1
|
Leite JC, Gonçalves AAM, de Oliveira DS, Resende LA, Boas DFV, Ribeiro HS, Pereira DFS, da Silva AV, Mariano RMDS, Reis PCC, Nakasone EN, França-Silva JC, Galdino AS, Paes PRDO, Melo MM, Dias ES, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Giunchetti RC. Transmission-Blocking Vaccines for Canine Visceral Leishmaniasis: New Progress and Yet New Challenges. Vaccines (Basel) 2023; 11:1565. [PMID: 37896969 PMCID: PMC10610753 DOI: 10.3390/vaccines11101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Dogs with visceral leishmaniasis play a key role in the transmission cycle of Leishmania infantum to humans in the urban environment. There is a consensus regarding the importance of developing a vaccine to control this disease. Despite many efforts to develop a protective vaccine against CVL, the ones currently available, Leish-tec® and LetiFend®, have limited effectiveness. This is due, in part, to the complexity of the immune response of the naturally infected dogs against the parasite and the complexity of the parasite transmission cycle. Thus, strategies, such as the development of a transmission-blocking vaccines (TBVs) already being applied to other vector-borne diseases like malaria and dengue, would be an attractive alternative to control leishmaniasis. TBVs induce the production of antibodies in the vertebrate host, which can inhibit parasite development in the vector and/or interfere with aspects of vector biology, leading to an interruption of parasite transmission. To date, there are few TBV studies for CVL and other leishmaniasis forms. However, the few studies that exist show promising results, thus justifying the further development of this approach.
Collapse
Affiliation(s)
- Jaqueline Costa Leite
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Diego Fernandes Vilas Boas
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Helen Silva Ribeiro
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Diogo Fonseca Soares Pereira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Augusto Ventura da Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Pedro Campos Carvalhaes Reis
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Eiji Nakasone Nakasone
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - João Carlos França-Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Midwest Campus, Divinópolis 35501-296, MG, Brazil;
| | - Paulo Ricardo de Oliveira Paes
- Department of Veterinary Clinic and Surgery, School of Veterinary, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (P.R.d.O.P.); (M.M.M.)
| | - Marília Martins Melo
- Department of Veterinary Clinic and Surgery, School of Veterinary, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (P.R.d.O.P.); (M.M.M.)
| | - Edelberto Santos Dias
- René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Denise da Silveira-Lemos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| |
Collapse
|
2
|
Yadagiri G, Singh A, Arora K, Mudavath SL. Immunotherapy and immunochemotherapy in combating visceral leishmaniasis. Front Med (Lausanne) 2023; 10:1096458. [PMID: 37265481 PMCID: PMC10229823 DOI: 10.3389/fmed.2023.1096458] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/14/2023] [Indexed: 06/03/2023] Open
Abstract
Visceral leishmaniasis (VL), a vector-borne disease, is caused by an obligate intramacrophage, kinetoplastid protozoan parasite of the genus Leishmania. Globally, VL is construed of diversity and complexity concerned with high fatality in tropics, subtropics, and Mediterranean regions with ~50,000-90,000 new cases annually. Factors such as the unavailability of licensed vaccine(s), insubstantial measures to control vectors, and unrestrained surge of drug-resistant parasites and HIV-VL co-infections lead to difficulty in VL treatment and control. Furthermore, VL treatment, which encompasses several problems including limited efficacy, emanation of drug-resistant parasites, exorbitant therapy, and exigency of hospitalization until the completion of treatment, further exacerbates disease severity. Therefore, there is an urgent need for the development of safe and efficacious therapies to control and eliminate this devastating disease. In such a scenario, biotherapy/immunotherapy against VL can become an alternative strategy with limited side effects and no or nominal chance of drug resistance. An extensive understanding of pathogenesis and immunological events that ensue during VL infection is vital for the development of immunotherapeutic strategies against VL. Immunotherapy alone or in combination with standard anti-leishmanial chemotherapeutic agents (immunochemotherapy) has shown better therapeutic outcomes in preclinical studies. This review extensively addresses VL treatment with an emphasis on immunotherapy or immunochemotherapeutic strategies to improve therapeutic outcomes as an alternative to conventional chemotherapy.
