1
|
Zhang C, Zhou J, Cai K, Zhang W, Liao C, Wang C. Gene cloning, expression and immune adjuvant properties of the recombinant fusion peptide Tα1-BLP on avian influenza inactivate virus vaccine. Microb Pathog 2018; 120:147-154. [DOI: 10.1016/j.micpath.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
|
2
|
Boonnak K, Vogel L, Orandle M, Zimmerman D, Talor E, Subbarao K. Antigen-activated dendritic cells ameliorate influenza A infections. J Clin Invest 2013; 123:2850-61. [PMID: 23934125 DOI: 10.1172/jci67550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses cause significant morbidity and mortality worldwide. There is a need for alternative or adjunct therapies, as resistance to currently used antiviral drugs is emerging rapidly. We tested ligand epitope antigen presentation system (LEAPS) technology as a new immune-based treatment for influenza virus infection in a mouse model. Influenza-J-LEAPS peptides were synthesized by conjugating the binding ligand derived from the β2-microglobulin chain of the human MHC class I molecule (J-LEAPS) with 15 to 30 amino acid-long peptides derived from influenza virus NP, M, or HA proteins. DCs were stimulated with influenza-J-LEAPS peptides (influenza-J-LEAPS) and injected intravenously into infected mice. Antigen-specific LEAPS-stimulated DCs were effective in reducing influenza virus replication in the lungs and enhancing survival of infected animals. Additionally, they augmented influenza-specific T cell responses in the lungs and reduced the severity of disease by limiting excessive cytokine responses, which are known to contribute to morbidity and mortality following influenza virus infection. Our data demonstrate that influenza-J-LEAPS-pulsed DCs reduce virus replication in the lungs, enhance survival, and modulate the protective immune responses that eliminate the virus while preventing excessive cytokines that could injure the host. This approach shows promise as an adjunct to antiviral treatment of influenza virus infections.
Collapse
Affiliation(s)
- Kobporn Boonnak
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-3203, USA
| | | | | | | | | | | |
Collapse
|
3
|
Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 2013; 8:360-76. [PMID: 23316023 DOI: 10.1002/cmdc.201200487] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/08/2012] [Indexed: 12/11/2022]
Abstract
Traditional vaccines, based on the administration of killed or attenuated microorganisms, have proven to be among the most effective methods for disease prevention. Safety issues related to administering these complex mixtures, however, prevent their universal application. Through identification of the microbial components responsible for protective immunity, vaccine formulations can be simplified, enabling molecular-level vaccine characterization, improved safety profiles, prospects to develop new high-priority vaccines (e.g. for HIV, tuberculosis, and malaria), and the opportunity for extensive vaccine component optimization. This subunit approach, however, comes at the expense of decreased immunity, requiring the addition of immunostimulatory agents (adjuvants). As few adjuvants are currently used in licensed vaccines, adjuvant development represents an exciting area for medicinal chemists to play a role in the future of vaccine development. In addition, immune responses can be further customized though optimization of delivery systems, tuning the size of particulate vaccines, targeting specific cells of the immune system (e.g. dendritic cells), and adding components to aid vaccine efficacy in whole immunized populations (e.g. promiscuous T-helper epitopes). Herein we review the current state of the art and future direction in subunit vaccine development, with a focus on the described components and their potential to steer the immune response toward a desired response.
Collapse
Affiliation(s)
- Peter Michael Moyle
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
4
|
Zimmerman DH, Steiner H, Carmabula R, Talor E, Rosenthal KS. LEAPS therapeutic vaccines as antigen specific suppressors of inflammation in infectious and autoimmune diseases. JOURNAL OF VACCINES & VACCINATION 2012; 3:149. [PMID: 23400692 PMCID: PMC3567852 DOI: 10.4172/2157-7560.1000149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The L.E.A.P.S.(™) (Ligand Epitope Antigen Presentation System) technology platform has been used to develop immunoprotective and immunomodulating small peptide vaccines for infectious and autoimmune diseases. Several products are currently in various stages of development, at the pre-clinical stage (in animal challenge efficacy studies). Vaccine peptides can elicit protection of animals from lethal viral (herpes simplex virus [HSV-1] and influenza A) infection or can block the progression of autoimmune diseases (e.g. rheumatoid arthritis as in the collagen induced arthritis (CIA] or experimental autoimmune myocarditis (EAM) models). L.E.A.P.S. technology is a novel T-cell immunization technology that enables the design and synthesis of non-recombinant, proprietary peptide immunogens. Combination of a small peptide that activates the immune system with another small peptide from a disease-related protein, thus a conjugate containing both an Immune Cell Binding Ligand (ICBL) and a disease specific epitope, which allows the L.E.A.P.S. vaccines to activate precursors to differentiate and become more mature cells that can initiate and direct appropriate T cell responses. As such, readily synthesized, defined immunogens can be prepared to different diseases and are likely to elicit protection or therapy as applicable in humans as they are in mice. L.E.A.P.S. vaccines have promise for the treatment of rheumatoid arthritis and other inflammatory diseases and for infections, such as influenza and HSV1. The protective responses are characterized as Th1 immune and immunomodulatory responses with increased IL-12p70 and IFN-γ (Th1 cytokines) but reduced inflammatory cytokines TNF-α, IL-1 and IL-17 (Th2 and Th17 cytokines) and concomitant changes in antibody subtypes. LEAPS immunogens have been used directly in vivo or as ex vivo activators of DC which are then administered to the host.
