1
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
2
|
Jin S, Zheng DD, Sun B, Yu X, Zha X, Liu Y, Wu S, Wu Y. Controlled Hybrid-Assembly of HPV16/18 L1 Bi VLPs in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34244-34251. [PMID: 27998118 DOI: 10.1021/acsami.6b12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Based on the helix4-exchanged HPV16 L1 and HPV18 L1, HPV16 L1 Bi and HPV18 L1 Bi, we have successfully realized the controlled hybrid-assembly of HPV16/18 L1 Bi VLPs (bihybrid-VLPs) in vitro. The bihybrid-VLPs were further confirmed by fluorescence resonance energy transfer (FRET) and complex-immunoprecipitation (Co-IP) assays. The ratio of 16 L1 Bi and 18 L1 Bi in bihybrid-VLPs was verified to be 3:5 based on a modified magnetic Co-IP procedure, when mixing 1 equiv pentamer in assembly buffer solution, but it changed with conditions. In addition, the bihybrid-VLPs showed identical thermal stability as that of normal VLPs, suggesting high potential in practical applications. The present study is significant because it modified one of the vital steps of virus life cycle at the stage of virus assembly, supplying a new approach not only to deepen structural insights but also a possibility to prepare stable, low-cost, bivalent antivirus vaccine. Furthermore, the controlled hybrid-assembly of bihybrid-VLPs in vitro provides suggestions for the design of effective multivalent hybrid-VLPs, being a potential to develop broad-spectrum vaccines for the prevention of infection with multiple types of HPV.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Zha
- Sichuan Tumor Hospital & Institute , Chengdu 610041, China
| | | | - Shuming Wu
- Beijing Health Guard Inc., Beijing 100176, China
| | | |
Collapse
|
3
|
Singh VK, Srivastava R, Srivastava BS. Manipulation of BCG vaccine: a double-edged sword. Eur J Clin Microbiol Infect Dis 2016; 35:535-43. [PMID: 26810060 DOI: 10.1007/s10096-016-2579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach.
Collapse
Affiliation(s)
- V K Singh
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 22184, Lund, Sweden.
| | - R Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - B S Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
4
|
Chapman R, Bourn WR, Shephard E, Stutz H, Douglass N, Mgwebi T, Meyers A, Chin'ombe N, Williamson AL. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen. PLoS One 2014; 9:e103314. [PMID: 25061753 PMCID: PMC4111510 DOI: 10.1371/journal.pone.0103314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/28/2014] [Indexed: 01/09/2023] Open
Abstract
Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 107 CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/106 splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
Collapse
Affiliation(s)
- Rosamund Chapman
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - William R. Bourn
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Enid Shephard
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council, Cape Town, South Africa
- Department of Medicine Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Helen Stutz
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thandi Mgwebi
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Department of Molecular and Cell Biology, Faculty Of Science, University of Cape Town, Cape Town, South Africa
| | - Nyasha Chin'ombe
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|
5
|
Kaufmann SH, Cotton MF, Eisele B, Gengenbacher M, Grode L, Hesseling AC, Walzl G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 2014; 13:619-30. [PMID: 24702486 DOI: 10.1586/14760584.2014.905746] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculosis remains a major health threat and vaccines better than bacillus Calmette-Guérin (BCG) are urgently required. Here we describe our experience with a recombinant BCG expressing listeriolysin and deficient in urease. This potential replacement vaccine has demonstrated superior efficacy and safety over BCG in Mycobacterium tuberculosis aerosol-challenged mice and was safe in numerous animal models including immune-deficient mice, guinea pigs, rabbits and nonhuman primates. Phase I clinical trials in adults in Germany and South Africa have proven safety and a current Phase IIa trial is under way to assess immunogenicity and safety in its target population, newborns in a high tuberculosis incidence setting, with promising early results. Second-generation candidates are being developed to improve safety and efficacy.