Collapse
Affiliation(s)
- Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Kanika Arora
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| |
Collapse
|
3
|
Zarei Z, Mohebali M, Dehghani H, Khamesipour A, Tavakkol-Afshari J, Akhoundi B, Abbaszadeh-Afshar MJ, Alizadeh Z, Skandari SE, Asl AD, Razmi GR. Live attenuated Leishmania infantum centrin deleted mutant (LiCen -/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comp Immunol Microbiol Infect Dis 2023; 97:101984. [PMID: 37119594 DOI: 10.1016/j.cimid.2023.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
This study was designed to evaluate the safety, immunogenicity, and efficacy of a single dose of L. infantum (LiCen-/-) live attenuated candidate vaccine against canine leishmaniasis (CanL). Eighteen healthy domestic dogs with no anti-Leishmania antibodies and negative leishmanin skin test (LST) were randomly inoculated intravenously with either L. infantum (LiCen-/-) vaccine candidate in 10 dogs or phosphate-buffered saline (PBS) in 8 dogs. The safety, immunogenicity, and efficacy rate of L. infantum (LiCen-/-) vaccine candidate against CanL were evaluated by different criteria, including clinical manifestations, injection-site lesion, hematology and biochemistry values, anti-Leishmania antibodies using direct agglutination test (DAT), delayed-type hypersensitivity (DTH) using LST, and CD4+ and CD8+ T-cells subsets, as well as by measuring interferon (IFN-γ), interleukin (IL-23), IL-17, and IL-10 cytokines. Spleen aspiration and detection of Leishmania parasite using parasitological examinations (microscopy and culture) were performed in both vaccinated and control groups. Two months after intervention, each dog was challenged intraperitoneally (IP) with wide type (WT) L. infantum. Two-month follow-up post vaccination showed no clinical signs and serious side effects associated with the vaccination. A significant increase was found in the expression of IL-17, CD4+, and CD8+ gene transcripts in PBMCs, as well as increased levels of Th1 cytokines, and reduction of Th2 cytokine. The efficacy of the vaccine candidate was calculated to be 42.85%. While the time window for assessing the vaccine's effectiveness was too limited to draw any real conclusions but the preliminary results showed a moderate efficacy rate due to inoculation a single dose of L. infantum (LiCen-/-) vaccine candidate. Further investigations with more sample sizes and multiple doses of the vaccine candidate using natural challenges in the endemic areas of CanL are recommended.
Collapse
Affiliation(s)
- Zabihollah Zarei
- Department of Pathobiology, School Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box 91775-1793, Mashhad, Iran; Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Tavakkol-Afshari
- Immunogenetics and Tissue Culture Department, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Mohammad Javad Abbaszadeh-Afshar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Zahra Alizadeh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Seyed Ebrahim Skandari
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolhossein Dalimi Asl
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholam Reza Razmi
- Department of Pathobiology, School Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box 91775-1793, Mashhad, Iran.
| |
Collapse
|
4
|
Schäfer I, Müller E, Naucke TJ. Ein Update zur Leishmaniose des Hundes: Diagnostik, Therapie und Monitoring. TIERÄRZTLICHE PRAXIS AUSGABE K: KLEINTIERE / HEIMTIERE 2022; 50:431-445. [DOI: 10.1055/a-1970-9590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ZusammenfassungAufgrund von steigenden Importzahlen von Hunden aus dem Ausland, zunehmendem Reiseverkehr sowie den Veränderungen klimatischer Bedingungen in Europa gewinnen Infektionen mit Leishmania (L.) infantum bei Hunden in Deutschland zunehmend an Bedeutung. Daher sollten auch Hunde aus dem Ausland, die keine klinischen Symptome zeigen, direkt nach Import sowie erneut 6 Monate später auf vektorübertragene Infektionserreger getestet werden. Bei Hunden mit klinischer Symptomatik, die hinweisend auf eine Leishmaniose sind, werden direkte und indirekte Nachweisverfahren sowie eine hämatologische und biochemische Untersuchung unter Einbezug von Serumeiweißelektrophorese sowie Bestimmung des C-reaktiven Proteins empfohlen. Als Leitfaden für die Therapie sowie das Monitoring stehen die LeishVet-Guidelines zur Verfügung. Es stehen leishmanizide und leishmaniostatische Wirkstoffe zur Verfügung, die in first-line, second-line und third-line unterschieden werden. Zur Anpassung der Allopurinol-Dosierung wird der Stufenplan empfohlen. Aufgrund der Veränderung der klimatischen Bedingungen kommt es zu einer Ausbreitung der Habitate von Sandmücken, die als Vektoren der Leishmaniose bekannt sind. Als weitere Infektionsquellen sind Deckakte, transplazentare Infektionen, Bisswunden und Bluttransfusionen beschrieben. Leishmania infantum hat zoonotisches Potential und ist daher auch in Hinblick auf den „One-Health“-Gedanken bedeutend.
