1
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
2
|
Aparici-Herraiz I, Gualdrón-López M, Castro-Cavadía CJ, Carmona-Fonseca J, Yasnot MF, Fernandez-Becerra C, del Portillo HA. Antigen Discovery in Circulating Extracellular Vesicles From Plasmodium vivax Patients. Front Cell Infect Microbiol 2022; 11:811390. [PMID: 35141172 PMCID: PMC8819181 DOI: 10.3389/fcimb.2021.811390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite with 7 million annual clinical cases and 2.5 billion people living under risk of infection. There is an urgent need to discover new antigens for vaccination as only two vaccine candidates are currently in clinical trials. Extracellular vesicles (EVs) are small membrane-bound vesicles involved in intercellular communication and initially described in reticulocytes, the host cell of P. vivax, as a selective disposal mechanism of the transferrin receptor (CD71) in the maturation of reticulocytes to erythrocytes. We have recently reported the proteomics identification of P. vivax proteins associated to circulating EVs in P. vivax patients using size exclusion chromatography followed by mass spectrometry (MS). Parasite proteins were detected in only two out of ten patients. To increase the MS signal, we have implemented the direct immuno-affinity capture (DIC) technique to enrich in EVs derived from CD71-expressing cells. Remarkably, we identified parasite proteins in all patients totaling 48 proteins and including several previously identified P. vivax vaccine candidate antigens (MSP1, MSP3, MSP7, MSP9, Serine-repeat antigen 1, and HSP70) as well as membrane, cytosolic and exported proteins. Notably, a member of the Plasmodium helical interspersed sub-telomeric (PHIST-c) family and a member of the Plasmodium exported proteins, were detected in five out of six analyzed patients. Humoral immune response analysis using sera from vivax patients confirmed the antigenicity of the PHIST-c protein. Collectively, we showed that enrichment of EVs by CD71-DIC from plasma of patients, allows a robust identification of P. vivax immunogenic proteins. This study represents a significant advance in identifying new antigens for vaccination against this human malaria parasite.
Collapse
Affiliation(s)
| | | | | | - Jaime Carmona-Fonseca
- Grupo de Salud y Comunidad Cesar Uribe Piedrahíta, Universidad de Antioquia, Medellín, Colombia
| | - María Fernanda Yasnot
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Monteria, Colombia
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
- *Correspondence: Carmen Fernandez-Becerra, ; Hernando A. del Portillo,
| | - Hernando A. del Portillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Carmen Fernandez-Becerra, ; Hernando A. del Portillo,
| |
Collapse
|
3
|
Songsaigath S, Makiuchi T, Putaporntip C, Pattanawong U, Kuamsab N, Tachibana H, Jongwutiwes S. Immunoglobulin G responses to variant forms of Plasmodium vivax merozoite surface protein 9 upon natural infection in Thailand. Sci Rep 2021; 11:3201. [PMID: 33547377 PMCID: PMC7864938 DOI: 10.1038/s41598-021-82928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
Merozoite surface protein 9 (MSP9) constitutes a ligand complex involved in erythrocyte invasion by malarial merozoites and is a promising vaccine target. Plasmodium vivax MSP9 (PvMSP9) is immunogenic upon natural malaria exposure. To address whether sequence diversity in PvMSP9 among field isolates could affect natural antibody responses, the recombinant proteins representing two variants each for the N- and the C-terminal domains of PvMSP-9 were used as antigens to assess antibody reactivity among 246 P. vivax-infected patients’ sera from Tak and Ubon Ratchathani Provinces in Thailand. Results revealed that the seropositivity rates of IgG antibodies to the N-terminal antigens were higher than those to the C-terminal antigens (87.80% vs. 67.48%). Most seropositive sera were reactive to both variants, suggesting the presence of common epitopes. Variant-specific antibodies to the N- and the C-terminal antigens were detected in 15.85% and 16.70% of serum samples, respectively. These seropositivity rates were not significant difference between provinces. The seropositivity rates, levels and avidity of anti-PvMSP9 antibodies exhibited positive trends towards increasing malaria episodes. The IgG isotype responses to the N- and the C-terminal antigens were mainly IgG1 and IgG3. The profile of IgG responses may have implications for development of PvMSP9-based vaccine.
Collapse
Affiliation(s)
- Sunisa Songsaigath
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Protective Immunity Induced by Virus-Like Particle Containing Merozoite Surface Protein 9 of Plasmodium berghei. Vaccines (Basel) 2020; 8:vaccines8030428. [PMID: 32751598 PMCID: PMC7564927 DOI: 10.3390/vaccines8030428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Merozoite surface protein 9 (MSP-9) from Plasmodium has shown promise as a vaccine candidate due to its location and possible role in erythrocyte invasion. In this study, we generated virus-like particles (VLPs) targeting P. berghei MSP-9, and investigated the protection against lethal doses of P. berghei in a mouse model. We found that VLP vaccination induced a P. berghei-specific IgG antibody response in the sera and CD4+ and CD8+ T cell populations in blood compared to a naïve control group. Upon challenge infection with P. berghei, vaccinated mice showed a significant increase in CD4+ and CD8+ effector memory T cell and memory B cell populations. Importantly, MSP-9 VLP immunization inhibited levels of the pro-inflammatory cytokines IFN-γ and IL-6 in the spleen and parasite replication in blood, resulting in significantly prolonged survival time. These results suggest that the MSP-9 VLP vaccine may constitute an effective malaria vaccine.