Collapse
|
5
|
Abstract
INTRODUCTION Adjuvants potentiate immune responses, reducing the amount and dosing frequency of antigen required for inducing protective immunity. Adjuvants are of special importance when considering subunit, epitope-based or more unusual vaccine formulations lacking significant innate immunogenicity. While numerous adjuvants are known, only a few are licensed for human use; principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small molecules and liposome-based delivery systems with intrinsic adjuvant activity being perhaps the most prominent. AREAS COVERED This article focuses on small molecules acting as adjuvants, with the author reviewing their current status while highlighting their potential for systematic discovery and rational optimisation. Known small molecule adjuvants (SMAs) can be synthetically complex natural products, small oligonucleotides or drug-like synthetic molecules. The author provides examples of each class, discussing adjuvant mechanisms relevant to SMAs, and exploring the high-throughput discovery of SMAs. EXPERT OPINION SMAs, particularly synthetic drug-like adjuvants, are amenable to the plethora of drug-discovery techniques able to optimise the properties of biologically active small molecules. These range from laborious synthetic modifications to modern, rational, effort-efficient computational approaches, such as QSAR and structure-based drug design. In principal, any property or characteristic can thus be designed in or out of compounds, allowing us to tailor SMAs to specific biological functions, such as targeting specific cells or pathways, in turn affording the power to tailor SMAs to better address different diseases.
Collapse
Affiliation(s)
- Darren R Flower
- University of Aston, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
6
|
Li D, Xue M, Wang C, Wang J, Chen P. Bursopentine as a novel immunoadjuvant enhances both humoral and cell-mediated immune responses to inactivated H9N2 Avian Influenza virus in chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1497-502. [PMID: 21795462 PMCID: PMC3165222 DOI: 10.1128/cvi.05133-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
There is an urgent need for identification of a new adjuvant capable of selectively promoting an efficient immune response for use with vaccines and especially subunit vaccines. Our pervious study showed that Bursopentine (BP5) is a novel immunomodulatory peptide and has the ability to significantly stimulate an antigen-specific immune response in mice. In this study, the potential adjuvant activities of BP5 were examined in chickens by coinjection of BP5 and an inactivated avian influenza virus (AIV) (A/Duck/Jiangsu/NJ08/05 [AIV H9N2 subtype]). The results suggested that BP5 markedly elevated serum hemagglutination inhibition (HI) titers and antigen-specific antihemagglutinin (anti-HA) antibody (IgG) levels, induced both Th1 (interleukin 2 [IL-2] and gamma interferon [IFN-γ])- and Th2 (IL-4)-type cytokines, promoted the proliferation of peripheral blood lymphocytes, and increased populations of CD3(+) T cells and their subsets CD4(+) (CD3(+) CD4(+)) T cells and CD8(+) (CD3(+) CD8(+)) T cells. Furthermore, a virus challenge experiment revealed that BP5 contributes to protection against homologous avian influenza virus challenge by reducing viral replication in chicken lungs. This study indicates that the combination of inactivated AIVs and BP5 gives a strong immune response at both the humoral and cellular levels and implies that BP5 is a novel immunoadjuvant suitable for vaccine design.
Collapse
Affiliation(s)
- Deyuan Li
- Division of Key Lab of Animal Disease Diagnosis and Immunology, China's Department of Agriculture, Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Nanjing, JingSu 210095, China.