Collapse
|
5
|
A new immunochemotherapy schedule for visceral leishmaniasis in a hamster model. Parasitol Res 2022; 121:2849-2860. [PMID: 35997843 DOI: 10.1007/s00436-022-07628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
The purpose of the present study was to evaluate the efficacy of the treatment with a recombinant cysteine proteinase from Leishmania, rldccys1, associated with allopurinol or miltefosine on Leishmania (Leishmania) infantum chagasi-infected hamsters. Golden Syrian hamsters infected with L. (L.) infantum chagasi were treated with either miltefosine (46 mg/kg) or allopurinol (460 mg/kg) alone by oral route or associated with rldccys1 (150 µg/hamster) by subcutaneous route for 30 days. Infected hamsters were also treated with miltefosine (46 mg/kg) plus rldccys1 (150 µg/hamster) for 30 days (phase 1) followed by two additional doses of rldccys1 (250 µg/hamster) (phase 2). After the end of treatment, the animals were analyzed for parasite load, body weight, serum levels of immunoglobulins, cytokine expression, and drug toxicity. The data showed a significant decrease of parasite load in infected hamsters treated with allopurinol or miltefosine alone or associated with rldccys1, as well as in those treated with rldccys1 alone. Significantly lower levels of serum IgG were detected in hamsters treated with allopurinol plus rldccys1. The treatment with miltefosine associated with rldccys1 prevented relapse observed in animals treated with miltefosine alone. A significant loss of body weight was detected only in some hamsters treated with miltefosine for 1 month and deprived of this treatment for 15 days. There were no significant differences in transcript expression of IFN-γ and IL-10 in any of treated groups. Neither hepatotoxicity nor nephrotoxicity was observed among controls and treated groups. These findings open perspectives to further explore this immunochemotherapeutic schedule as an alternative for treatment of visceral leishmaniasis.
Collapse
|
6
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
7
|
Abstract
Leishmaniasis is caused by protozoan Leishmania parasites that are transmitted through female sandfly bites. The disease is predominantly endemic to the tropics and semi-tropics and has been reported in more than 98 countries. Due to the side effects of anti-Leishmania drugs and the emergence of drug-resistant isolates, there is currently no encouraging prospect of introducing an effective therapy for the disease. Hence, it seems that the key to disease control management is the introduction of an effective vaccine, particularly against its cutaneous form. Advances in understanding underlying immune mechanisms are feasibale using a variety of candidate antigens, including attenuated live parasites, crude antigens, pure or recombinant Leishmania proteins, Leishmania genes encoding protective proteins, as well as immune system activators from the saliva of parasite vectors. However, there is still no vaccine against different types of human leishmaniasis. In this study, we review the works conducted or being performed in this field.