Collapse
Affiliation(s)
- Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Robust immunity to an auxotrophic Mycobacterium bovis BCG-VLP prime-boost HIV vaccine candidate in a nonhuman primate model. J Virol 2013; 87:5151-60. [PMID: 23449790 DOI: 10.1128/jvi.03178-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported that a recombinant pantothenate auxotroph of Mycobacterium bovis BCG expressing human immunodeficiency virus type 1 (HIV-1) subtype C Gag (rBCGpan-Gag) efficiently primes the mouse immune system for a boost with a recombinant modified vaccinia virus Ankara (rMVA) vaccine. In this study, we further evaluated the immunogenicity of rBCGpan-Gag in a nonhuman primate model. Two groups of chacma baboons were primed or mock primed twice with either rBCGpan-Gag or a control BCG. Both groups were boosted with HIV-1 Pr55(gag) virus-like particles (Gag VLPs). The magnitude and breadth of HIV-specific cellular responses were measured using a gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay, and the cytokine profiles and memory phenotypes of T cells were evaluated by polychromatic flow cytometry. Gag-specific responses were detected in all animals after the second inoculation with rBCGpan-Gag. Boosting with Gag VLPs significantly increased the magnitude and breadth of the responses in the baboons that were primed with rBCGpan-Gag. These responses targeted an average of 12 Gag peptides per animal, compared to an average of 3 peptides per animal for the mock-primed controls. Robust responses of Gag-specific polyfunctional T cells capable of simultaneously producing IFN-γ, tumor necrosis alpha (TNF-α), and interleukin-2 (IL-2) were detected in the rBCGpan-Gag-primed animals. Gag-specific memory T cells were skewed toward a central memory phenotype in both CD4(+) and CD8(+) T cell populations. These data show that the rBCGpan-Gag prime and Gag VLP boost vaccine regimen is highly immunogenic, inducing a broad and polyfunctional central memory T cell response. This report further indicates the feasibility of developing a BCG-based HIV vaccine that is safe for childhood HIV immunization.
Collapse
|
7
|
Kaufmann SHE, Gengenbacher M. Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012; 23:900-7. [DOI: 10.1016/j.copbio.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022]
|
8
|
Gersch ED, Gissmann L, Garcea RL. New approaches to prophylactic human papillomavirus vaccines for cervical cancer prevention. Antivir Ther 2011; 17:425-34. [PMID: 22293302 DOI: 10.3851/imp1941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/12/2022]
Abstract
The currently licensed human papillomavirus (HPV) vaccines are safe and highly effective at preventing HPV infection for a select number of papillomavirus types, thus decreasing the incidence of precursors to cervical cancer. It is expected that vaccination will also ultimately reduce the incidence of this cancer. The licensed HPV vaccines are, however, type restricted and expensive, and also require refrigeration, multiple doses and intramuscular injection. Second-generation vaccines are currently being developed to address these shortcomings. New expression systems, viral and bacterial vectors for HPV L1 capsid protein delivery, and use of the HPV L2 capsid protein will hopefully aid in decreasing cost and increasing ease of use and breadth of protection. These second-generation vaccines could also allow affordable immunization of women in developing countries, where the incidence of cervical cancer is high.
Collapse
Affiliation(s)
- Elizabeth D Gersch
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | | |
Collapse
|
9
|
Hopkins R, Bridgeman A, Bourne C, Mbewe-Mvula A, Sadoff JC, Both GW, Joseph J, Fulkerson J, Hanke T. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors. Eur J Immunol 2011; 41:3542-52. [PMID: 21932450 DOI: 10.1002/eji.201141962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 11/07/2022]
Abstract
The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen.
Collapse
Affiliation(s)
- Richard Hopkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Govan VA. A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil). Ther Clin Risk Manag 2011; 4:65-70. [PMID: 18728721 PMCID: PMC2503667 DOI: 10.2147/tcrm.s856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are one of the most common sexually transmitted infections and remains a public health problem worldwide. There is strong evidence that HPV causes cervical, vulva and vaginal cancers, genital warts and recurrent respiratory papillomatosis. The current treatments for HPV-induced infections are ineffective and recurrence is common-place. Therefore, to reduce the burden of HPV-induced infections, several studies have investigated the effi cacy of different prophylactic vaccines in clinical human trials directed against HPV types 6, 11, 16, or 18. Notably, these HPV types contribute to a signifi cant proportion of disease worldwide. This review will focus on the published results of Merck & Co’s prophylactic quadrivalent recombinant vaccine targeting HPV types 6, 11, 16, and 18 (referred to as Gardasil®). Data from the Phase III trial demonstrated that Gardasil was 100% effi cacious in preventing precancerous lesions of the cervix, vulva, and vagina and effective against genital warts. Due to the success of these human clinical trials, the FDA approved the registration of Gardasil on the 8 June 2006. In addition, since Gardasil has been effi cacious for 5 years post vaccination, the longest evaluation of an HPV vaccine, it is expected to reduce the incidence of these type specifi c HPV-induced diseases in the future.
