1
|
Yılmaz Çolak Ç. In silico analysis of virulence factors of Streptococcus uberis for a chimeric vaccine design. In Silico Pharmacol 2024; 12:7. [PMID: 38187875 PMCID: PMC10771410 DOI: 10.1007/s40203-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Streptococcus uberis is one of the causative agents of bovine mastitis, which has detrimental effects on animal health and the dairy industry. Despite decades of research, the requirement for effective vaccines against the disease remains unmet. The goal of this study was to create a multi-epitope vaccine using five virulence factors of S. uberis through the reverse vaccinology approach, which has been employed due to its high efficiency and applicability. Plasminogen activator A (PauA), glyceraldehyde-3-phosphate dehydrogenase C (GapC), C5a peptidase, S. uberis adhesion molecule (SUAM), and sortase A (SrtA) were selected for the T cytotoxic (CTL) and B cell epitope analyses as they were extensively studied in S. uberis or other pathogens. Eighteen CTL and ten B cell epitopes that were antigenic, non-toxic, and non-allergenic were selected in order to design a chimeric vaccine candidate that in silico analysis revealed to be potentially immunogenic, non-allergenic, and stable. Molecular docking analysis of the vaccine candidate with Toll-like receptor (TLR) 2 and TLR 4 revealed stable interactions between the candidate and the immune receptors. Meanwhile, the stability of the docked complexes was confirmed using normal mode analysis. Additionally, in silico immune simulation of the vaccine candidate demonstrated the stimulation of primary immune responses, indicating that the chimeric protein can hold promise as a viable vaccine candidate for preventing S. uberis mastitis. Moreover, the current study can provide a background for designing epitope-based vaccines based on the explored epitopes.
Collapse
|
2
|
Fulurija A, Cunningham MW, Korotkova N, Masterson MY, Bansal GP, Baker MG, Cannon JW, Carapetis JR, Steer AC. Research opportunities for the primordial prevention of rheumatic fever and rheumatic heart disease-streptococcal vaccine development: a national heart, lung and blood institute workshop report. BMJ Glob Health 2023; 8:e013534. [PMID: 38164699 PMCID: PMC10729269 DOI: 10.1136/bmjgh-2023-013534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024] Open
Abstract
Streptococcus pyogenes, also known as group A streptococcus (StrepA), is a bacterium that causes a range of human diseases, including pharyngitis, impetigo, invasive infections, and post-infection immune sequelae such as rheumatic fever and rheumatic heart disease. StrepA infections cause some of the highest burden of disease and death in mostly young populations in low-resource settings. Despite decades of effort, there is still no licensed StrepA vaccine, which if developed, could be a cost-effective way to reduce the incidence of disease. Several challenges, including technical and regulatory hurdles, safety concerns and a lack of investment have hindered StrepA vaccine development. Barriers to developing a StrepA vaccine must be overcome in the future by prioritising key areas of research including greater understanding of StrepA immunobiology and autoimmunity risk, better animal models that mimic human disease, expanding the StrepA vaccine pipeline and supporting vaccine clinical trials. The development of a StrepA vaccine is a complex and challenging process that requires significant resources and investment. Given the global burden of StrepA infections and the potential for a vaccine to save lives and livelihoods, StrepA vaccine development is an area of research that deserves considerable support. This report summarises the findings of the Primordial Prevention Working Group-VAX, which was convened in November 2021 by the National Heart, Lung, and Blood Institute. The focus of this report is to identify research gaps within the current StrepA vaccine landscape and find opportunities and develop priorities to promote the rapid and successful advancement of StrepA vaccines.
Collapse
Affiliation(s)
- Alma Fulurija
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Madeleine W Cunningham
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Mary Y Masterson
- Center for Translation Research and Implementation Science (CTRIS), National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Geetha P Bansal
- John E Fogarty International Center, Bethesda, Maryland, USA
| | - Michael G Baker
- Department of Public Health, University of Otago Wellington, Wellington, New Zealand
| | - Jeffrey W Cannon
- Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
- Department of Global Health and Population, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Andrew C Steer
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Abstract
Recent efforts have re-invigorated the Streptococcus pyogenes (Group A Streptococcus) vaccine development field, though scientific, regulatory and commercial barriers persist, and the vaccine pipeline remains sparse. There is an ongoing need to accelerate all aspects of development to address the large global burden of disease caused by the pathogen. Building on over 100 years of S. pyogenes vaccine development, there are currently eight candidates on a product development track, including four M protein-based candidates and four candidates designed around non-M protein antigens. These candidates have demonstrated proof of concept for protection against S. pyogenes in preclinical models, one has demonstrated safety and immunogenicity in a Phase 1 trial and at least four others are poised to soon enter clinical trials. To maintain momentum, the Strep A Vaccine Global Consortium (SAVAC) was established to bring together experts to accelerate global S. pyogenes vaccine development. This article highlights the past, present and future of S. pyogenes vaccine development and emphasizes key priorities, and the role of SAVAC, in advancing the field.
Collapse
|
4
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
5
|
Whitcombe AL, Han F, McAlister SM, Kirkham LAS, Young PG, Ritchie SR, Atatoa Carr P, Proft T, Moreland NJ. An eight-plex immunoassay for Group A streptococcus serology and vaccine development. J Immunol Methods 2021; 500:113194. [PMID: 34801540 DOI: 10.1016/j.jim.2021.113194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Group A Streptococcus (GAS) is a major human pathogen responsible for superficial infections through to life-threatening invasive disease and the autoimmune sequelae acute rheumatic fever (ARF). Despite a significant global economic and health burden, there is no licensed vaccine available to prevent GAS disease. Several pre-clinical vaccines that target conserved GAS antigens are in development. Assays that measure antigen-specific antibodies are essential for vaccine research. The aim of this study was to develop a multiplex beadbased immunoassay that can detect and quantify antibody responses to multiple GAS antigen targets in small volume blood samples. This builds on our existing triplex assay comprised of antigens used in clinical serology for the diagnosis of ARF (SLO, DNase B and SpnA). Five additional conserved putative GAS vaccine antigens (Spy0843, SCPA, SpyCEP, SpyAD and the Group A carbohydrate), were coupled to spectrally unique beads to form an 8-plex antigen panel. After optimisation of the assay protocol, standard curves were generated, and assessments of assay specificity, precision and reproducibility were conducted. A broad range of antibody (IgG) titres were able to be quickly and accurately quantified from a single serum dilution. Assay utility was assessed using a panel of 62 clinical samples including serum from adults with GAS bacteraemia and children with ARF. Circulating IgG to all eight antigens was elevated in patients with GAS disease (n = 23) compared to age-matched controls (n = 39) (P < 0.05). The feasibility of using dried blood samples to quantify antigen-specific IgG was also demonstrated. In summary, a robust and reproducible 8-plex assay has been developed that simultaneously quantifies IgG antibodies to GAS vaccine and diagnostic antigens.