Collapse
|
8
|
FML/QuilA-Vaccinated Dogs Naturally Infected with Leishmania infantum: Serum Cytokines, Clinicopathological Profile, and Parasitological Parameters. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3192960. [PMID: 34651045 PMCID: PMC8510802 DOI: 10.1155/2021/3192960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/10/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Dogs are the main reservoir of Leishmania infantum in endemic regions. Canine leishmaniasis, caused by L. infantum, can progress to a chronic disease resulting in death. Vaccines have been developed with a certain degree of success. The pathogenesis of this disease is not completely understood, especially in previously vaccinated dogs. We herein described clinical data, parasite load, serum levels of cytokines, and the reservoir potential in vdogs vaccinated with the fucose-mannose ligand (FML)/QuilA saponin vaccine (Leishmune™) naturally infected (Vi) and compared to vaccinated not infected dogs (Vn). Thirty-four dogs from private owners were divided into two groups: vaccinated/infected and vaccinated/uninfected. Clinical evaluation, hematological and biochemical parameters, and serum levels of cytokines were measured by conventional methods. The parasite burden in the bone marrow was measured by quantitative real-time PCR, and the transmissibility of parasites to sand flies was assessed by xenodiagnosis. Clinical, biochemical, and hematological parameters of vaccinated infected dogs were mostly normal. Vi dogs developed mild disease with low clinical scores. Serum levels of IL-10 were higher in Vi dogs, and a strong correlation was observed in IL-4 levels and the A/G ratio in Vi dogs. These results suggest a role of TH2 response in Vi dogs, although more data is needed to better understand the disease in vaccinated dogs.
Collapse
|
9
|
Salari S, Sharifi I, Bamorovat M, Ghasemi Nejad Almani P. The immunity of the recombinant prokaryotic and eukaryotic subunit vaccines against cutaneous leishmaniasis. Microb Pathog 2021; 153:104807. [PMID: 33609648 DOI: 10.1016/j.micpath.2021.104807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/15/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Leishmaniasis counts as one of the most neglected tropical diseases. Despite the amount of research perceived in this field, no fully effective and approved vaccine against this disease is yet available in humans. In this study, LACK and KMP11 antigens were constructed simultaneously by recombinant methods in prokaryotic and eukaryotic expression systems and were compared and assessed along with the CpG adjuvant in BALB/c mice. In the prokaryotic method, LACK and KMP11 protein gene sequences were synthesized in pET28a-TEV vector. In order to extract these two proteins after expression, His-tag and S-tag sequences were added to the constructs, respectively for LACK and KMP11. The pET28a-TEV-LACK/KMP11 construct was transformed into Escherichia coli, and the inserts were verified by Colony PCR. Pure proteins were verified by western blot, and groups of BALB/c mice were injected with the created prokaryotic recombinant proteins along with an ODN CpG adjuvant. In the eukaryotic method, antigen sequences were constructed in the pLEXSY-neo 2.1 vector, E.coli Top10 strain was cloned in the bacteria, and after being linearized were transfected into Leishmania tarentolae genome. After recombinant strains were selected, they were verified by molecular methods. After the extraction and purification of the protein using the method above, groups of mice were injected with the recombinant antigens and ODN CpG adjuvant. Eukaryotic subunit vaccines showed more effective immunization compared with prokaryotic vaccines and caused an immune system shift towards Th1 and protection. Protein expression in L. tarentolae by the constructs created in this host contains Post-Translational Modifications. The constructed protein will be significantly similar to eukaryotic proteins, considering that they are identical epitopes. More comprehensive studies aiming to improve the effectiveness of this vaccine are being conducted to improve immune profiles and immunological memory stimulation in future designs.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
10
|