Collapse
Affiliation(s)
- Vandana A Govan
- Division of Medical Virology, Department of Clinical Laboratory Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Observatory, Cape Town, South Africa
| |
Collapse
|
11
|
Kwak K, Yemelyanova A, Roden RBS. Prevention of cancer by prophylactic human papillomavirus vaccines. Curr Opin Immunol 2010; 23:244-51. [PMID: 21185706 DOI: 10.1016/j.coi.2010.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/22/2010] [Indexed: 01/12/2023]
Abstract
Oncogenic human papillomaviruses (HPVs) are exclusively mucosal pathogens that are noncytopathic and the basal epithelial cells harboring and maintaining an infection do not produce either capsid antigen or virus. The efficacy of the licensed L1 virus-like particle (VLP) vaccines has encouraged development of several second generation vaccines aimed at expanding the coverage to all oncogenic HPV types and reducing barriers to global implementation. Currently there is no defined immune correlate of protection that can be used to determine if an individual patient is protected and for the evaluation of these second generation vaccines. Surprisingly, passive transfer of neutralizing serum antibody is protective in animal models. Recent studies suggest how neutralizing antibody mediates immunity against mucosal HPV and the possible impact of memory B cells.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
12
|
Immunogenicity and in vitro protective efficacy of recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa merozoite surface protein-1 (MSP-1(19)) antigen of Plasmodium falciparum. Parasitol Res 2010; 108:887-97. [PMID: 21057812 DOI: 10.1007/s00436-010-2130-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Vaccine development against the blood-stage malaria parasite is aimed at reducing the pathology of the disease. We constructed a recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) to evaluate its protective ability against merozoite invasion of red blood cells in vitro. A mutated version of MSP-1(19), previously shown to induce the production of inhibitory but not blocking antibodies, was cloned into a suitable shuttle plasmid and transformed into BCG Japan (designated rBCG016). A native version of the molecule was also cloned into BCG (rBCG026). Recombinant BCG expressing the mutated version of MSP-1(19) (rBCG016) elicited enhanced specific immune response against the epitope in BALB/c mice as compared to rBCG expressing the native version of the epitope (rBCG026). Sera from rBCG016-immunized mice contained significant levels of specific IgG, especially of the IgG2a subclass, against MSP-1(19) as determined by enzyme-linked immunosorbent assay. The sera was reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA) and inhibited merozoite invasion of erythrocytes in vitro. Furthermore, lymphocytes from rBCG016-immunized mice demonstrated higher proliferative response against the MSP-1(19) antigen as compared to those of rBCG026- and BCG-immunized animals. rBCG expressing the mutated version of MSP-1(19) of P. falciparum induced enhanced humoral and cellular responses against the parasites paving the way for the rational use of rBCG as a blood-stage malaria vaccine candidate.
Collapse
|
13
|
Isea R, Ramírez JL, Hoebeke J. Assessing protein stability of the dimeric DNA-binding domain of E2 human papillomavirus 18 with molecular dynamics. Mem Inst Oswaldo Cruz 2010; 105:123-6. [DOI: 10.1590/s0074-02762010000200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 02/25/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - José Luis Ramírez
- Instituto de Estudios Avanzados Carretera Nacional Hoyo de la Puerta, Venezuela
| | - Johan Hoebeke
- Centre National de la Recherche Scientifique, France
| |
Collapse
|
14
|
Christensen ND, Bounds CE. Cross-protective responses to human papillomavirus infection. Future Virol 2010. [DOI: 10.2217/fvl.10.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human papillomavirus (HPV) infections with oncogenic types account for approximately 500,000 deaths per year worldwide, predominantly in underdeveloped countries. The major cause of death is cervical cancer in women, but some additional cancers of the head and neck and anogenital sites also have an HPV etiology. Current virus-like particle-based vaccines are in clinical trials, and show very strong, long-lasting protection against vaccine-matched HPV types. These vaccines currently contain virus-like particles for the HPV types 6, 11, 16 and 18 (Gardasil®) and HPV16 and -18 (Cervarix®). Although type-specific neutralizing antibodies develop from immunizations with these virus-like particle vaccines, promising evidence for cross-protection against related but nonvaccine HPV types is emerging. Strategies to increase cross-protection to cover all oncogenic HPV types (currently approximately 20 types) are underway. These strategies include increasing the number of HPV types in the virus-like particle vaccine, and to the development of second-generation HPV vaccines that include the minor coat protein.