Collapse
Affiliation(s)
- Alana L Whitcombe
- School of Medical Sciences, The University of Auckland, New Zealand; Maurice Wilkins Centre for Biodiscovery, The University of Auckland, New Zealand
| | - Franklin Han
- School of Medical Sciences, The University of Auckland, New Zealand
| | - Sonia M McAlister
- Wesfarmers Centre of Vaccines & Infectious Disease, Telethon Kids Institute, Perth, Western Australia, Australia; Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines & Infectious Disease, Telethon Kids Institute, Perth, Western Australia, Australia; Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Paul G Young
- School of Biological Sciences, The University of Auckland, New Zealand
| | | | | | - Thomas Proft
- School of Medical Sciences, The University of Auckland, New Zealand; Maurice Wilkins Centre for Biodiscovery, The University of Auckland, New Zealand
| | - Nicole J Moreland
- School of Medical Sciences, The University of Auckland, New Zealand; Maurice Wilkins Centre for Biodiscovery, The University of Auckland, New Zealand.
| |
Collapse
|
6
|
McKenna S, Huse KK, Giblin S, Pearson M, Majid Al Shibar MS, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. J Innate Immun 2021; 14:69-88. [PMID: 34649250 PMCID: PMC9082167 DOI: 10.1159/000516956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria possess the ability to evolve varied and ingenious strategies to outwit the host immune system, instigating an evolutionary arms race. Proteases are amongst the many weapons employed by bacteria, which specifically cleave and neutralize key signalling molecules required for a coordinated immune response. In this article, we focus on a family of S8 subtilisin-like serine proteases expressed as cell-envelope proteases (CEPs) by group A and group B streptococci. Two of these proteases known as Streptococcus pyogenes CEP (SpyCEP) and C5a peptidase cleave the chemokine CXCL8 and the complement fragment C5a, respectively. Both CXCL8 and C5a are potent neutrophil-recruiting chemokines, and by neutralizing their activity, streptococci evade a key defence mechanism of innate immunity. We review the mechanisms by which CXCL8 and C5a recruit neutrophils and the characterization of SpyCEP and C5a peptidase, including both in vitro and in vivo studies. Recently described structural insights into the function of this CEP family are also discussed. We conclude by examining the progress of prototypic vaccines incorporating SpyCEP and C5a peptidase in their preparation. Since streptococci-producing SpyCEP and C5a peptidase are responsible for a considerable global disease burden, targeting these proteases by vaccination strategies or by small-molecule antagonists should provide protection from and promote the resolution of streptococcal infections.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kristin Krohn Huse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sean Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Gao NJ, Uchiyama S, Pill L, Dahesh S, Olson J, Bautista L, Maroju S, Berges A, Liu JZ, Zurich RH, van Sorge N, Fairman J, Kapoor N, Nizet V. Site-Specific Conjugation of Cell Wall Polyrhamnose to Protein SpyAD Envisioning a Safe Universal Group A Streptococcal Vaccine. INFECTIOUS MICROBES & DISEASES 2021; 3:87-100. [PMID: 39450141 PMCID: PMC11501091 DOI: 10.1097/im9.0000000000000044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Development of an effective vaccine against the leading human bacterial pathogen group A Streptococcus (GAS) is a public health priority. The species defining group A cell wall carbohydrate (GAC, Lancefield antigen) can be engineered to remove its immunodominant N-acetylglucosamine (GlcNAc) side chain, implicated in provoking autoimmune cross-reactivity in rheumatic heart disease, leaving its polyrhamnose core (GACPR). Here we generate a novel protein conjugate of the GACPR and test the utility of this conjugate antigen in active immunization. Instead of conjugation to a standard carrier protein, we selected SpyAD, a highly conserved GAS surface protein containing both B-cell and T-cell epitopes relevant to the bacterium that itself shows promise as a vaccine antigen. SpyAD was synthesized using the XpressTM cell-free protein expression system, incorporating a non-natural amino acid to which GACPR was conjugated by site-specific click chemistry to yield high molecular mass SpyAD-GACPR conjugates and avoid disruption of important T-cell and B-cell immunological epitopes. The conjugated SpyAD-GACPR elicited antibodies that bound the surface of multiple GAS strains of diverse M types and promoted opsonophagocytic killing by human neutrophils. Active immunization of mice with a multivalent vaccine consisting of SpyAD-GACPR, together with candidate vaccine antigens streptolysin O and C5a peptidase, protected against GAS challenge in a systemic infection model and localized skin infection model, without evidence of cross reactivity to human heart or brain tissue epitopes. This general approach may allow GAC to be safely and effectively included in future GAS subunit vaccine formulations with the goal of broad protection without autoreactivity.
Collapse
Affiliation(s)
- Nina J. Gao
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Satoshi Uchiyama
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Lucy Pill
- Vaxcyte, Inc., Foster City, CA 94404, USA
| | - Samira Dahesh
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | | | | | - Aym Berges
- Vaxcyte, Inc., Foster City, CA 94404, USA
| | - Janet Z. Liu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Raymond H. Zurich
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Nina van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Amsterdam, Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | | | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093
| |
Collapse
|
8
|
Wang G, Zhao J, Zhao Y, Wang S, Feng S, Gu G. Immunogenicity Assessment of Different Segments and Domains of Group a Streptococcal C5a Peptidase and Their Application Potential as Carrier Protein for Glycoconjugate Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9020139. [PMID: 33572233 PMCID: PMC7915350 DOI: 10.3390/vaccines9020139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Group A streptococcal C5a peptidase (ScpA) is a highly conserved surface virulence factor present on group A streptococcus (GAS) cell surfaces. It has attracted much more attention as a promising antigenic target for GAS vaccine development due to its high antigenicity to stimulate specific and immunoprotective antibodies. In this study, a series of segments of ScpA were rationally designed according to the functional domains described in its crystal structure, efficiently prepared and immunologically evaluated so as to assess their potential as antigens for the development of subunit vaccines. Immunological studies revealed that Fn, Fn2, and rsScpA193 proteins were promising antigen candidates worthy for further exploration. In addition, the potential of Fn and Fn2 as carrier proteins to formulate effective glycoconjugate vaccine was also investigated.