Namdar Ahmadabad H, Shafiei R, Hatam GR, Zolfaghari Emameh R, Aspatwar A. Cytokine profile and nitric oxide levels in peritoneal macrophages of BALB/c mice exposed to the fucose-mannose ligand of Leishmania infantum combined with glycyrrhizin. Parasit Vectors 2020; 13:363. [PMID: 32690108 PMCID: PMC7370265 DOI: 10.1186/s13071-020-04243-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background The fucose-mannose ligand (FML) of Leishmania infantum is a complex glycoprotein which does not elicit adequate immunogenicity in humans. In recent years, adjuvant compounds derived from plants have been used for improving the immunogenicity of vaccines. Glycyrrhizin (GL) is a natural triterpenoid saponin that has known immunomodulatory activities. In the present study, we investigated the effects of co-treatment with FML and GL on the production of cytokines and nitric oxide (NO) by macrophages, in vitro. Methods Lipopolysaccharide (LPS) stimulated murine peritoneal macrophages were treated with FML (5 μg/ml) of L. infantum and various concentrations of GL (1 μg/ml, 10 μg/ml and 20 μg/ml). After 48 h of treatment, cell culture supernatants were recovered and the levels of TNF-α, IL-10, IL-12p70 and IP-10 were measured by sandwich ELISA and NO concentration by Griess reaction. Results Our results indicate that the treatment of activated macrophages with FML plus GL leads to enhanced production of NO, TNF-α and IL-12p70, and reduction of IL-10 levels in comparison with FML treatment alone. Conclusions Therefore, we concluded that GL can improve the immunostimulatory effect of FML on macrophages and leads to their polarization towards an M1-like phenotype. ![]()
Collapse
Affiliation(s)
- Hasan Namdar Ahmadabad
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Gholam Reza Hatam
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| |
Collapse
|
11
|
Palatnik-de-Sousa CB, Nico D. The Delay in the Licensing of Protozoal Vaccines: A Comparative History. Front Immunol 2020; 11:204. [PMID: 32210953 PMCID: PMC7068796 DOI: 10.3389/fimmu.2020.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Although viruses and bacteria have been known as agents of diseases since 1546, 250 years went by until the first vaccines against these pathogens were developed (1796 and 1800s). In contrast, Malaria, which is a protozoan-neglected disease, has been known since the 5th century BCE and, despite 2,500 years having passed since then, no human vaccine has yet been licensed for Malaria. Additionally, no modern human vaccine is currently licensed against Visceral or Cutaneous leishmaniasis. Vaccination against Malaria evolved from the inoculation of irradiated sporozoites through the bite of Anopheles mosquitoes in 1930's, which failed to give protection, to the use of controlled human Malaria infection (CHMI) provoked by live sporozoites of Plasmodium falciparum and curtailed with specific chemotherapy since 1940's. Although the use of CHMI for vaccination was relatively efficacious, it has some ethical limitations and was substituted by the use of injected recombinant vaccines expressing the main antigens of the parasite cycle, starting in 1980. Pre-erythrocytic (PEV), Blood stage (BSV), transmission-blocking (TBV), antitoxic (AT), and pregnancy-associated Malaria vaccines are under development. Currently, the RTS,S-PEV vaccine, based on the circumsporozoite protein, is the only one that has arrived at the Phase III trial stage. The "R" stands for the central repeat region of Plasmodium (P.) falciparum circumsporozoite protein (CSP); the "T" for the T-cell epitopes of the CSP; and the "S" for hepatitis B surface antigen (HBsAg). In Africa, this latter vaccine achieved only 36.7% vaccine efficacy (VE) in 5-7 years old children and was associated with an increase in clinical cases in one assay. Therefore, in spite of 35 years of research, there is no currently licensed vaccine against Malaria. In contrast, more progress has been achieved regarding prevention of leishmaniasis by vaccine, which also started with the use of live vaccines. For ethical reasons, these were substituted by second-generation subunit or recombinant DNA and protein vaccines. Currently, there is one live vaccine for humans licensed in Uzbekistan, and four licensed veterinary vaccines against visceral leishmaniasis: Leishmune® (76-80% VE) and CaniLeish® (68.4% VE), which give protection against strong endpoints (severe disease and deaths under natural conditions), and, under less severe endpoints (parasitologically and PCR-positive cases), Leishtec® developed 71.4% VE in a low infective pressure area but only 35.7% VE and transient protection in a high infective pressure area, while Letifend® promoted 72% VE. A human recombinant vaccine based on the Nucleoside hydrolase NH36 of Leishmania (L.) donovani, the main antigen of the Leishmune® vaccine, and the sterol 24-c-methyltransferase (SMT) from L. (L.) infantum has reached the Phase I clinical trial phase but has not yet been licensed against the disease. This review describes the history of vaccine development and is focused on licensed formulations that have been used in preventive medicine. Special attention has been given to the delay in the development and licensing of human vaccines against Protozoan infections, which show high incidence worldwide and still remain severe threats to Public Health.