Collapse
Affiliation(s)
- ND Christensen
- Penn State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - CE Bounds
- Penn State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Recombinant Mycobacterium bovis BCG. Vaccine 2009; 27:6495-503. [PMID: 19720367 DOI: 10.1016/j.vaccine.2009.08.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 12/14/2022]
Abstract
The Bacillus Calmette-Guerin (BCG) is an attenuated strain of Mycobacterium bovis that has been broadly used as a vaccine against human tuberculosis. This live bacterial vaccine is able to establish a persistent infection and induces both cellular and humoral immune responses. The development of mycobacterial genetic systems to express foreign antigens and the adjuvanticity of BCG are the basis of the potential use of this attenuated mycobacterium as a recombinant vaccine. Over the years, a range of strategies has been developed to allow controlled and stable expression of viral, bacterial and parasite antigens in BCG. Herein, we review the strategies developed to express heterologous antigens in BCG and the immune response elicited by recombinant BCG constructs. In addition, the use of recombinant BCG as an immunomodulator and future perspectives of BCG as a recombinant vaccine vector are discussed.
Collapse
|
16
|
Palmer KE, Jenson AB, Kouokam JC, Lasnik AB, Ghim SJ. Recombinant vaccines for the prevention of human papillomavirus infection and cervical cancer. Exp Mol Pathol 2009; 86:224-33. [DOI: 10.1016/j.yexmp.2009.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Indexed: 10/21/2022]
|
17
|
Karanam B, Gambhira R, Peng S, Jagu S, Kim DJ, Ketner GW, Stern PL, Adams RJ, Roden RBS. Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine 2008; 27:1040-9. [PMID: 19095032 DOI: 10.1016/j.vaccine.2008.11.099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
A vaccine comprising human papillomavirus type 16 (HPV16) L2, E6 and E7 in a single tandem fusion protein (termed TA-CIN) has the potential advantages of both broad cross-protection against HPV transmission through induction of L2 antibodies able to cross neutralize different HPV types and of therapy by stimulating T cell responses targeting HPV16 early proteins. However, patients vaccinated with TA-CIN alone develop weak HPV neutralizing antibody and E6/E7-specific T cell responses. Here we test TA-CIN formulated along with the adjuvant GPI-0100, a semi-synthetic quillaja saponin analog that was developed to promote both humoral and cellular immune responses. Subcutaneous administration to mice of TA-CIN (20 microg) with 50microg GPI-0100, three times at biweekly intervals, elicited high titer HPV16 neutralizing serum antibody, robust neutralizing titers for other HPV16-related types, including HPV31 and HPV58, and neutralized to a lesser extent other genital mucosatropic papillomaviruses like HPV18, HPV45, HPV6 and HPV11. Notably, vaccination with TA-CIN in GPI-0100 protected mice from cutaneous HPV16 challenge as effectively as HPV16 L1 VLP without adjuvant. Formulation of TA-CIN with GPI-0100 enhanced the production of E7-specific, interferon gamma producing CD8(+) T cell precursors by 20-fold. Vaccination with TA-CIN in GPI-0100 also completely prevented tumor growth after challenge with 5x10(4) HPV16-transformed TC-1 tumor cells, whereas vaccination with TA-CIN alone delayed tumor growth. Furthermore, three monthly vaccinations with 125 microg of TA-CIN and 1000 microg GPI-0100 were well tolerated by pigtail macaques and induced both HPV16 E6/E7-specific T cell responses and serum antibodies that neutralized all HPV types tested.
Collapse
|
18
|
Abstract
Human papillomavirus (HPV) is responsible for 99.7% of cervical cancer cases and an estimated 5% of all cancers worldwide. The largest burden from HPV-associated cervical cancers is in developing nations where effective cervical cancer screening programs are nonexistent. Even in developed nations, diagnosis and treatment of cervical precancers continue to be large economic burdens. Prophylactic vaccination against HPV is an ideal method for the prevention of cervical cancer and other HPV associated diseases. Safe and effective virus-like-particle-derived prophylactic vaccines are available to most nations. The high cost of the current vaccines makes it out of reach for most developing nations. Because millions of women are already infected with HPV and have serious disease, therapeutic HPV vaccines are being developed to treat these women. This article presents the natural history, oncogenesis, and host immune interactions of HPV and associated diseases. The article also discusses the safety and efficacy of commercially available prophylactic vaccines against HPV, as well as novel prophylactic and therapeutic vaccine delivery strategies in early clinical development.