Collapse
Affiliation(s)
| | | | | | | | | | - Guofeng Gu
- Correspondence: ; Tel.: +86-532-5863-1408
| |
Collapse
|
9
|
Sanduja P, Gupta M, Somani VK, Yadav V, Dua M, Hanski E, Sharma A, Bhatnagar R, Johri AK. Cross-serotype protection against group A Streptococcal infections induced by immunization with SPy_2191. Nat Commun 2020; 11:3545. [PMID: 32669564 PMCID: PMC7363907 DOI: 10.1038/s41467-020-17299-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Group A Streptococcus (GAS) infection causes a range of diseases, but vaccine development is hampered by the high number of serotypes. Here, using reverse vaccinology the authors identify SPy_2191 as a cross-protective vaccine candidate. From 18 initially identified surface proteins, only SPy_2191 is conserved, surface-exposed and inhibits both GAS adhesion and invasion. SPy_2191 immunization in mice generates bactericidal antibodies resulting in opsonophagocytic killing of prevalent and invasive GAS serotypes of different geographical regions, including M1 and M49 (India), M3.1 (Israel), M1 (UK) and M1 (USA). Resident splenocytes show higher interferon-γ and tumor necrosis factor-α secretion upon antigen re-stimulation, suggesting activation of cell-mediated immunity. SPy_2191 immunization significantly reduces streptococcal load in the organs and confers ~76-92% protection upon challenge with invasive GAS serotypes. Further, it significantly suppresses GAS pharyngeal colonization in mice mucosal infection model. Our findings suggest that SPy_2191 can act as a universal vaccine candidate against GAS infections.
Collapse
Affiliation(s)
- Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manish Gupta
- BSL-3 Unit, Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vikas Kumar Somani
- BSL-3 Unit, Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research-Israel-Canada(IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research-Israel-Canada(IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
A Multicomponent Vaccine Provides Immunity against Local and Systemic Infections by Group A Streptococcus across Serotypes. mBio 2019; 10:mBio.02600-19. [PMID: 31772056 PMCID: PMC6879722 DOI: 10.1128/mbio.02600-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GAS is among the most common human pathogens and causes a wide variety of diseases, likely more than any other microorganism. The diverse clinical manifestations of GAS may be attributable to its large repertoire of virulence factors that are selectively and synergistically involved in streptococcal pathogenesis. To date, GAS vaccines have not been successful due to multiple serotypes and postinfection sequelae associated with autoimmunity. In this study, five conserved virulence factors that are involved in GAS pathogenesis were used as a combined vaccine. Intranasal immunization with this vaccine induced humoral and cellular immune responses across GAS serotypes and protected against mucosal, systemic, and skin infections. The significance of this work is to demonstrate that the efficacy of GAS vaccines can be achieved by including multiple nonredundant critical virulence factors and inducing local and systemic immunity. The strategy also provides valuable insights for vaccine development against other pathogens. Group A streptococcus (GAS) species are responsible for a broad spectrum of human diseases, ranging from superficial to invasive infections, and are associated with autoimmune disorders. There is no commercial vaccine against GAS. The clinical manifestations of GAS infection may be attributable to the large repertoire of virulence factors used selectively in different types of GAS disease. Here, we selected five molecules, highly conserved among GAS serotypes, and involved in different pathogenic mechanisms, as a multicomponent vaccine, 5CP. Intranasal (i.n.) immunization with 5CP protected mice against both mucosal and systemic GAS infection across serotypes; the protection lasted at least 6 months. Immunization of mice with 5CP constrained skin lesion development and accelerated lesion recovery. Flow cytometry and enzyme-linked immunosorbent assay analyses revealed that 5CP induced Th17 and antibody responses locally and systemically; however, the Th17 response induced by 5CP resolved more quickly than that to GAS when challenge bacteria were cleared, suggesting that 5CP is less likely to cause autoimmune responses. These findings support that immunization through the i.n. route targeting multiple nonredundant virulence factors can induce immunity against different types of GAS disease and represents an alternative strategy for GAS vaccine development, with favorable efficacy, coverage, duration, and safety.
Collapse
|
11
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
12
|
Rivera-Hernandez T, Carnathan DG, Jones S, Cork AJ, Davies MR, Moyle PM, Toth I, Batzloff MR, McCarthy J, Nizet V, Goldblatt D, Silvestri G, Walker MJ. An Experimental Group A Streptococcus Vaccine That Reduces Pharyngitis and Tonsillitis in a Nonhuman Primate Model. mBio 2019; 10:e00693-19. [PMID: 31040243 PMCID: PMC6495378 DOI: 10.1128/mbio.00693-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Group A Streptococcus (GAS) infections account for an estimated 500,000 deaths every year. This bacterial pathogen is responsible for a variety of mild and life-threatening infections and the triggering of chronic autoimmune sequelae. Pharyngitis caused by group A Streptococcus (GAS), but not asymptomatic GAS carriage, is a prerequisite for acute rheumatic fever (ARF). Repeated bouts of ARF may trigger rheumatic heart disease (RHD), a major cause of heart failure and stroke accounting for 275,000 deaths annually. A vaccine that prevents pharyngitis would markedly reduce morbidity and mortality from ARF and RHD. Nonhuman primates (NHPs) have been utilized to model GAS diseases, and experimentally infected rhesus macaques develop pharyngitis. Here we use an NHP model of GAS pharyngitis to evaluate the efficacy of an experimental vaccine, Combo5 (arginine deiminase [ADI], C5a peptidase [SCPA], streptolysin O [SLO], interleukin-8 [IL-8] protease [SpyCEP], and trigger factor [TF]), specifically designed to exclude GAS components potentially linked to autoimmune complications. Antibody responses against all Combo5 antigens were detected in NHP serum, and immunized NHPs showed a reduction in pharyngitis and tonsillitis compared to controls. Our work establishes the NHP model as a gold standard for the assessment of GAS vaccines.IMPORTANCE GAS-related diseases disproportionally affect disadvantaged populations (e.g., indigenous populations), and development of a vaccine has been neglected. A recent strong advocacy campaign driven by the World Health Organization and the International Vaccine Institute has highlighted the urgent need for a GAS vaccine. One significant obstacle in GAS vaccine development is the lack of a widely used animal model to assess vaccine efficacy. Researchers in the field use a wide range of murine models of infection and in vitro assays, sometimes yielding conflicting results. Here we present the nonhuman primate pharyngeal infection model as a tool to assess vaccine-induced protection against colonization and clinical symptoms of pharyngitis and tonsillitis. We have tested the efficacy of an experimental vaccine candidate with promising results. We believe that the utilization of this valuable tool by the GAS vaccine research community could significantly accelerate the realization of a safe and effective GAS vaccine for humans.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Diane G Carnathan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Scott Jones
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mark R Davies
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Peter Doherty Institute, University of Melbourne, Parkville, VIC, Australia
| | - Peter M Moyle
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - James McCarthy
- Australian Infectious Diseases Research Centre, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla, California, USA
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Guido Silvestri
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Zhao Y, Wang S, Wang G, Li H, Guo Z, Gu G. Synthesis and immunological studies of group AStreptococcuscell-wall oligosaccharide–streptococcal C5a peptidase conjugates as bivalent vaccines. Org Chem Front 2019. [DOI: 10.1039/c9qo00651f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convergent synthesis of GAS cell-wall oligosaccharides and their efficient conjugation with the ScpA193 carrier protein to generate glycoconjugates as potential bivalent vaccines were reported.