Collapse
|
5
|
Songsaigath S, Putaporntip C, Kuamsab N, Jongwutiwes S. Structural diversity, natural selection and intragenic recombination in the Plasmodium vivax merozoite surface protein 9 locus in Thailand. INFECTION GENETICS AND EVOLUTION 2020; 85:104467. [PMID: 32711079 DOI: 10.1016/j.meegid.2020.104467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 01/15/2023]
Abstract
The merozoite surface protein 9 (MSP9) of malarial parasite forms co-ligand complex with the 19 kDa fragment of merozoite surface protein 1 (MSP1) prior to erythrocyte invasion. Interruption of this process could hamper subsequent asexual erythrocytic development of malaria parasites; therefore, these proteins are considered potential vaccine candidates. In Plasmodium vivax, MSP9 (PvMSP9) contains both conserved and polymorphic repetitive domains that were immunogenic upon natural malaria exposure and conferred protection in vaccination studies in animal models. To investigate the extent of sequence diversity at this locus, 104 P. vivax isolates from 4 major malaria endemic areas of Thailand were analyzed. Results revealed that pvmsp9 contained 3 repeat domains (R1-R3) flanked by conserved domains. Repeat domains exhibit extensive sequence and length variation, in which 14, 39 and 16 haplotypes for domains R1-R3, respectively, circulated in this country. Sequence diversity in pvmsp9 among P. vivax isolates from each endemic area displayed population structure. The extent of sequence diversity in pvmsp9 isolates from the provinces of Tak, Chanthaburi, Ubon Ratchathani and Prachuap Khiri Khan in northwestern, eastern, northeastern and southwestern areas, respectively, was almost comparable and was remarkably higher than that from Yala/Narathiwat population in southern Thailand. Evidence for intragenic recombination in this locus was observed within each P. vivax population except among isolates from Yala and Narathiwat. Synonymous nucleotide diversity significantly exceeded nonsynonymous nucleotide diversity in domains R2 and R3, indicating purifying selection. However, micro-scale signatures of positive and negative selections occurred in both conserved and repeat domains, implying two opposing forces, probably from functional or structural constraint and host immune pressure, could have influenced diversity at this locus. The immunodominant T and B cell epitopes so far identified were invariant or highly conserved across isolates. Further analysis of global isolates is warranted for vaccine design based on this protein.
Collapse
Affiliation(s)
- Sunisa Songsaigath
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Fan L, Xia J, Shen J, Fang Q, Xia H, Zheng M, Han JH, Han ET, Wang B, Xu Y. An Erythrocyte Membrane-Associated Antigen, PvTRAg-26 of Plasmodium vivax: A Study of Its Antigenicity and Immunogenicity. Front Public Health 2020; 8:148. [PMID: 32411650 PMCID: PMC7198802 DOI: 10.3389/fpubh.2020.00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background:Plasmodium tryptophan-rich (TR) proteins have been proposed as potential vaccine candidate antigens. Among them, P. vivax tryptophan-rich antigens (PvTR-Ags), which have positionally conserved tryptophan residues in a TR domain, are highly antigenic in humans. Several of these antigens, including PvTRAg-26, have exhibited erythrocyte-binding activities. Methods: Subclasses of IgG antibodies against PvTRAg-26 were detected by enzyme-linked immunosorbent assay in 35 P. vivax infected patients and mice immunized with the recombinant antigen to characterize its antigenicity and immunogenicity. Moreover, the antigen-specific immune responses and Th1/Th2-type cytokine patterns of splenocytes from the immunized animals were determined in vitro. The subcellular localization of PvTRAg-26 in ring-stage parasites was also detected by indirect immunofluorescence assay. Results: The IgG1 and IgG3 levels in P. vivax-infected patients were significantly higher than those in uninfected individuals. In the PvTRAg-26-immunized mice, elevated levels of antigen-specific IgG antibodies were observed, dominated by the IgG1 subclass, and Th1-type cytokines were remarkably increased compared with Th2-type cytokines. Additionally, the subcellular location of the PvTRAg-26 protein was closely associated with the caveola-vesicle complex on the infected-erythrocyte membrane in the early ring stage of P. vivax. Conclusions: PvTRAg-26, a P. vivax TR antigen, with high antigenicity and immunogenicity, induces Th1-cytokine response and increases production of IgG1 antibodies. This immune profiling study provided a substantial evidence that PvTRAg-26 may be a potential candidate for P. vivax vaccine development.
Collapse
Affiliation(s)
- Liping Fan
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jinxing Xia
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jilong Shen
- The Key Laboratories of Parasitology and Zoonoses Anhui and Department of Parasitology, Anhui Medical University, Anhui, China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Anhui, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical College, Anhui, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
7
|
Elizardez YB, Fotoran WL, Junior AJG, Curado I, Junior NK, Monteiro EF, Romero Neto I, Wunderlich G, Kirchgatter K. Recombinant proteins of Plasmodium malariae merozoite surface protein 1 (PmMSP1): Testing immunogenicity in the BALB/c model and potential use as diagnostic tool. PLoS One 2019; 14:e0219629. [PMID: 31344067 PMCID: PMC6657842 DOI: 10.1371/journal.pone.0219629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023] Open
Abstract
Background Plasmodium malariae is the third most prevalent human malaria-causing species and has a patchy, but ample distribution in the world. Humans can host the parasite for years without presenting significant symptoms, turning its diagnosis and control into a difficult task. Here, we investigated the immunogenicity of recombinant proteins of P. malariae MSP1. Methods Five regions of PmMSP1 were expressed in Escherichia coli as GST-fusion proteins and immunized in BALB/c mice. The specificity, subtyping, and affinity of raised antibodies were evaluated by enzyme-linked immunosorbent assays. Cellular immune responses were analyzed by lymphoproliferation assays and cytokine levels produced by splenocytes were detected by cytometry. Results We found that N-terminal, central regions, and PmMSP119 are strongly immunogenic in mice. After three doses, the induced immune responses remained high for 70 days. While antibodies induced after immunization with N-terminal and central regions showed similar affinities to the target antigens, affinities of IgG against PmMSP119 were higher. All proteins induced similar antibody subclass patterns (predominantly IgG1, IgG2a, and IgG2b), characterizing a mixed Th1/Th2 response. Further, autologous stimulation of splenocytes from immunized mice led to the secretion of IL2 and IL4, independently of the antigen used. Importantly, IgG from P. malariae-exposed individuals reacted against PmMSP1 recombinant proteins with a high specificity. On the other hand, sera from P. vivax or P. falciparum-infected individuals did not react at all against recombinant PmMSP1 proteins. Conclusion Recombinant PmMSP1 proteins are very useful diagnostic markers of P. malariae in epidemiological studies or in the differential diagnosis of malaria caused by this species. Immunization with recombinant PmMSP1 proteins resulted in a significant humoral immune response, which may turn them potential component candidates for a vaccine against P. malariae.
