocrine tumors and papillary thyroid carcinomas (p < 0.05 each) and to poor grade in clear cell renal cell carcinoma (p < 0.05). CK19 upregulation was particularly common in squamous cell carcinomas. We concluded that CK19 IHC might separate primary liver cell carcinoma from liver metastases, seminoma from other testicular tumors, and helps in the detection of early neoplastic transformation in squamous epithelium.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rifka Bauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Clara Marie von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cosima Völkl
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Noémi De Wispelaere
- Department and Clinic of Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
21
|
Dum D, Steurer S, Simon R, Zimmermann PV, Burandt E, Clauditz TS, Fisch M, Rink M, Dahlem R, Höppner W, Zecha H, Doh O, Matthies C, Wilczak W, Sauter G, Fraune C. Mismatch repair deficiency occurs very rarely in seminomas. Transl Androl Urol 2021; 10:1048-1055. [PMID: 33850739 PMCID: PMC8039613 DOI: 10.21037/tau-20-1355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Dense tumor-associated lymphocyte infiltration is linked to mismatch repair (MMR) deficiency in colorectal and endometrial cancer. MMR deficiency is of high clinical importance as MMR deficient cancers tend to react favorably to treatment with immune checkpoint inhibitors. Strong lymphocytic infiltration is a morphological hallmark of seminomas. We thus asked whether seminomas may exhibit MMR deficiency at relevant frequency. Methods To screen for tumors with MMR deficiency, protein expression of MLH1, PMS2, MSH2, and MSH6 was analyzed by immunohistochemistry (IHC) on a tissue microarray (TMA) containing 574 seminomas. Results In total, 536 cases were evaluable resulting in 481 seminomas with unequivocally intact MMR protein expression. In 55 cancers, one or several IHC stains were equivocal and lacked detectable MMR protein in both tumor and stromal cells. Large section IHC analysis of all 55 equivocal cases demonstrated substantial staining issues due to improper fixation in 54 cases and identified one tumor with clear-cut MLH1 and PMS2 protein loss. This seminoma showed homogeneous loss of MLH1 and PMS2 in the entire tumor mass whereas minor adjacent foci of associated germ cell neoplasia in situ (GCNIS) were MMR intact. Polymerase chain reaction (PCR) analysis using the 5 microsatellite loci of the “Bethesda Panel” revealed instability in 1 of 4 interpretable loci (“MSI-low”) and additional instability of the complex tetra-penta repeat locus MYCL1 in this tumor. Conclusions In summary, one single seminoma with MMR deficiency, characterized by protein loss of MLH1 and PMS2, was identified among 536 interpretable seminomas (0.19%). MMR deficiency is not a relevant determinant of lymphocyte influx in seminoma.
Collapse
Affiliation(s)
- David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Henrik Zecha
- Department of Urology, Albertinen Clinic, Hamburg, Germany
| | - Ousman Doh
- Department of Urology, Regio Medical Center Elmshorn, Elmshorn, Germany
| | - Cord Matthies
- Department of Urology, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Menz A, Weitbrecht T, Gorbokon N, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Bernreuther C, Lebok P, Clauditz T, Sauter G, Uhlig R, Wilczak W, Steurer S, Minner S, Burandt E, Krech R, Dum D, Krech T, Marx A, Simon R. Diagnostic and prognostic impact of cytokeratin 18 expression in human tumors: a tissue microarray study on 11,952 tumors. Mol Med 2021; 27:16. [PMID: 33588765 PMCID: PMC7885355 DOI: 10.1186/s10020-021-00274-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokeratin 18 (CK18) is an intermediate filament protein of the cytokeratin acidic type I group and is primarily expressed in single-layered or "simple" epithelial tissues and carcinomas of different origin. METHODS To systematically determine CK18 expression in normal and cancerous tissues, 11,952 tumor samples from 115 different tumor types and subtypes (including carcinomas, mesenchymal and biphasic tumors) as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. RESULTS CK18 was expressed in normal epithelial cells of most organs but absent in normal squamous epithelium. At least an occasional weak CK18 positivity was seen in 90 of 115 (78.3%) tumor types. Wide-spread CK18 positivity was seen in 37 (31.9%) of tumor entities, including adenocarcinomas of the lung, prostate, colon and pancreas as well as ovarian cancer. Tumor categories with variable CK18 immunostaining included cancer types arising from CK18 positive precursor cells but show CK18 downregulation in a fraction of cases, tumor types arising from CK18 negative precursor cells occasionally exhibiting CK18 neo-expression, tumors derived from normal tissues with variable CK18 expression, and tumors with a mixed differentiation. CK18 downregulation was for example seen in renal cell cancers and breast cancers, whereas CK18 neo-expression was found in squamous cell carcinomas of various origins. Down-regulation of CK18 in invasive breast carcinomas of no special type and clear cell renal cell carcinomas (ccRCC) was related to adverse tumor features in both tumors (p ≤ 0.0001) and poor patient prognosis in ccRCC (p = 0.0088). Up-regulation of CK18 in squamous cell carcinomas was linked to high grade and lymph node metastasis (p < 0.05). In summary, CK18 is consistently expressed in various epithelial cancers, especially adenocarcinomas. CONCLUSIONS Down-regulation or loss of CK18 expression in cancers arising from CK18 positive tissues as well as CK18 neo-expression in cancers originating from CK18 negative tissues is linked to cancer progression and may reflect tumor dedifferentiation.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Timo Weitbrecht
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
23
|
p63 expression in human tumors and normal tissues: a tissue microarray study on 10,200 tumors. Biomark Res 2021; 9:7. [PMID: 33494829 PMCID: PMC7830855 DOI: 10.1186/s40364-021-00260-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Tumor protein 63 (p63) is a transcription factor of the p53 gene family involved in differentiation of several tissues including squamous epithelium. p63 immunohistochemistry is broadly used for tumor classification but published data on its expression in cancer is conflicting. Methods To comprehensively catalogue p63 expression, tissue microarrays (TMAs) containing 12,620 tissue samples from 115 tumor entities and 76 normal tissue types were analyzed. Results p63 expression was seen in various normal tissues including squamous epithelium and urothelium. At least occasional weak p63 positivity could be detected in 61 (53%) of 115 different tumor types. The frequencies of p63 positivity was highest in squamous cell carcinomas irrespective of their origin (96–100%), thymic tumors (100%), urothelial carcinomas (81–100%), basal type tumors such as basal cell carcinomas (100%), and various salivary gland neoplasias (81–100%). As a rule, p63 was mostly expressed in cancers derived from p63 positive normal tissues and mostly not detectable in tumors derived from p63 negative cancers. However, exceptions from this rule occurred. A positive p63 immunostaining in cancers derived from p63 negative tissues was unrelated to aggressive phenotype in 422 pancreatic cancers, 160 endometrium cancers and 374 ovarian cancers and might be caused by aberrant squamous differentiation or represent stem cell properties. In 355 gastric cancers, aberrant p63 expression occurred in 4% and was linked to lymph node metastasis (p = 0.0208). Loss of p63 in urothelial carcinomas - derived from p63 positive urothelium - was significantly linked to advanced stage, high grade (p < 0.0001 each) and poor survival (p < 0.0001) and might reflect clinically relevant tumor dedifferentiation. Conclusion The high prevalence of p63 expression in specific tumor types makes p63 immunohistochemistry a suitable diagnostic tool. Loss of p63 expression might constitute a feature of aggressive cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00260-5.
Collapse
|