Collapse
Affiliation(s)
- Yisheng Zhao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Hui Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Zhongwu Guo
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| |
Collapse
|
14
|
Jones S, Moreland NJ, Zancolli M, Raynes J, Loh JMS, Smeesters PR, Sriskandan S, Carapetis JR, Fraser JD, Goldblatt D. Development of an opsonophagocytic killing assay for group a streptococcus. Vaccine 2018; 36:3756-3763. [PMID: 29776751 DOI: 10.1016/j.vaccine.2018.05.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
Abstract
Group A Streptococcus (GAS) or Streptococcus pyogenes is responsible for an estimated 500,000 deaths worldwide each year. Protection against GAS infection is thought to be mediated by phagocytosis, enhanced by bacteria-specific antibody. There are no licenced GAS vaccines, despite many promising candidates in preclinical and early stage clinical development, the most advanced of which are based on the GAS M-protein. Vaccine progress has been hindered, in part, by the lack of a standardised functional assay suitable for vaccine evaluation. Current assays, developed over 50 years ago, rely on non-immune human whole blood as a source of neutrophils and complement. Variations in complement and neutrophil activity between donors result in variable data that is difficult to interpret. We have developed an opsonophagocytic killing assay (OPKA) for GAS that utilises dimethylformamide (DMF)-differentiated human promyelocytic leukemia cells (HL-60) as a source of neutrophils and baby rabbit complement, thus removing the major sources of variation in current assays. We have standardised the OPKA for several clinically relevant GAS strain types (emm1, emm6 and emm12) and have shown antibody-specific killing for each emm-type using M-protein specific rabbit antisera. Specificity was demonstrated by pre-incubation of the antisera with homologous M-protein antigens that blocked antibody-specific killing. Additional qualifications of the GAS OPKA, including the assessment of the accuracy, precision, linearity and the lower limit of quantification, were also performed. This GAS OPKA assay has the potential to provide a robust and reproducible platform to accelerate GAS vaccine development.
Collapse
Affiliation(s)
- Scott Jones
- Immunobiology, UCL Great Ormond Street Institute of Child Health Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Nicole J Moreland
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Marta Zancolli
- Immunobiology, UCL Great Ormond Street Institute of Child Health Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Jeremy Raynes
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Universite ́ Libre de Bruxelles and Academic Children Hospital, Brussels, Belgium; Murdoch Children's Research Institute and University of Melbourne, Melbourne, Australia
| | - Shiranee Sriskandan
- Faculty of Medicine, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Jonathan R Carapetis
- Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, Australia
| | - John D Fraser
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David Goldblatt
- Immunobiology, UCL Great Ormond Street Institute of Child Health Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
15
|
Lamb LE, Zhi X, Alam F, Pyzio M, Scudamore CL, Wiles S, Sriskandan S. Modelling invasive group A streptococcal disease using bioluminescence. BMC Microbiol 2018; 18:60. [PMID: 29921240 PMCID: PMC6006931 DOI: 10.1186/s12866-018-1200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, however the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models. RESULTS Using clinical emm1, emm3, and emm89 GAS strains that were transformed with constructs carrying the luxABCDE operon, growth and bioluminescence of transformed strains were characterised in vitro and in vivo. Emm3 and emm89 strains expressed detectable bioluminescence when transformed with a replicating plasmid and light production correlated with viable bacterial counts in vitro, however plasmid instability precluded use in the absence of antimicrobial pressure. Emm89 GAS transformed with an integrating construct demonstrated stable bioluminescence that was maintained in the absence of antibiotics. Bioluminescence of the emm89 strain correlated with viable bacterial counts both in vitro and immediately following infection in vivo. Although bioluminescence conferred a detectable fitness burden to the emm89 strain during soft tissue infection in vivo, it did not prevent dissemination to distant tissues. CONCLUSION Development of stably bioluminescent GAS for use in vitro and in vivo models of infection should facilitate development of novel therapeutics and vaccines while also increasing our understanding of infection progression and transmission routes.
Collapse
Affiliation(s)
- L E Lamb
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK.,Royal Centre Defence Medicine, Academia and Research, University of Birmingham, Birmingham, B15 2SQ, UK
| | - X Zhi
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - F Alam
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - M Pyzio
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - C L Scudamore
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | - S Wiles
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK.,Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - S Sriskandan
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Ozberk V, Pandey M, Good MF. Contribution of cryptic epitopes in designing a group A streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2034-2052. [PMID: 29873591 PMCID: PMC6150013 DOI: 10.1080/21645515.2018.1462427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A successful vaccine needs to target multiple strains of an organism. Streptococcus pyogenes is an organism that utilizes antigenic strain variation as a successful defence mechanism to circumvent the host immune response. Despite numerous efforts, there is currently no vaccine available for this organism. Here we review and discuss the significant obstacles to vaccine development, with a focus on how cryptic epitopes may provide a strategy to circumvent the obstacles of antigenic variation.