Collapse
Affiliation(s)
- Yelina B. Elizardez
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Wesley L. Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andrés J. Galisteo Junior
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Izilda Curado
- Laboratório de Imunoepidemiologia, Superintendência de Controle de Endemias, São Paulo, Brazil
| | - Norival Kesper Junior
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Eliana F. Monteiro
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Irineu Romero Neto
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Karin Kirchgatter
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
8
|
Rodrigues-da-Silva RN, Correa-Moreira D, Soares IF, de-Luca PM, Totino PRR, Morgado FN, Oliveira Henriques MDGD, Peixoto Candea AL, Singh B, Galinski MR, Moreno A, Oliveira-Ferreira J, Lima-Junior JDC. Immunogenicity of synthetic peptide constructs based on PvMSP9 E795-A808, a linear B-cell epitope of the P. vivax Merozoite Surface Protein-9. Vaccine 2018; 37:306-313. [PMID: 30509693 DOI: 10.1016/j.vaccine.2018.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Plasmodium vivax Merozoite Surface Protein-9 (PvMSP-9) is a malaria vaccine candidate naturally immunogenic in humans and able to induce high antibody titers in animals when delivered as a recombinant protein. Recently, we identified the sequence EAAPENAEPVHENA (PvMSP9E795-A808) as the main linear B-cell epitope in naturally exposed individuals. However, the potential of PvMSP9E795-A808 as an immunogen in experimental animal models remained unexplored. Here we assess the immunogenicity of PvMSP9E795-A808 using synthetic peptides. The peptides tested in BALB/c mice include two repeats of the sequence EAAPENAEPVHENA tested alone (peptide RII), or linked to an autologous (PvMSP9 peptide pL; pLRII) or heterologous (p2 tetanus toxin universal T cell epitope; TTRII) T cell epitope. Immune responses were evaluated by ELISA, FLUOROSPOT, and indirect immunofluorescence. We show that all of the peptide constructs tested were immunogenic eliciting specific IgG antibodies at different levels, with a prevalence of IgG1 and IgG2. Animals immunized with synthetic peptides containing T cell epitopes (pLRII or TTRII) had more efficient antibody responses that resulted in higher antibody titers able to recognize the native protein by immunofluorescence. Relevantly, the frequency of IFN-γ secreting SFC elicited by immunization with TTRII synthetic peptide was comparable to that reported to the PvMSP9-Nt recombinant protein. Taken together, our study indicates that PvMSP9E795-A808 is highly immunogenic in mice and further studies to evaluate its value as promising vaccine target are warranted. Moreover, our study supports the critical role of CD4 T cell epitopes to enhance humoral responses induced by subunit based vaccines.
Collapse
Affiliation(s)
| | - Daniely Correa-Moreira
- Laboratory of Taxonomy, Biochemistry and Fungi Bioprospecting, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabela Ferreira Soares
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Paula Melo de-Luca
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Paulo Renato Rivas Totino
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda Nazaré Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Changrob S, Han JH, Ha KS, Park WS, Hong SH, Chootong P, Han ET. Immunogenicity of glycosylphosphatidylinositol-anchored micronemal antigen in natural Plasmodium vivax exposure. Malar J 2017; 16:348. [PMID: 28830553 PMCID: PMC5568145 DOI: 10.1186/s12936-017-1967-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 01/07/2023] Open
Abstract
Background Plasmodium vivax is the most geographically widespread malaria species and codominates with Plasmodium falciparum, the deadliest form of the malaria parasite. For the last few years, the number of vivax malaria cases has increased, but vivax malaria is still considered a neglected disease. During the blood stages of their life cycle, P. vivax parasites export several hundred proteins into host red blood cells. Some of these exported proteins have been discovered and studied for use as a blood-stage malaria vaccine. The P. vivax glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (PvGAMA) was identified in previous study, which plays an important role in parasite invasion. To support the hypothesis that PvGAMA can induce an immune response in natural exposure, the antibody responses and cellular immunity against this antigen was demonstrated during and post-infection. Methods The recombinant protein PvGAMA was expressed and purified by wheat germ cell-free (WGCF) system. The analysis of humoral and cellular immune responses to the PvGAMA antigen during infection and post-infection with the P. vivax parasite were done by enzyme-linked immunosorbent assay (ELISA) techniques. Results During P. vivax infection, 95% of patients showed significant antibody responses to PvGAMA antigen. The cytophilic IgG1 and IgG3 isotypes were the major isotypes produced in response to PvGAMA. A cross-sectional study of anti-PvGAMA responses during and post-infection with P. vivax found that the majority of individuals, approximately 54% of patients, were shown to maintain a positive anti-PvGAMA titre at 3 months post-infection, and some patients had the ability to maintain an antibody response for up to 12 months post-infection. Moreover, PvGAMA had the ability to stimulate a cellular immune response that was characterized by the production of the cytokines IL-2, IFN-γ and IL-10. The levels of the cytokines IFN-γ and IL-10 were significantly increased in PvGAMA-stimulated lymphocyte cultures. Conclusions Taken together, PvGAMA had potential to induce an immune response both humoral and cellular immunity in naturally acquired P. vivax infection individuals during infection and post-infection. Therefore, PvGAMA could be as a vaccine candidate to stimulate immune response against P. vivax infection.
Collapse
Affiliation(s)
- Siriruk Changrob
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Republic of Korea
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Republic of Korea.
| |
Collapse
|
10
|
López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol 2017; 8:126. [PMID: 28243235 PMCID: PMC5304258 DOI: 10.3389/fimmu.2017.00126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Natalia Hincapié-Escobar
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
11
|
Lima-Junior JDC, Pratt-Riccio LR. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection. Front Immunol 2016; 7:13. [PMID: 26858717 PMCID: PMC4728299 DOI: 10.3389/fimmu.2016.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 01/13/2023] Open
Abstract
The importance of host and parasite genetic factors in malaria resistance or susceptibility has been investigated since the middle of the last century. Nowadays, of all diseases that affect man, malaria still plays one of the highest levels of selective pressure on human genome. Susceptibility to malaria depends on exposure profile, epidemiological characteristics, and several components of the innate and adaptive immune system that influences the quality of the immune response generated during the Plasmodium lifecycle in the vertebrate host. But it is well known that the parasite's enormous capacity of genetic variation in conjunction with the host genetics polymorphism is also associated with a wide spectrum of susceptibility degrees to complicated or severe forms of the disease. In this scenario, variations in genes of the major histocompatibility complex (MHC) associated with host resistance or susceptibility to malaria have been identified and used as markers in host-pathogen interaction studies, mainly those evaluating the impact on the immune response, acquisition of resistance, or increased susceptibility to infection or vulnerability to disease. However, due to the intense selective pressure, number of cases, and mortality rates, the majority of the reported associations reported concerned Plasmodium falciparum malaria. Studies on the MHC polymorphism and its association with Plasmodium vivax, which is the most widespread Plasmodium and the most prevalent species outside the African continent, are less frequent but equally important. Despite punctual contributions, there are accumulated evidences of human genetic control in P. vivax infection and disease. Herein, we review the current knowledge in the field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA class I and II polymorphisms in relation to host susceptibility, naturally acquired immune response against specific antigens and the implication of this knowledge to overcome the parasite immune evasion. Finally, the potential impact of such polymorphisms on the development of vaccine candidate antigens against P. vivax will be studied.