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Zimmerman DH, Taylor P, Bendele A, Carambula R, Duzant Y, Lowe V, O'Neill SP, Talor E, Rosenthal KS. CEL-2000: A therapeutic vaccine for rheumatoid arthritis arrests disease development and alters serum cytokine/chemokine patterns in the bovine collagen type II induced arthritis in the DBA mouse model. Int Immunopharmacol 2010; 10:412-21. [DOI: 10.1016/j.intimp.2009.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 11/16/2022]
|
9
|
Davies MN, Flower DR. Computational Vaccinology. BIOINFORMATICS FOR IMMUNOMICS 2009. [PMCID: PMC7121138 DOI: 10.1007/978-1-4419-0540-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Ebensen T, Guzmán CA. Immune modulators with defined molecular targets: cornerstone to optimize rational vaccine design. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:171-88. [PMID: 20047042 DOI: 10.1007/978-1-4419-1132-2_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vaccination remains the most valuable tool for preventing infectious diseases. However, the performance of many existing vaccines should be improved and there are diseases for which vaccines are still not available. The use of well-defined antigens for the generation of subunit vaccines has led to products with an improved safety profile. However, purified antigens are usually poorly immunogenic, making essential the use of adjuvants. Despite the fact that adjuvants have been used to increase the immunogenicity of vaccines for more than 70 years, only a handful has been licensed for human use (e.g., aluminium salts, the micro-fluidized squalene-in-water emulsion MF59 and monophosphoryl lipid A). Thus, the development of new adjuvants which are able to promote broad and sustained immune responses at systemic and mucosal levels still remains as a major challenge in vaccinology. Recent advances in our understanding of the immune system have facilitated the identification of new biological targets for screening programs aimed at the discovery of novel immune stimulators. This resulted in the identification of new candidate adjuvants, which made possible the modulation of the immune responses elicited according to specific needs. A number of promising adjuvants which are currently under preclinical or clinical development will be described in this chapter.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology and Applied Micobiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | | |
Collapse
|
11
|
Bursin as an adjuvant is a potent enhancer of immune response in mice immunized with the JEV subunit vaccine. Vet Immunol Immunopathol 2008; 122:265-74. [DOI: 10.1016/j.vetimm.2007.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/16/2007] [Accepted: 11/21/2007] [Indexed: 11/23/2022]
|
12
|
|
13
|
Hauge S, Madhun AS, Cox RJ, Brokstad KA, Haaheim LR. A Comparison of the Humoral and Cellular Immune Responses at Different Immunological Sites after Split Influenza Virus Vaccination of Mice. Scand J Immunol 2007; 65:14-21. [PMID: 17212762 DOI: 10.1111/j.1365-3083.2006.01862.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The spleen, bone marrow and lymph nodes are all known to be important organs for the initiation and maintenance of an immune response after vaccination. To investigate the differences and similarities in the humoral and cellular immune responses between these tissues, we vaccinated mice once or twice with the conventional human dose (15 microg HA) of influenza A (H3N2) split virus vaccine and analysed the sera and lymphocytes collected from the different sites. We found that the response of antibody secreting cells (ASC) in the lymph nodes appeared to be more transient than in the spleen, possibly because the influenza-specific IgM ASC in particular might have migrated from the lymph nodes immediately after activation. The serum antibody response was found to initially correspond with the ASC response elicited in the spleen and the lymph nodes, whereas the later serum IgG reflected the ASC response in the bone marrow. Proliferation of influenza-specific CD4(+) and CD8(+) cells was predominantly observed in the spleen and was associated with higher concentrations of cytokines than in the lymph nodes. The finding of influenza-specific CD8(+) cell proliferation in the spleen indicates that a split influenza virus vaccine may stimulate a cytotoxic T-cell response. Our results also showed that the primary response elicited a mixed Th1/Th2 profile, whereas the secondary response was skewed towards a Th2 type. Each of the three tissues had a different immunological pattern, suggesting that in preclinical vaccine studies, there is a case for investigating a range of immunological sites.
Collapse
Affiliation(s)
- S Hauge
- Influenza Centre, The Gade Institute, University of Bergen, Armauer Hansen Building, Bergen, Norway.
| | | | | | | | | |
Collapse
|
14
|
Hovden AO, Cox RJ, Haaheim LR. Whole influenza virus vaccine is more immunogenic than split influenza virus vaccine and induces primarily an IgG2a response in BALB/c mice. Scand J Immunol 2005; 62:36-44. [PMID: 16092921 DOI: 10.1111/j.1365-3083.2005.01633.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to compare the kinetics and the magnitude of the humoral immune response to two different influenza vaccine formulations, whole and split virus vaccines. BALB/c mice were immunized intramuscularly with one or two doses (3 weeks apart) of 7.5, 15 or 30 microg of haemagglutinin of monovalent A/Panama/2007/99 (H3N2) split or whole virus vaccine. The two vaccine formulations induced similar kinetics of the antibody-secreting cells response; however, differences in the magnitude were observed in the spleen and bone marrow. Vaccination with whole virus vaccine generally elicited a quicker and higher neutralizing antibody response, particularly after the first dose of vaccine. The two vaccine formulations gave different immunoglobulin G (IgG) subclass profiles. Split virus vaccine stimulated both IgG1 and IgG2a antibodies suggestive of mixed T-helper 1 (Th1) and Th2 response, whereas whole virus vaccine induced mainly an IgG2a antibody response, which is indicative of a dominant Th1 response. The increased immunogenicity of whole virus vaccine in a naïve population could reduce the vaccine concentration needed to provide protective immunity.
Collapse
Affiliation(s)
- A-O Hovden
- Influenza Centre, Section for Microbiology and Immunology, The Gade Institute, University of Bergen, Haukeland University Hospital, Norway.
| | | | | |
Collapse
|