Collapse
Affiliation(s)
- Victoria Ozberk
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Manisha Pandey
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Michael F Good
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| |
Collapse
|
17
|
Pietrocola G, Arciola CR, Rindi S, Montanaro L, Speziale P. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Front Immunol 2018; 9:602. [PMID: 29686667 PMCID: PMC5900788 DOI: 10.3389/fimmu.2018.00602] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of "old" and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Ohri M, Parashar S, Pai VS, Ghosh S, Chakraborti A. A cytosol derived factor of Group B streptococcus prevent its invasion into human epithelial cells. World J Microbiol Biotechnol 2018. [PMID: 29520519 DOI: 10.1007/s11274-018-2428-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Group B streptococcus (GBS) or Streptococcus agalactiae, is an opportunistic pathogen causing a wide range of infections like pneumonia, sepsis, and meningitis in newborn, pregnant women and adults. While this bacterium has adapted well to asymptomatic colonization of adult humans, it still remains a potentially devastating pathogen to susceptible infants. Advances in molecular techniques and refinement of in vitro and in vivo model systems have elucidated key elements of the pathogenic process, from initial attachment to the maternal vaginal epithelium to penetration of the newborn blood-brain barrier. Still, the formidable array of GBS virulence factors makes this bacterium at the forefront of neonatal pathogens. The involvement of bacterial components in the host-pathogen interaction of GBS pathogenesis and its related diseases is not clearly understood. In this study we demonstrated the role of a 39 kDa factor from GBS which plays an important role in the process of its invasion. We found a homogeneous 39 kDa factor from the cytosol of GBS after following a combination of sequential purification steps involving molecular sieving and ion exchange chromatography using ACTA-FPLC system. Its N-terminal sequence showed a homology with xenobiotic response element type transcriptional regulator protein, a 40 kDa protein of Streptococcus. This factor leads to inhibition of GBS invasion in HeLa and A549 cells. This protein also showed sensitivity and specific cross reactivity with the antibodies raised against it in New Zealand white rabbits by western immunoblotting. This inhibitory factor was further confirmed tolerant for its cytotoxicity. These results add a novel aspect to bacterial pathogenesis where bacteria's own intracellular protein component can act as a potential therapeutic candidate by decreasing the severity of disease thus promoting its invasion inhibition.
Collapse
Affiliation(s)
- Manju Ohri
- Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Smriti Parashar
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Sujata Ghosh
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
19
|
Wu Y, Li S, Luo Y, Zhao Y, Wang J, Dong R, Xie X, Zhu J, Liu J. Immunogenicity and Safety of a Chemically Synthesized Divalent Group A Streptococcal Vaccine. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:4702152. [PMID: 29682128 PMCID: PMC5851172 DOI: 10.1155/2018/4702152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/31/2017] [Accepted: 01/15/2018] [Indexed: 12/02/2022]
Abstract
BACKGROUND Group A streptococcus (GAS) infections and poststreptococcal sequelae remain a health problem worldwide, which necessitates searching for an effective vaccine, while no licensed GAS vaccine is available. We have developed a divalent peptide vaccine composed of 84 amino acids to cover the main GAS serotypes (M1 and M12 streptococci) in China, and herein, we aimed to evaluate immunogenicity and safety of this vaccine. METHODS Mice were immunized with the vaccine. ELISA, indirect bactericidal test, and immunofluorescent assay were used to study immunogenicity. GAS challenge assay was used to test the protective effect. Safety was tested by histopathological analysis. RESULTS Immunized group mice (n=16) developed higher titer antibody after immunization than nonimmunized group mice (n=16) did. This antibody can deposit on the surface of GAS and promote killing of GAS, resulting in 93.1% decrease of M1 GAS and 89.5% of M12 GAS. When challenged with M1 and M12 streptococci, immunized group mice had a higher survival rate (87.5% and 75%) than nonimmunized group mice (37.5% and 25%). No autoimmune reactions were detected on organs of mice. CONCLUSION The results suggest that this vaccine shows fair immunogenicity and safety, which will lead our research on GAS vaccine into clinical trial.
Collapse
Affiliation(s)
- Yongxiang Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Suhua Li
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanting Luo
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yunyue Zhao
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiarui Wang
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ruimin Dong
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xujing Xie
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jieming Zhu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jinlai Liu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
20
|
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol 2018; 31:150-158. [PMID: 29369750 DOI: 10.1089/vim.2017.0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Empirically derived vaccines have in the past relied on the isolation and growth of disease-causing microorganisms that are then inactivated or attenuated before being administered. This is often done without prior knowledge of the mechanisms involved in conferring protective immunity. Recent advances in scientific technologies and in our knowledge of how protective immune responses are induced enable us to rationally design novel and safer vaccination strategies. Such advances have accelerated the development of inactivated whole-organism- and subunit-based vaccines. In this review, we discuss ideal attributes and criteria that need to be considered for the development of vaccines and some existing vaccine platforms. We focus on inactivated vaccines against influenza virus and ways by which vaccine efficacy can be improved with the use of adjuvants and Toll-like receptor-2 signaling.
Collapse
Affiliation(s)
- Brendon Y Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - Toshiki Sekiya
- 2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| |
Collapse
|
21
|
Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog 2017; 13:e1006493. [PMID: 28806402 PMCID: PMC5555575 DOI: 10.1371/journal.ppat.1006493] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis. The complement pathway is critical in the innate immune response to bacterial pathogens. It consists of a self-perpetuating proteolytic cascade initiated via three distinct pathways that converge at the central complement protein, C3. Pathogens must evade complement-mediated immunity to cause disease, and inactivation of the C3 protein can dampen all effectors of this pathway. Streptococcal species are the causative agents of an array of infections ranging from the benign to lethal. Using the human pathogen Group A Streptococcus as a representative species, we show that the enzyme ScpA, which is conserved amongst the pyogenic streptococci, cleaves human C3a and also C3, releasing abnormally sized and functionally-impaired fragments. As a result, invading streptococci were less well opsonized and host immune cells not properly activated, reducing bacterial phagocytosis and clearance. Despite manifest in vitro activity against complement factors and human neutrophils, ScpA was still able to contribute to systemic bacterial spread in mice lacking C3 and C5. ScpA was also demonstrated to mediate streptococcal adhesion to both epithelial and endothelial cells, which may enhance bacterial systemic spread. Our study highlights the likely importance of both complement-independent and complement-dependent roles for ScpA in streptococcal pathogenesis.