Collapse
|
12
|
Rodrigues-da-Silva RN, Martins da Silva JH, Singh B, Jiang J, Meyer EVS, Santos F, Banic DM, Moreno A, Galinski MR, Oliveira-Ferreira J, Lima-Junior JDC. In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9. PLoS One 2016; 11:e0146951. [PMID: 26788998 PMCID: PMC4720479 DOI: 10.1371/journal.pone.0146951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and experimentally confirmed the potential of PvMSP9E795-A808 as an immunogenic linear B cell epitope within the P. vivax malaria vaccine candidate PvMSP9 and support its inclusion in future subunit vaccines.
Collapse
Affiliation(s)
| | | | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Esmeralda V. S. Meyer
- Environmental Health and Safety Office, Emory University, Atlanta, GA, United States of America
| | - Fátima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory of Simulids and Onchocerciasis "Malaria and Onchocerciasis Research", Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| |
Collapse
|
13
|
Hostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. PLoS Negl Trop Dis 2015; 9:e0004264. [PMID: 26701602 PMCID: PMC4689532 DOI: 10.1371/journal.pntd.0004264] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/05/2015] [Indexed: 11/27/2022] Open
Abstract
Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 Plasmodium vivax causes malaria in millions of people each year, primarily in Southeast Asia and Central and South America. P. vivax has a dormant liver stage, which can lead to disease recurrence in infected individuals even in the absence of mosquito transmission. The development of vaccines that target blood-stage P. vivax parasites is therefore likely to be an essential component of any worldwide effort to eradicate malaria. Studying P. vivax is very difficult as this parasite grows poorly in the laboratory and invades only small numbers of young red blood cells in patients. Due to these and other challenges, only a handful of P. vivax proteins have been tested as potential vaccines. To generate more vaccine candidates, we expressed the entire ectodomains of 37 proteins that are predicted to be involved in P. vivax invasion of red blood cells. Antibodies from Cambodian patients with P. vivax malaria recognized heat-sensitive epitopes in the majority of these proteins, suggesting that they are natively folded. We also used the proteins to screen for both predicted and novel protein-protein interactions, confirming that the proteins are functional and further supporting their potential as vaccine candidates. As a new community resource, this P. vivax recombinant protein library will facilitate future studies of P. vivax pathogenesis and immunity, and greatly expands the list of candidate vaccine antigens.
Collapse
Affiliation(s)
- Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sumana Sharma
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - S. Josefin Bartholdson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (RMF); (JCR)
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (RMF); (JCR)
| |
Collapse
|
14
|
Ferreira AR, Singh B, Cabrera-Mora M, Magri De Souza AC, Queiroz Marques MT, Porto LCS, Santos F, Banic DM, Calvo-Calle JM, Oliveira-Ferreira J, Moreno A, Da Costa Lima-Junior J. Evaluation of naturally acquired IgG antibodies to a chimeric and non-chimeric recombinant species of Plasmodium vivax reticulocyte binding protein-1: lack of association with HLA-DRB1*/DQB1* in malaria exposed individuals from the Brazilian Amazon. PLoS One 2014; 9:e105828. [PMID: 25148251 PMCID: PMC4141821 DOI: 10.1371/journal.pone.0105828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
The development of modular constructs that include antigenic regions targeted by protective immune responses is an attractive approach for subunit vaccine development. However, a main concern of using these vaccine platforms is how to preserve the antigenic identity of conformational B cell epitopes. In the present study we evaluated naturally acquired antibody responses to a chimeric protein engineered to contain a previously defined immunodominant domain of the Plasmodium vivax reticulocyte binding protein-1 located between amino acid positions K435-I777. The construct also includes three regions of the cognate protein (F571-D587, I1745-S1786 and L2235-E2263) predicted to contain MHC class II promiscuous T cell epitopes. Plasma samples from 253 naturally exposed individuals were tested against this chimeric protein named PvRMC-RBP1 and a control protein that includes the native sequence PvRBP123-751 in comparative experiments to study the frequency of total IgG and IgG subclass reactivity. HLA-DRB1 and HLA-DQB1 allelic groups were typed by PCR-SSO to evaluate the association between major HLA class II alleles and antibody responses. We found IgG antibodies that recognized the chimeric PvRMC-RBP1 and the PvRBP123-751 in 47.1% and 60% of the studied population, respectively. Moreover, the reactivity index against both proteins were comparable and associated with time of exposure (p<0.0001) and number of previous malaria episodes (p<0.005). IgG subclass profile showed a predominance of cytophilic IgG1 over other subclasses against both proteins tested. Collectively these studies suggest that the chimeric PvRMC-RBP1 protein retained antigenic determinants in the PvRBP1435–777 native sequence. Although 52.9% of the population did not present detectable titers of antibodies to PvRMC-RBP1, genetic restriction to this chimeric protein does not seem to occur, since no association was observed between the HLA-DRB1* or HLA-DQB1* alleles and the antibody responses. This experimental evidence strongly suggests that the identity of the conformational B cell epitopes is preserved in the chimeric protein.