Collapse
Affiliation(s)
- Anna-Barbara Moscicki
- Division of Adolescent Medicine, University of California, San Francisco, San Francisco, California 94118, USA.
| |
Collapse
|
19
|
Govan VA, Rybicki EP, Williamson AL. Therapeutic immunisation of rabbits with cottontail rabbit papillomavirus (CRPV) virus-like particles (VLP) induces regression of established papillomas. Virol J 2008; 5:45. [PMID: 18355406 PMCID: PMC2324088 DOI: 10.1186/1743-422x-5-45] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 03/20/2008] [Indexed: 11/25/2022] Open
Abstract
There is overwhelming evidence that persistent infection with high-risk human papillomaviruses (HR-HPV) is the main risk factor for invasive cancer of the cervix. Due to this global public health burden, two prophylactic HPV L1 virus-like particles (VLP) vaccines have been developed. While these vaccines have demonstrated excellent type-specific prevention of infection by the homologous vaccine types (high and low risk HPV types), no data have been reported on the therapeutic effects in people already infected with the low-risk HPV type. In this study we explored whether regression of CRPV-induced papillomas could be achieved following immunisation of out-bred New Zealand White rabbits with CRPV VLPs. Rabbits immunised with CRPV VLPs had papillomas that were significantly smaller compared to the negative control rabbit group (P ≤ 0.05). This data demonstrates the therapeutic potential of PV VLPs in a well-understood animal model with potential important implications for human therapeutic vaccination for low-risk HPVs.
Collapse
Affiliation(s)
- Vandana A Govan
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| | | | | |
Collapse
|
20
|
Govan VA, Williamson AL. Rabbits immunised with recombinant BCG expressing the cottontail rabbit papillomavirus (CRPV) L2E7E2 genes induces regression of established papillomas. Virus Res 2007; 127:43-8. [PMID: 17451831 DOI: 10.1016/j.virusres.2007.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/13/2007] [Accepted: 03/17/2007] [Indexed: 11/23/2022]
Abstract
We previously demonstrated in a cottontail rabbit papillomavirus (CRPV) challenge model that recombinant Bacille Calmette-Guerin (rBCG) could potentially be used as a prophylactic vaccine vehicle to deliver papillomavirus proteins. In this study we investigated whether regression of CRPV-induced papillomas could be achieved following immunisation of out-bred New Zealand White rabbits with rBCG expressing CRPVL2, CRPVE2, CRPVE7 or CRPVL2E7E2 proteins. Rabbits immunised with rBCG/CRPVL2E7E2 had papillomas that were largely suppressed and were significantly smaller compared to the rBCG negative control group (P</=0.01). In addition, four of the six rabbits immunised with rBCG/CRPVL2E7E2 had papillomas that completely regressed 1.5 weeks post third immunisation. Rabbits immunised with rBCG/CRPVL2, rBCG/CRPVE7, or rBCG/CRPVE2 had papillomas that were significantly smaller than the negative control rabbits (P</=0.05). The findings in this study suggest that BCG could probably be used as a vaccine delivery vehicle for human papillomavirus proteins as a possible therapeutic vaccine.
Collapse
Affiliation(s)
- V A Govan
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| | | |
Collapse
|
21
|
Abstract
Cancer of the uterine cervix is the second largest cause of cancer deaths in women, and its toll is greatest in populations that lack screening programmes to detect precursor lesions. Persistent infection with 'high risk' genotypes of human papillomavirus (HPV) is necessary, although not sufficient, to cause cervical carcinoma. Therefore, HPV vaccination provides an opportunity to profoundly affect cervical cancer incidence worldwide. A recently licensed HPV subunit vaccine protects women from a high proportion of precursor lesions of cervical carcinoma and most genital warts. Here we examine the ramifications and remaining questions that surround preventive HPV vaccines.