Collapse
|
22
|
Li H, Wang S, Zhao Y, Chen Z, Gu G, Guo Z. Mutagenesis and immunological evaluation of group A streptococcal C5a peptidase as an antigen for vaccine development and as a carrier protein for glycoconjugate vaccine design. RSC Adv 2017. [DOI: 10.1039/c7ra07923k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A non-enzymatic recombinant ScpA mutant (H193A) was prepared and investigated to probe its application potential in the development of GAS vaccines and as a carrier protein of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Hui Li
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Subo Wang
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Yisheng Zhao
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zonggang Chen
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Guofeng Gu
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zhongwu Guo
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
- Department of Chemistry
| |
Collapse
|
23
|
Vaccine-induced Th17 cells are established as resident memory cells in the lung and promote local IgA responses. Mucosal Immunol 2017; 10:260-270. [PMID: 27049058 DOI: 10.1038/mi.2016.28] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/25/2016] [Indexed: 02/04/2023]
Abstract
The ability to mount accelerated and efficient mucosal immune responses is critically important to prevent the establishment of many infections. Secretion of immunoglobulin A (IgA) is a key component in this first line of defense, but the underlying cellular mechanisms are still not completely understood. We have evaluated different routes of immunization and examined the requirements for IgA induction in the airway mucosa. We demonstrate that subcutaneous priming with a recombinant antigen in a T helper (Th)17-inducing adjuvant followed by airway boosting promotes high and sustained levels of IgA in the lungs. This response is associated with germinal center formation in the lung-draining lymph nodes. The lung IgA response is dependent on Th17 cells and absent if interleukin (IL)-17 is depleted or when priming with vaccines inducing only Th1 or Th2 responses. We used intravascular staining to demonstrate that IgA+ B cells and chemokine receptor 6 (CCR6)+Th17 cells are recruited to the lung parenchyma after the airway booster immunization. Once recruited to the lung parenchyma, the Th17 cells transform into resident lymphocytes that persist in the lung tissue for at least 10 weeks. Here, they facilitate the accelerated recruitment of T and B cells resulting in an accelerated IgA recall response to a second airway booster immunization.
Collapse
|
24
|
Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio 2016; 7:mBio.00618-16. [PMID: 27302756 PMCID: PMC4916377 DOI: 10.1128/mbio.00618-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development.
Collapse
|
25
|
Status of research and development of vaccines for Streptococcus pyogenes. Vaccine 2016; 34:2953-2958. [DOI: 10.1016/j.vaccine.2016.03.073] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022]
|
26
|
Jiang J, Zheng Z, Wang K, Wang J, He Y, Wang E, Chen D, Ouyang P, Geng Y, Huang X. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus). Int J Mol Sci 2015; 16:28001-13. [PMID: 26602918 PMCID: PMC4691029 DOI: 10.3390/ijms161226082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 02/08/2023] Open
Abstract
Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund's Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Zonglin Zheng
- Department of Aquaculture, Rongchang Campus, Southwest University, Chongqing 402460, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
- Department of Aquaculture, Rongchang Campus, Southwest University, Chongqing 402460, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
- Department of Aquaculture, Rongchang Campus, Southwest University, Chongqing 402460, China.
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| |
Collapse
|
27
|
Lamb LEM, Sriskandan S, Tan LKK. Bromine, bear-claw scratch fasciotomies, and the Eagle effect: management of group A streptococcal necrotising fasciitis and its association with trauma. THE LANCET. INFECTIOUS DISEASES 2015; 15:109-21. [PMID: 25541175 DOI: 10.1016/s1473-3099(14)70922-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Necrotising fasciitis is a rare, but potentially fatal, soft-tissue infection. Historical depictions of the disease have been described since classical times and were mainly recorded in wartime reports of battle injuries. Although several different species of bacteria can cause necrotising fasciitis, perhaps the most widely known is group A streptococcus (GAS). Infection control, early surgical debridement, and antibiotic therapy are now the central tenets of the clinical management of necrotising fasciitis; these treatment approaches all originate from those used in wars in the past 150 years. We review reports from the 19th century, early 20th century, and mid-20th century onwards to show how the management of necrotising fasciitis has progressed in parallel with prevailing scientific thought and medical practice. Historically, necrotising fasciitis has often, but not exclusively, been associated with penetrating trauma. However, along with a worldwide increase in invasive GAS disease, recent reports have cited cases of necrotising fasciitis following non-combat-related injuries or in the absence of antecedent events. We also investigate the specific association between GAS necrotising fasciitis and trauma. In the 21st century, molecular biology has improved our understanding of GAS pathogenesis, but has not yet affected attributable mortality.
Collapse
Affiliation(s)
- Lucy E M Lamb
- Department of Medicine, Imperial College London, Hammersmith Campus, Hammersmith Hospital, London, UK
| | - Shiranee Sriskandan
- Department of Medicine, Imperial College London, Hammersmith Campus, Hammersmith Hospital, London, UK
| | - Lionel K K Tan
- Department of Medicine, Imperial College London, Hammersmith Campus, Hammersmith Hospital, London, UK.
| |
Collapse
|
28
|
Jarocki VM, Tacchi JL, Djordjevic SP. Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 2015; 15:1075-88. [PMID: 25492846 PMCID: PMC7167786 DOI: 10.1002/pmic.201400386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/26/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
Abstract
Proteases are enzymes that catalyse hydrolysis of peptide bonds thereby controlling the shape, size, function, composition, turnover and degradation of other proteins. In microbes, proteases are often identified as important virulence factors and as such have been targets for novel drug design. It is emerging that some proteases possess additional non‐proteolytic functions that play important roles in host epithelia adhesion, tissue invasion and in modulating immune responses. These additional “moonlighting” functions have the potential to obfuscate data interpretation and have implications for therapeutic design. Moonlighting enzymes comprise a subcategory of multifunctional proteins that possess at least two distinct biological functions on a single polypeptide chain. Presently, identifying moonlighting proteins relies heavily on serendipitous empirical data with clues arising from proteins lacking signal peptides that are localised to the cell surface. Here, we describe examples of microbial proteases with additional non‐proteolytic functions, including streptococcal pyrogenic exotoxin B, PepO and C5a peptidases, mycoplasmal aminopeptidases, mycobacterial chaperones and viral papain‐like proteases. We explore how these non‐proteolytic functions contribute to host cell adhesion, modulate the coagulation pathway, assist in non‐covalent folding of proteins, participate in cell signalling, and increase substrate repertoire. We conclude by describing how proteomics has aided in moonlighting protein discovery, focusing attention on potential moonlighters in microbial exoproteomes.