Collapse
Affiliation(s)
- Amanda Ribeiro Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alana Cristina Magri De Souza
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | | | - Fatima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory for Simuliidae and Onchocerciasis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - J. Mauricio Calvo-Calle
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (AM); (JCLJ)
| | - Josué Da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (AM); (JCLJ)
| |
Collapse
|
15
|
Murphy JR, Weiss WR, Fryauff D, Dowler M, Savransky T, Stoyanov C, Muratova O, Lambert L, Orr-Gonzalez S, Zeleski KL, Hinderer J, Fay MP, Joshi G, Gwadz RW, Richie TL, Villasante EF, Richardson JH, Duffy PE, Chen J. Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies. Malar J 2014; 13:215. [PMID: 24893777 PMCID: PMC4070636 DOI: 10.1186/1475-2875-13-215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/03/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. METHODS Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. RESULTS Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. CONCLUSIONS Anopheles dirus, An. crascens and a cross between these two species all were excellent vectors for P. knowlesi. High donor monkey parasitaemia was associated with poor mosquito survival. A single infected mosquito bite is likely sufficient to infect a monkey with P. knowlesi. It is possible to efficiently challenge large groups of monkeys by mosquito bite, which will be useful for P. knowlesi vaccine studies.
Collapse
|
16
|
Patarroyo MA, Calderón D, Moreno-Pérez DA. Vaccines againstPlasmodium vivax: a research challenge. Expert Rev Vaccines 2014; 11:1249-60. [DOI: 10.1586/erv.12.91] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Stanisic DI, Javati S, Kiniboro B, Lin E, Jiang J, Singh B, Meyer EVS, Siba P, Koepfli C, Felger I, Galinski MR, Mueller I. Naturally acquired immune responses to P. vivax merozoite surface protein 3α and merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in young Papua New Guinean children. PLoS Negl Trop Dis 2013; 7:e2498. [PMID: 24244763 PMCID: PMC3828159 DOI: 10.1371/journal.pntd.0002498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background Plasmodium vivax is the most geographically widespread human malaria parasite. Cohort studies in Papua New Guinea have identified a rapid onset of immunity against vivax-malaria in children living in highly endemic areas. Although numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these antibodies in protective immunity is yet unknown. Methodology/Principal Findings In a cohort of children aged 1–3 years, antibodies to different regions of Merozoite Surface Protein 3α (PvMSP3α) and Merozoite Surface Protein 9 (PvMSP9) were measured and related to prospective risk of P. vivax malaria during 16 months of active follow-up. Overall, there was a low prevalence of antibodies to PvMSP3α and PvMSP9 proteins (9–65%). Antibodies to the PvMSP3α N-terminal, Block I and Block II regions increased significantly with age while antibodies to the PvMSP3α Block I and PvMSP9 N-terminal regions were positively associated with concurrent P. vivax infection. Independent of exposure (defined as the number of genetically distinct blood-stage infection acquired over time (molFOB)) and age, antibodies specific to both PvMSP3α Block II (adjusted incidence ratio (aIRR) = 0.59, p = 0.011) and PvMSP9 N-terminus (aIRR = 0.68, p = 0.035) were associated with protection against clinical P. vivax malaria. This protection was most pronounced against high-density infections. For PvMSP3α Block II, the effect was stronger with higher levels of antibodies. Conclusions These results indicate that PvMSP3α Block II and PvMSP9 N-terminus should be further investigated for their potential as P. vivax vaccine antigens. Controlling for molFOB assures that the observed associations are not confounded by individual differences in exposure. Plasmodium vivax is the most geographically widespread human malaria parasite. In highly endemic areas such as Papua New Guinea, a very rapid onset of immunity against vivax-malaria is observed. Although it is known that numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these antibodies in protective immunity is yet unknown. In a cohort of 183 children aged 1–3 years, we now show that the presence of antibodies to Merozoite Surface Protein 3α (PvMSP3α) and Merozoite Surface Protein 9 (PvMSP9) are associated with a significant reduction in the burden P. vivax malaria. Antibodies increased with age and in the presence of concurrent P. vivax infections. After adjusting for both age and individual differences in exposure, the strongest reductions in risk were seen in children with antibodies to PvMSP3α Block II (41% reduction, p = 0.001) and PvMSP9 N-terminal region. (32% reduction, p = 0.035). These results indicate that PvMSP3α Block II and PvMSP9 N-terminus should be further investigated for their potential as P. vivax vaccine antigens.
Collapse
Affiliation(s)
- Danielle I. Stanisic
- Walter and Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- * E-mail: (DIS); (IM)
| | - Sarah Javati
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
| | - Esmeralda V. S. Meyer
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Cristian Koepfli
- Walter and Eliza Hall Institute, Parkville, Australia
- Swiss Tropical Institute and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ingrid Felger
- Swiss Tropical Institute and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Infectious Disease, Emory University, Atlanta, Georgia, United States of America
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- * E-mail: (DIS); (IM)
| |
Collapse
|
18
|
Chenet SM, Pacheco MA, Bacon DJ, Collins WE, Barnwell JW, Escalante AA. The evolution and diversity of a low complexity vaccine candidate, merozoite surface protein 9 (MSP-9), in Plasmodium vivax and closely related species. INFECTION GENETICS AND EVOLUTION 2013; 20:239-48. [PMID: 24044894 DOI: 10.1016/j.meegid.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The merozoite surface protein-9 (MSP-9) has been considered a target for an anti-malarial vaccine since it is one of many proteins involved in the erythrocyte invasion, a critical step in the parasite life cycle. Orthologs encoding this antigen have been found in all known species of Plasmodium parasitic to primates. In order to characterize and investigate the extent and maintenance of MSP-9 genetic diversity, we analyzed DNA sequences of the following malaria parasite species: Plasmodium falciparum, Plasmodium reichenowi, Plasmodium chabaudi, Plasmodium yoelii, Plasmodium berghei, Plasmodium coatneyi, Plasmodium gonderi, Plasmodium knowlesi, Plasmodium inui, Plasmodium simiovale, Plasmodium fieldi, Plasmodium cynomolgi and Plasmodium vivax and evaluated the signature of natural selection in all MSP-9 orthologs. Our findings suggest that the gene encoding MSP-9 is under purifying selection in P. vivax and closely related species. We further explored how selection affected different regions of MSP-9 by comparing the polymorphisms in P. vivax and P. falciparum, and found contrasting patterns between these two species that suggest differences in functional constraints. This observation implies that the MSP-9 orthologs in human parasites may interact differently with the host immune response. Thus, studies carried out in one species cannot be directly translated into the other.