Collapse
MESH Headings
- Adult
- Animals
- Child
- Child, Preschool
- Female
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/history
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Leishmaniasis, Visceral/veterinary
- Licensure/history
- Malaria Vaccines/history
- Malaria Vaccines/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mass Vaccination/history
- Mass Vaccination/methods
- Plasmodium falciparum/immunology
- Pregnancy
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Live, Unattenuated/history
- Vaccines, Live, Unattenuated/immunology
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Clarisa Beatriz Palatnik-de-Sousa
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Research in Immunology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dirlei Nico
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Velez R, Gállego M. Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Trop Med Int Health 2020; 25:540-557. [PMID: 32034985 DOI: 10.1111/tmi.13382] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Canine leishmaniosis is an important vector-borne zoonosis caused mainly by Leishmania infantum. Diagnosis and treatment of affected individuals can be particularly complex, hindering infection control in endemic areas. Methods to prevent canine leishmaniosis include the use of topical insecticides, prophylactic immunotherapy and vaccination. Four vaccines against canine leishmaniosis have been licensed since 2004, two in Brazil (Leishmune®, the production and marketing licence of which was withdrawn in 2014, and Leish-Tec®) and two in Europe (CaniLeish® and LetiFend®). After several years of marketing, doubts remain regarding vaccine efficacy and effectiveness, potential infectiousness of vaccinated and infected animals or the interference of vaccine-induced antibodies in L. infantum serological diagnosis. This review summarises the scientific evidence for each of the vaccines commercially approved for canine leishmaniosis, while discussing possible weaknesses of these studies. Furthermore, it raises the need to address important questions related to vaccination impact in Leishmania-endemic countries and the importance of post-marketing pharmacological surveillance.
Collapse
Affiliation(s)
- Rita Velez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Gállego
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S, Sarkar A, Saha B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines (Basel) 2019; 7:vaccines7040156. [PMID: 31635276 PMCID: PMC6963565 DOI: 10.3390/vaccines7040156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Yashwant Bansode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India.
| | - Arup Sarkar
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| |
Collapse
|
14
|
Cytokine profile and nitric oxide levels in macrophages exposed to Leishmania infantum FML. Exp Parasitol 2019; 203:1-7. [PMID: 31128104 DOI: 10.1016/j.exppara.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/18/2019] [Indexed: 01/24/2023]
Abstract
Fucose-mannose ligand (FML) is a soluble antigen purified from Leishmania donovani complex and used for diagnosis, prognosis, and vaccine development against visceral leishmaniasis (VL). We aimed to explore the effects of FML on the production of cytokines, chemokines and nitric oxide (NO) by macrophages in vitro. Peritoneal macrophages from BALB/c mice were treated with various concentrations of FML purified from Leishmania infantum in the absence or presence of LPS Peritoneal macrophages. After 48hr, cell culture supernatants were recovered and the levels of TNF-α, IL-10, IL-12p70 and IP-10 measured by Sandwich ELISA and NO concentration by Griess reaction. We found that FML significantly increase NO, IL-12p70 and IP-10 production in both LPS-treated and untreated macrophages and increase IL-10 levels only in LPS-treated macrophages. However, FML could not alert TNF-α levels in both LPS-treated and untreated macrophages. Further analysis revealed that FML can also increase IL-12p70/IL-10 ratio in LPS-treated macrophages. We concluded that FML can polarize macrophages to an appropriate phenotype similar to M1 phenotype against Leishmania donovani complex, although IL10 and TNF results are controversial.