Collapse
Affiliation(s)
- Veronica M. Jarocki
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Jessica L. Tacchi
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Steven P. Djordjevic
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
- Proteomics Core FacilityUniversity of TechnologySydneyNSWAustralia
| |
Collapse
|
29
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
30
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 566] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
31
|
Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, Winsor J, Giraldi M, Biagini M, Liberatori S, Savino S, Bagnoli F, Anderson WF, Grandi G. Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J 2014; 28:1780-93. [PMID: 24421400 DOI: 10.1096/fj.13-241737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite the global medical needs associated with Staphylococcus aureus infections, no licensed vaccines are currently available. We identified and characterized a protein annotated as an epidermin leader peptide processing serine protease (EpiP), as a novel S. aureus vaccine candidate. In addition, we determined the structure of the recombinant protein (rEpiP) by X-ray crystallography. The crystal structure revealed that rEpiP was cleaved somewhere between residues 95 and 100, and we found that the cleavage occurs through an autocatalytic intramolecular mechanism. The protein expressed by S. aureus cells also appeared to undergo a similar processing event. To determine whether the protein acts as a serine protease, we mutated the hypothesized catalytic serine 393 residue to alanine, generating rEpiP-S393A. The crystal structure of this mutant protein showed that the polypeptide chain was not cleaved and was not interacting stably with the active site. Indeed, rEpiP-S393A was shown to be impaired in its protease activity. Mice vaccinated with rEpiP were protected from S. aureus infection (34% survival, P=0.0054). Moreover, the protective efficacy generated by rEpiP and rEpiP-S393A was comparable, implying that the noncleaving mutant could be used for vaccination purposes.
Collapse
Affiliation(s)
- Misty L Kuhn
- 2G.G., Novartis Vaccines, via Fiorentina 1, 53100, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.
Collapse
|
33
|
Georgousakis MM, McMillan DJ, Batzloff MR, Sriprakash KS. Moving forward: a mucosal vaccine against group A streptococcus. Expert Rev Vaccines 2014; 8:747-60. [DOI: 10.1586/erv.09.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Wei Z, Fu Q, Chen Y, Li M, Cong P, Mo D, Liu X. Streptococcus equi ssp. zooepidemicus C5a peptidase, a putative invasin, induces protective immune response in mice. Res Vet Sci 2013; 95:444-50. [DOI: 10.1016/j.rvsc.2013.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/11/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
|
35
|
Franklin L, Nobbs AH, Bricio-Moreno L, Wright CJ, Maddocks SE, Sahota JS, Ralph J, O’Connor M, Jenkinson HF, Kadioglu A. The AgI/II family adhesin AspA is required for respiratory infection by Streptococcus pyogenes. PLoS One 2013; 8:e62433. [PMID: 23638083 PMCID: PMC3640068 DOI: 10.1371/journal.pone.0062433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (GAS) is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.
Collapse
Affiliation(s)
- Linda Franklin
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Jaspreet Singh Sahota
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Joe Ralph
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Matthew O’Connor
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
|
37
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
38
|
Abstract
Although the incidence of acute rheumatic fever and rheumatic heart disease has decreased significantly in regions of the world where antibiotics are easily accessible, there remains a high incidence in developing nations as well as in certain regions where there is a high incidence of genetic susceptibility. These diseases are a function of poverty, low socioeconomic status, and barriers to healthcare access, and it is in the developing world that a comprehensive prevention program is most critically needed. Development of group A streptococcal vaccines has been under investigation since the 1960s and 50 years later, we still have no vaccine. Factors that contribute to this lack of success include a potential risk for developing vaccine-induced rheumatic heart disease, as well as difficulties in covering the many serological subtypes of M protein, a virulence factor found on the surface of the bacterium. Yet, development of a successful vaccine program for prevention of group A streptococcal infection still offers the best chance for eradication of rheumatic fever in the twenty-first century. Other useful approaches include continuation of primary and secondary prevention with antibiotics and implementation of health care policies that provide patients with easy access to antibiotics. Improved living conditions and better hygiene are also critical to the prevention of the spread of group A streptococcus, especially in impoverished regions of the world. The purpose of this article is to discuss current and recent developments in the diagnosis, pathogenesis, and management of rheumatic fever and rheumatic heart disease.
Collapse
Affiliation(s)
- Christopher Chang
- Division of Allergy, Asthma and Immunology, Thomas Jefferson University, Nemours/A.I. Dupont Children's Hospital, 1600 Rockland Road, Wilmington, DE 19803, USA.
| |
Collapse
|
39
|
Vaccination Against Rheumatic Heart Disease: A Review of Current Research Strategies and Challenges. Curr Infect Dis Rep 2012; 14:381-90. [DOI: 10.1007/s11908-012-0263-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
41
|
Henningham A, Gillen CM, Walker MJ. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol 2012; 368:207-42. [PMID: 23250780 DOI: 10.1007/82_2012_284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently there is no commercial Group A Streptococcus (GAS; S. pyogenes) vaccine available. The development of safe GAS vaccines is challenging, researchers are confronted with obstacles such as the occurrence of many unique serotypes (there are greater than 150 M types), antigenic variation within the same serotype, large variations in the geographical distribution of serotypes, and the production of antibodies cross-reactive with human tissue which can lead to host auto-immune disease. Cell wall anchored, cell membrane associated, secreted and anchorless proteins have all been targeted as GAS vaccine candidates. As GAS is an exclusively human pathogen, the quest for an efficacious vaccine is further complicated by the lack of an animal model which mimics human disease and can be consistently and reproducibly colonized by multiple GAS strains.
Collapse
Affiliation(s)
- Anna Henningham
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
42
|
Progress in the development of effective vaccines to prevent selected gram-positive bacterial infections. Am J Med Sci 2010; 340:218-25. [PMID: 20697258 DOI: 10.1097/maj.0b013e3181e939ab] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections caused by virulent Gram-positive bacteria, such as Staphylococcus aureus, group B streptococci and group A streptococci, remain significant causes of morbidity and mortality despite progress in antimicrobial therapy. Despite significant advances in the understanding of the pathogenesis of infection caused by these organisms, there are only limited strategies to prevent infection. In this article, we review efforts to develop safe and effective vaccines that would prevent infections caused by these 3 pathogens.