Collapse
Affiliation(s)
- Stella M Chenet
- Arizona State University, School of Life Sciences, Tempe, AZ, USA; Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Moreno-Pérez DA, Saldarriaga A, Patarroyo MA. Characterizing PvARP, a novel Plasmodium vivax antigen. Malar J 2013; 12:165. [PMID: 23688042 PMCID: PMC3662610 DOI: 10.1186/1475-2875-12-165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax continues to be the most widely distributed malarial parasite species in tropical and sub-tropical areas, causing high morbidity indices around the world. Better understanding of the proteins used by the parasite during the invasion of red blood cells is required to obtain an effective vaccine against this disease. This study describes characterizing the P. vivax asparagine-rich protein (PvARP) and examines its antigenicity in natural infection. METHODS The target gene in the study was selected according to a previous in silico analysis using profile hidden Markov models which identified P. vivax proteins that play a possible role in invasion. Transcription of the arp gene in the P. vivax VCG-1 strain was here evaluated by RT-PCR. Specific human antibodies against PvARP were used to confirm protein expression by Western blot as well as its subcellular localization by immunofluorescence. Recognition of recombinant PvARP by sera from P. vivax-infected individuals was evaluated by ELISA. RESULTS VCG-1 strain PvARP is a 281-residue-long molecule, which is encoded by a single exon and has an N-terminal secretion signal, as well as a tandem repeat region. This protein is expressed in mature schizonts and is located on the surface of merozoites, having an apparent accumulation towards their apical pole. Sera from P. vivax-infected patients recognized the recombinant, thereby suggesting that this protein is targeted by the immune response during infection. CONCLUSIONS This study showed the characterization of PvARP and its antigenicity. Further assays orientated towards evaluating this antigen's functional importance during parasite invasion are being carried out.
Collapse
Affiliation(s)
- Darwin A Moreno-Pérez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20, Bogotá, Colombia.
| | | | | |
Collapse
|
20
|
de Carvalho GB, de Carvalho GB. Duffy Blood Group System and the malaria adaptation process in humans. Rev Bras Hematol Hemoter 2013; 33:55-64. [PMID: 23284245 PMCID: PMC3521437 DOI: 10.5581/1516-8484.20110016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/04/2011] [Indexed: 11/27/2022] Open
Abstract
Malaria is an acute infectious disease caused by the protozoa of the genus
Plasmodium. The antigens of the Duffy Blood Group System, in addition to
incompatibilities in transfusions and hemolytic disease of the newborn, are of great
interest in medicine due to their association with the invasion of red blood cells by
the parasite Plasmodium vivax. For invasions to occur an interaction between the
parasites and antigens of the Duffy Blood Group System is necessary. In Caucasians
six antigens are produced by the Duffy locus (Fya, Fyb, F3, F4, F5 and F6). It has
been observed that Fy(a-b-) individuals are resistant to Plasmodium knowlesi and P.
vivax infection, because the invasion requires at least one of these antigens. The P.
vivax Duffy Binding Protein (PvDBP) is functionally important in the invasion process
of these parasites in Duffy / DARC positive humans. The proteins or fractions may be
considered, therefore, an important and potential inoculum to be used in immunization
against malaria.
Collapse
|
21
|
Lima-Junior JC, Rodrigues-da-Silva RN, Banic DM, Jiang J, Singh B, Fabrício-Silva GM, Porto LCS, Meyer EVS, Moreno A, Rodrigues MM, Barnwell JW, Galinski MR, de Oliveira-Ferreira J. Influence of HLA-DRB1 and HLA-DQB1 alleles on IgG antibody response to the P. vivax MSP-1, MSP-3α and MSP-9 in individuals from Brazilian endemic area. PLoS One 2012; 7:e36419. [PMID: 22649493 PMCID: PMC3359319 DOI: 10.1371/journal.pone.0036419] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/01/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The antibody response generated during malaria infections is of particular interest, since the production of specific IgG antibodies is required for acquisition of clinical immunity. However, variations in antibody responses could result from genetic polymorphism of the HLA class II genes. Given the increasing focus on the development of subunit vaccines, studies of the influence of class II alleles on the immune response in ethnically diverse populations is important, prior to the implementation of vaccine trials. METHODS AND FINDINGS In this study, we evaluated the influence of HLA-DRB1* and -DQB1* allelic groups on the naturally acquired humoral response from Brazilian Amazon individuals (n = 276) against P. vivax Merozoite Surface Protein-1 (MSP-1), MSP-3α and MSP-9 recombinant proteins. Our results provide information concerning these three P. vivax antigens, relevant for their role as immunogenic surface proteins and vaccine candidates. Firstly, the studied population was heterogeneous presenting 13 HLA-DRB1* and 5 DQB1* allelic groups with a higher frequency of HLA-DRB1*04 and HLA-DQB1*03. The proteins studied were broadly immunogenic in a naturally exposed population with high frequency of IgG antibodies against PvMSP1-19 (86.7%), PvMSP-3 (77%) and PvMSP-9 (76%). Moreover, HLA-DRB1*04 and HLA-DQB1*03 alleles were associated with a higher frequency of IgG immune responses against five out of nine antigens tested, while HLA-DRB1*01 was associated with a high frequency of non-responders to repetitive regions of PvMSP-9, and the DRB1*16 allelic group with the low frequency of responders to PvMSP3 full length recombinant protein. CONCLUSIONS HLA-DRB1*04 alleles were associated with high frequency of antibody responses to five out of nine recombinant proteins tested in Rondonia State, Brazil. These features could increase the success rate of future clinical trials based on these vaccine candidates.