Collapse
Affiliation(s)
- Richard Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
22
|
Schiller JT, Nardelli-Haefliger D. Chapter 17: Second generation HPV vaccines to prevent cervical cancer. Vaccine 2006; 24 Suppl 3:S3/147-53. [PMID: 16950002 DOI: 10.1016/j.vaccine.2006.05.123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 05/19/2006] [Indexed: 11/26/2022]
Abstract
Prophylactic human papillomavirus (HPV) vaccines based on intramuscular injection of non-infectious L1 virus-like particles (VLPs) are undergoing intense clinical evaluation. As documented in preceding chapters of this monograph, clinical trials of these vaccines have demonstrated their safety and high efficacy at preventing type-specific persistent cervical HPV infection and the development of type-specific cervical intraepithelial neoplasia (CIN) cervical neoplasia. There is widespread optimism that VLP vaccines will become commercially available within the next few years. The prospects for development of alternative HPV vaccines must be considered in light of the likelihood that a safe and effective prophylactic HPV vaccine will soon be available. Three questions need to be addressed: (1) Is there sufficient need for a second generation vaccine? (2) Are there sufficiently attractive candidates for clinical trials? (3) Is there a realistic development/commercialization path?
Collapse
Affiliation(s)
- John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
23
|
Kohl T, Hitzeroth II, Stewart D, Varsani A, Govan VA, Christensen ND, Williamson AL, Rybicki EP. Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:845-53. [PMID: 16893983 PMCID: PMC1539125 DOI: 10.1128/cvi.00072-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/07/2006] [Accepted: 06/09/2006] [Indexed: 11/20/2022]
Abstract
The native cottontail rabbit papillomavirus (CRPV) L1 capsid protein gene was expressed transgenically via Agrobacterium tumefaciens transformation and transiently via a tobacco mosaic virus (TMV) vector in Nicotiana spp. L1 protein was detected in concentrated plant extracts at concentrations up to 1.0 mg/kg in transgenic plants and up to 0.4 mg/kg in TMV-infected plants. The protein did not detectably assemble into viruslike particles; however, immunoelectron microscopy showed presumptive pentamer aggregates, and extracted protein reacted with conformation-specific and neutralizing monoclonal antibodies. Rabbits were injected with concentrated protein extract with Freund's incomplete adjuvant. All sera reacted with baculovirus-produced CRPV L1; however, they did not detectably neutralize infectivity in an in vitro assay. Vaccinated rabbits were, however, protected against wart development on subsequent challenge with live virus. This is the first evidence that a plant-derived papillomavirus vaccine is protective in an animal model and is a proof of concept for human papillomavirus vaccines produced in plants.
Collapse
Affiliation(s)
- T Kohl
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Michelon A, Conceição FR, Binsfeld PC, da Cunha CW, Moreira AN, Argondizzo AP, McIntosh D, Armôa GRG, Campos AS, Farber M, McFadden J, Dellagostin OA. Immunogenicity of Mycobacterium bovis BCG expressing Anaplasma marginale MSP1a antigen. Vaccine 2006; 24:6332-9. [PMID: 16781025 DOI: 10.1016/j.vaccine.2006.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 05/11/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Humoral and cellular immune responses of mice inoculated with recombinant Mycobacterium bovis BCG expressing the MSP1a antigen of Anaplasma marginale were evaluated. The msp1a gene was amplified by PCR and cloned into the mycobacterial expression vectors pUS2000 and pMIP12. Immunization of isogenic BALB/c mice with the rBCG/pUS2000-msp1a construct induced significant seroconversion to MSP1a (p<0.001), which was 26 times above pre-immunization levels at day 63 post-initial immunization and which remained stable for the duration of the experiment (6 months). In contrast, rBCG/pMIP12-msp1a induced seroconversion at a level of 6 times above pre-immunization values, which peaked at day 63. Western blot analysis showed that sera derived from mice vaccinated with either rBCG construct recognized both native and recombinant forms of A. marginale MSP1a. In contrast to the humoral response data, immunization with rBCG/pMIP12-msp1a was found to induce a markedly stronger cellular response than that recorded for BCG/pUS2000-msp1a. These observations clearly demonstrated the immunogenicity of recombinant BCG expressing the MSP1a antigen and suggested that the immune responses were influenced by the level of antigen expression. The results of this research warrant studies of recombinant M. bovis BCG expressing MSP1a in cattle to test for protective antibody production for control of bovine anaplasmosis.
Collapse
Affiliation(s)
- André Michelon
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, 96010-900 Pelotas, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|