Collapse
|
43
|
Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non-M protein-based vaccine. Infect Immun 2010; 78:4051-67. [PMID: 20624906 DOI: 10.1128/iai.00295-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes.
Collapse
|
44
|
Steer AC, Batzloff MR, Mulholland K, Carapetis JR. Group A streptococcal vaccines: facts versus fantasy. Curr Opin Infect Dis 2010; 22:544-52. [PMID: 19797947 DOI: 10.1097/qco.0b013e328332bbfe] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of progress of the development of group A streptococcal (GAS) vaccines with a focus on recent advances. RECENT FINDINGS Historically, GAS vaccine development has focused on the N-terminus of the M protein, which ultimately led to successful phase I/II clinical trials of a 26-valent recombinant M protein vaccine in 2004-2005. More recently, interest in antigens conserved among most, if not all, group A streptococci has increased. However, no vaccines containing these antigens have reached clinical trials. Three strategies have been used to develop conserved antigen vaccine candidates: use of the conserved region of the M protein; use of well described virulence factors as antigens, including streptococcal C5a peptidase, streptococcal carbohydrate, fibronectin-binding proteins, cysteine protease and streptococcal pili; and use of reverse vaccinology to identify novel antigens. SUMMARY Several vaccine candidates against GAS infection are in varying stages of preclinical and clinical development. Although there is great hope that one of these vaccine candidates will reach licensure in the next decade, only one, the multivalent N-terminal vaccine, has entered clinical trials in the last 30 years. Although strong advocacy for GAS vaccine development is important, there remains an urgent need to institute available public health control measures against GAS diseases globally, particularly in developing countries.
Collapse
Affiliation(s)
- Andrew C Steer
- Centre for International Child Health, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
45
|
Structural optimisation of a conformational epitope improves antigenicity when expressed as a recombinant fusion protein. Vaccine 2009; 27:6799-806. [DOI: 10.1016/j.vaccine.2009.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/11/2009] [Accepted: 08/14/2009] [Indexed: 11/21/2022]
|
46
|
Chemokine degradation by the Group A streptococcal serine proteinase ScpC can be reconstituted in vitro and requires two separate domains. Biochem J 2009; 422:533-42. [PMID: 19552626 DOI: 10.1042/bj20090278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Streptococcus pyogenes is one of the most common human pathogens and possesses diverse mechanisms to evade the human immune defence. One example of its immune evasion is the degradation of the chemokine IL (interleukin)-8 by ScpC, a serine proteinase that prevents the recruitment of neutrophils to an infection site. By applying the ANTIGENome technology and using human serum antibodies, we identified Spy0416, annotated as ScpC, as a prominent antigen that induces protective immune responses in animals. We demonstrate here for the first time that the recombinant form of Spy0416 is capable of IL-8 degradation in vitro in a concentration- and time-dependent manner. Mutations in the conserved amino acid residues of the catalytic triad of Spy0416 completely abolished in vitro activity. However, the isolated predicted proteinase domain does not exhibit IL-8-degrading activity, but is dependent on the presence of the C-terminal region of Spy0416. Binding to IL-8 is mainly mediated by the catalytic domain. However, the C-terminal region modulates substrate binding, indicating that the proteolytic activity is amenable to regulation via the non-catalytic regions. The specificity for human substrates is not restricted to IL-8, since we also detected in vitro protease activity for another CXC chemokine GRO-alpha (growth-related oncogene alpha), but not for NAP-2 (neutrophil-activating protein 2), SDF (stromal-cell-derived factor)-1alpha, PF-4 (platelet factor 4), I-TAC (interferon-gamma-inducible T-cell alpha-chemoattractant), IP-10 (interferon-gamma-inducible protein 10) and MCP-1 (monocyte chemoattractant protein 1). The degradation of two human CXC chemokines in vitro, the high sequence conservation, the immunogenicity of the protein in humans and the shown protection in animal studies suggest that Spy0416 is a promising vaccine candidate for the prevention of infections by S. pyogenes.
Collapse
|
47
|
Kagawa TF, O'Connell MR, Mouat P, Paoli M, O'Toole PW, Cooney JC. Model for Substrate Interactions in C5a Peptidase from Streptococcus pyogenes: A 1.9 Å Crystal Structure of the Active Form of ScpA. J Mol Biol 2009; 386:754-72. [DOI: 10.1016/j.jmb.2008.12.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/18/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
48
|
Barinov A, Loux V, Hammani A, Nicolas P, Langella P, Ehrlich D, Maguin E, van de Guchte M. Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics 2009; 9:61-73. [DOI: 10.1002/pmic.200800195] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Streptococcal Infections. BACTERIAL INFECTIONS OF HUMANS 2009. [PMCID: PMC7121349 DOI: 10.1007/978-0-387-09843-2_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The streptococci are a large heterogeneous group of gram-positive spherically shaped bacteria widely distributed in nature. They include some of the most important agents of human disease as well as members of the normal human flora. Some streptococci have been associated mainly with disease in animals, while others have been domesticated and used for the culture of buttermilk, yogurt, and certain cheeses. Those known to cause human disease comprise two broad categories: First are the pyogenic streptococci, including the familiar β-hemolytic streptococci and the pneumococcus. These organisms are not generally part of the normal flora but cause acute, often severe, infections in normal hosts. Second are the more diverse enteric and oral streptococci, which are nearly always part of the normal flora and which are more frequently associated with opportunistic infections.
Collapse
|
50
|
Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med 2008; 10:e27. [PMID: 18803886 DOI: 10.1017/s1462399408000811] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Group B Streptococcus commonly colonises healthy adults without symptoms, yet under certain circumstances displays the ability to invade host tissues, evade immune detection and cause serious invasive disease. Consequently, Group B Streptococcus remains a leading cause of neonatal pneumonia, sepsis and meningitis. Here we review recent information on the bacterial factors and mechanisms that direct host-pathogen interactions involved in the pathogenesis of Group B Streptococcus infection. New research on host signalling and inflammatory responses to Group B Streptococcus infection is summarised. An understanding of the complex interplay between Group B Streptococcus and host provides valuable insight into pathogen evolution and highlights molecular targets for therapeutic intervention.
Collapse
|