Collapse
Affiliation(s)
- Josué C. Lima-Junior
- Laboratory of Immunoparasitology, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | - Dalma M. Banic
- Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jianlin Jiang
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Balwan Singh
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Gustavo M. Fabrício-Silva
- Histocompatibility and Cryopreservation Laboratory, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Luís C. S. Porto
- Histocompatibility and Cryopreservation Laboratory, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Esmeralda V. S. Meyer
- Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Alberto Moreno
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maurício M. Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - John W. Barnwell
- Division of Parasitic Diseases, CDC/National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Mary R. Galinski
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | | |
Collapse
|
22
|
Lima-Junior JC, Banic DM, Tran TM, Meyer VSE, De-Simone SG, Santos F, Porto LCS, Marques MTQ, Moreno A, Barnwell JW, Galinski MR, Oliveira-Ferreira J. Promiscuous T-cell epitopes of Plasmodium merozoite surface protein 9 (PvMSP9) induces IFN-gamma and IL-4 responses in individuals naturally exposed to malaria in the Brazilian Amazon. Vaccine 2010; 28:3185-91. [PMID: 20189487 DOI: 10.1016/j.vaccine.2010.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/28/2010] [Accepted: 02/11/2010] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax merozoite surface protein (PvMSP9) stimulates both cellular and humoral immune responses in individuals who are naturally infected by this parasite species. To identify immunodominant human T-cell epitopes in PvMSP9, we used the MHC class II binding peptide prediction algorithm ProPred. Eleven synthetic peptides representing predicted putative promiscuous T-cell epitopes were tested in IFN-gamma and IL-4 ELISPOT assays using peripheral blood mononuclear cells (PBMC) derived from 142 individuals from Rondonia State, Brazil who had been naturally exposed to P. vivax infections. To determine whether the predicted epitopes are preferentially recognized in the context of multiple alleles, MHC Class II typing of the cohort was also performed. Five synthetic peptides elicited robust cellular responses, and the overall frequencies of IFN-gamma and IL-4 responders to at least one of the promiscuous peptides were 62% and 46%, respectively. The frequencies of IFN-gamma and IL-4 responders to each peptide were not associated with a particular HLA-DRB1 allelic group since most of the peptides induced a response in individuals of 12 out of 13 studied allelic groups. The prediction of promiscuous epitopes using ProPred led to the identification of immunodominant epitopes recognized by PBMC from a significant proportion of a genetically heterogeneous population exposed to malaria infections. The combination of several such T-cell epitopes in a vaccine construct may increase the frequency of responders and the overall efficacy of subunit vaccines in genetically distinct populations.
Collapse
Affiliation(s)
- J C Lima-Junior
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Immunogenicity and protection-inducing ability of recombinant Plasmodium vivax rhoptry-associated protein 2 in Aotus monkeys: A potential vaccine candidate. Vaccine 2009; 27:2870-6. [DOI: 10.1016/j.vaccine.2009.02.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 11/23/2022]
|
24
|
Naturally acquired humoral and cellular immune responses to Plasmodium vivax merozoite surface protein 9 in Northwestern Amazon individuals. Vaccine 2009; 26:6645-54. [PMID: 18832003 DOI: 10.1016/j.vaccine.2008.09.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/22/2022]
Abstract
Antibody and T-cell reactivities to Plasmodium vivax merozoite surface protein 9 (PvMSP9) were evaluated in a cross-sectional study of individuals naturally exposed to malaria infections living in Ribeirinha, a native riverine community and in Colina, a transmigrant community, Rondonia, Brazil. The antibody responses to PvMSP9-RIRIIand PvMSP9-Nt domains in Ribeirinha were higher compared with Colina and correlated with age and time of malaria exposure. IgG2 was most prevalent for PvMSP9-RII in both communities, and IgG1 was the predominant isotype for PvMSP9-Nt and PvMSP9-RIRII in Ribeirinha. IFN-gamma and IL-4 predominated in Ribeirinha, while IFN-gamma predominated in Colina. Variation in exposure to P. vivax likely accounts for the differences observed in cytokine and antibody levels between the two populations studied.
Collapse
|
25
|
Frikha-Gargouri O, Gdoura R, Znazen A, Gargouri B, Gargouri J, Rebai A, Hammami A. Evaluation of an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of Chlamydia trachomatis infections. BMC Microbiol 2008; 8:217. [PMID: 19077181 PMCID: PMC2615015 DOI: 10.1186/1471-2180-8-217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 12/10/2008] [Indexed: 11/25/2022] Open
Abstract
Background The OmcB protein is one of the most immunogenic proteins in C. trachomatis and C. pneumoniae infections. This protein is highly conserved leading to serum cross reactivity between the various chlamydial species. Since previous studies based on recombinant proteins failed to identify a species specific immune response against the OmcB protein, this study evaluated an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of C. trachomatis infections. Results Using the ClustalW and Antigenic programs, we have selected two predicted specific and immunogenic regions in the OmcB protein: the N-terminal (Nt) region containing three epitopes and the C-terminal (Ct) region containing two epitopes with high scores. These regions were cloned into the PinPoint Xa-1 and pGEX-6P-1 expression vectors, incorporating a biotin purification tag and a glutathione-S-transferase tag, respectively. These regions were then expressed in E. coli. Only the pGEX-6P-1 has been found suitable for serological studies as its tag showed less cross reactivity with human sera and was retained for the evaluation of the selected antigens. Only the Ct region of the protein has been found to be well expressed in E. coli and was evaluated for its ability to be recognized by human sera. 384 sera were tested for the presence of IgG antibodies to C. trachomatis by our in house microimmunofluorescence (MIF) and the developed ELISA test. Using the MIF as the reference method, the developed OmcB Ct ELISA has a high specificity (94.3%) but a low sensitivity (23.9). Our results indicate that the use of the sequence alignment tool might be useful for identifying specific regions in an immunodominant antigen. However, the two epitopes, located in the selected Ct region, of the 24 predicted in the full length OmcB protein account for approximately 25% of the serological response detected by MIF, which limits the use of the developed ELISA test when screening C. trachomatis infections. Conclusion The developed ELISA test might be used as a confirmatory test to assess the specificity of serological results found by MIF.
Collapse
Affiliation(s)
- Olfa Frikha-Gargouri
- Department of Microbiology and research laboratory Microorganismes et Pathologie Humaine, Habib Bourguiba hospital of Sfax, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
26
|
New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin. Vaccine 2008; 26:6132-42. [DOI: 10.1016/j.vaccine.2008.08.070] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/31/2008] [Accepted: 08/31/2008] [Indexed: 11/21/2022]
|
27
|
Lopera-Mesa TM, Kushwaha A, Mohmmed A, Chauhan VS. Plasmodium berghei merozoite surface protein-9: immunogenicity and protective efficacy using a homologous challenge model. Vaccine 2008; 26:1335-43. [PMID: 18272263 DOI: 10.1016/j.vaccine.2007.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/07/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
Abstract
Merozoite surface protein-9 (MSP-9) from Plasmodium is considered a promising vaccine candidate due to its location and possible role in erythrocyte invasion. We report the identification and characterization of Plasmodium berghei MSP-9 (PbMSP-9) and its properties as an immunogen using a recombinant PbMSP-9 fragment to immunize BALB/c mice. PbMSP-9 was found to harbor erythrocyte binding and serine protease activity. PbMSP-9 formulation in alum was highly immunogenic in BALB/c mice. To evaluate the protective efficacy, immunized mice were submitted to homologous challenge with P. berghei NK65 blood-stage parasites. Protection against the parasite challenge was observed in BALB/c mice immunized with the PbMSP-9 formulation. These results suggest for the first time that MSP-9 based immunogens may constitute part of an effective malaria vaccine.
Collapse
Affiliation(s)
- Tatiana Maria Lopera-Mesa
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, PO Box 10504, New Delhi 110067, India
| | | | | | | |
Collapse
|
28
|
Balajee SA, Tay ST, Lasker BA, Hurst SF, Rooney AP. Characterization of a novel gene for strain typing reveals substructuring of Aspergillus fumigatus across North America. EUKARYOTIC CELL 2007; 6:1392-9. [PMID: 17557880 PMCID: PMC1951133 DOI: 10.1128/ec.00164-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fifty-five epidemiologically linked Aspergillus fumigatus isolates obtained from six nosocomial outbreaks of invasive aspergillosis were subtyped by sequencing the polymorphic region of the gene encoding a putative cell surface protein, Afu3g08990 (denoted as CSP). Comparative sequence analysis showed that genetic diversity was generated in the coding region of this gene by both tandem repeats and point mutations. Each unique sequence in an outbreak cluster was assigned an arbitrary number or CSP sequence type. The CSP typing method was able to identify "clonal" and genotypically distinct A. fumigatus isolates, and the results of this method were concordant with those of another discriminatory genotyping technique, the Afut1 restriction fragment length polymorphism typing method. The novel single-locus sequence typing (CSP typing) strategy appears to be a simple, rapid, discriminatory tool that can be readily shared across laboratories. In addition, we found that A. fumigatus isolates substructured into multiple clades; interestingly, one clade consisted of isolates predominantly representing invasive clinical isolates recovered from cardiac transplant patients from two different outbreak situations. We also found that the A. fumigatus isolate Af293, whose genome has been sequenced, possesses a CSP gene structure that is substantially different from those of the other A. fumigatus strains studied here, highlighting the need for further taxonomic study.
Collapse
Affiliation(s)
- S Arunmozhi Balajee
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Mail stop G 11, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
29
|
de Souza-Neiras WC, de Melo LMS, Machado RLD. The genetic diversity of Plasmodium vivax: a review. Mem Inst Oswaldo Cruz 2007; 102:245-54. [PMID: 17568928 DOI: 10.1590/s0074-02762007000300002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/08/2007] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity of Plasmodium vivax has been investigated in several malaria-endemic areas, including the Brazilian Amazon region, where this is currently the most prevalent species causing malaria in humans. This review summarizes current views on the use of molecular markers to examine P. vivax populations, with a focus on studies performed in Brazilian research laboratories. We emphasize the importance of phylogenetic studies on this parasite and discuss the perspectives created by our increasing understanding of genetic diversity and population structure of this parasite for the development of new control strategies, including vaccines, and more effective drugs for the treatment of P. vivax malaria.
Collapse
Affiliation(s)
- Wanessa Christina de Souza-Neiras
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Súo José do Rio Preto, SP, Brasil.
| | | | | |
Collapse
|
30
|
Herrera S, Corradin G, Arévalo-Herrera M. An update on the search for a Plasmodium vivax vaccine. Trends Parasitol 2007; 23:122-8. [PMID: 17258937 DOI: 10.1016/j.pt.2007.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/09/2006] [Accepted: 01/17/2007] [Indexed: 11/27/2022]
Abstract
Although Plasmodium falciparum is the leading cause of morbidity and mortality due to malaria worldwide, nearly 2.5 billion people, mostly outside Africa, are also at risk from malaria caused by Plasmodium vivax infection. Currently, almost all efforts to develop a malaria vaccine have focused on P. falciparum. For example, there are 23 P. falciparum vaccine candidates undergoing advanced clinical studies and only two P. vivax vaccine candidates being tested in preliminary (Phase I) clinical trials, with few others being assessed in preclinical studies. More investment and a greater effort toward the development of P. vivax vaccine components for a multi-species vaccine are required. This is mainly because of the wide geographical coexistence of both parasite species but also because of increasing drug resistance, recent observations of severe and lethal P. vivax cases and relapsing parasite behaviour. Availability of the P. vivax genome has contributed to antigen discovery but new means to test vaccines in future trials remain to be designed.
Collapse
Affiliation(s)
- Sócrates Herrera
- Malaria Vaccine and Drug Development Center, AA 26020, Cali, Colombia; Immunology Institute, Universidad del Valle, AA 25574, Cali, Colombia.
| | | | | |
Collapse
|
31
|
Jalah R, Sarin R, Sud N, Alam MT, Parikh N, Das TK, Sharma YD. Identification, expression, localization and serological characterization of a tryptophan-rich antigen from the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 2005; 142:158-69. [PMID: 15869815 DOI: 10.1016/j.molbiopara.2005.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 01/11/2005] [Accepted: 01/26/2005] [Indexed: 11/26/2022]
Abstract
Plasmodium vivax is most common but non-cultivable human malaria parasite which is poorly characterized at the molecular level. Here, we describe the identification and characterization of a P. vivax Tryptophan-Rich Antigen (PvTRAg) which contains unusually high (8.28%) tryptophan residues and is expressed by all blood stages of the parasite. The pvtrag gene comprises a 978bp open reading frame interrupted by two introns. The first intron is located in the 5'-untranslated region while the second one is positioned 174bp downstream to the ATG codon. The encoded approximately 40kDa protein contains a transmembrane domain near the N-terminus followed by a tryptophan-rich domain with significantly high surface probability and antigenic index. It is localized in the parasite cytoplasm as well as in the cytoplasm of the parasitized erythrocyte. The purified E. coli expressed recombinant PvTRAg protein showed a very high seropositivity rate for the presence of antibodies amongst the P. vivax patients, indicating that the antigen generates significant humoral immune response during the natural course of P. vivax infection. Analysis of various field isolates revealed that the tryptophan-rich domain is highly conserved except for three-point mutations. The PvTRAg could be a potential vaccine candidate since similar tryptophan-rich antigens of P. yoelii have shown protection against malaria in murine model.
Collapse
Affiliation(s)
- Rashmi Jalah
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|