Collapse
|
15
|
Palatnik-de-Sousa CB. Nucleoside Hydrolase NH 36: A Vital Enzyme for the Leishmania Genus in the Development of T-Cell Epitope Cross-Protective Vaccines. Front Immunol 2019; 10:813. [PMID: 31040850 PMCID: PMC6477039 DOI: 10.3389/fimmu.2019.00813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
NH36 is a vital enzyme of the DNA metabolism and a specific target for anti-Leishmania chemotherapy. We developed second-generation vaccines composed of the FML complex or its main native antigen, the NH36 nucleoside hydrolase of Leishmania (L.) donovani and saponin, and a DNA vaccine containing the NH36 gene. All these vaccines were effective in prophylaxis and treatment of mice and dog visceral leishmaniasis (VL). The FML-saponin vaccine became the first licensed veterinary vaccine against leishmaniasis (Leishmune®) which reduced the incidence of human and canine VL in endemic areas. The NH36, DNA or recombinant protein vaccines induced a Th1 CD4+IFN-γ+ mediated protection in mice. Efficacy against VL was mediated by a CD4+TNF-α T lymphocyte response against the NH36-F3 domain, while against tegumentary leishmaniasis (TL) a CD8+ T lymphocyte response to F1 was also required. These domains were 36-41 % more protective than NH36, and a recombinant F1F3 chimera was 21% stronger than the domains, promoting a 99.8% reduction of the parasite load. We also identified the most immunogenic NH36 domains and epitopes for PBMC of active human VL, cured or asymptomatic and DTH+ patients. Currently, the NH36 subunit recombinant vaccine is turning into a multi-epitope T cell synthetic vaccine against VL and TL.
Collapse
Affiliation(s)
- Clarisa Beatriz Palatnik-de-Sousa
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Faculty of Medicine, Institute for Research in Immunology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Nico D, Martins Almeida F, Maria Motta J, Soares dos Santos Cardoso F, Freire-de-Lima CG, Freire-de-Lima L, de Luca PM, Maria Blanco Martinez A, Morrot A, Palatnik-de-Sousa CB. NH36 and F3 Antigen-Primed Dendritic Cells Show Preserved Migrating Capabilities and CCR7 Expression and F3 Is Effective in Immunotherapy of Visceral Leishmaniasis. Front Immunol 2018; 9:967. [PMID: 29867949 PMCID: PMC5949526 DOI: 10.3389/fimmu.2018.00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/18/2018] [Indexed: 01/23/2023] Open
Abstract
Physical contact between dendritic cells (DCs) and T cell lymphocytes is necessary to trigger the immune cell response. CCL19 and CCL21 chemokines bind to the CCR7 receptor of mature DCs, and of T cells and regulate DCs migration to the white pulp (wp) of the spleen, where they encounter lymphocytes. In visceral leishmaniasis (VL), cellular immunosuppression is mediated by impaired DC migration due to the decreased chemokine secretion by endothelium and to the reduced DCs CCR7 expression. The Leishmania (L.) donovani nucleoside hydrolase NH36 and its C-terminal domain, the F3 peptide are prominent antigens in the generation of preventive immunity to VL. We assessed whether these vaccines could prevent the migrating defect of DCs by restoring the expression of CCR7 receptors. C57Bl6 mice were vaccinated with NH36 and F3 and challenged with L. (L.) infantum chagasi. The F3 vaccine induced a 100% of survival and a long-lasting immune protection with an earlier CD4+Th1 response, with secretion of higher IFN-γ and TNF-α/IL-10 ratios, and higher frequencies of CD4+ T cells secreting IL-2+, TNF-α+, or IFN-γ+, or a combination of two or the three cytokines (IL-2+TNF-α+IFN-γ+). The CD8+ T cell response was promoted earlier by the NH36-vaccine, and later by the F3-vaccine. Maximal number of F3-primed DCs migrated in vitro in response to CCL19 and showed a high expression of CCR7 receptors (26.06%). Anti-CCR7 antibody treatment inhibited DCs migration in vitro (90%) and increased parasite load in vivo. When transferred into 28-day-infected mice, only 8% of DCs from infected, 59% of DCs from NH36-vaccinated, and 84% of DCs from F3-vaccinated mice migrated to the wp. Consequently, immunotherapy of infected mice with F3-primed DCs only, promoted increases in corporal weight and reductions of spleen and liver parasite loads and relative weights. Our findings indicate that vaccination with F3-vaccine preserves the maturation, migration properties and CCR7 expression of DCs, which are essential processes for the generation of cell-mediated immunity. The F3 vaccine is more potent in reversing the migration defect that occurs in VL and, therefore, more efficient in immunotherapy of VL.
Collapse
Affiliation(s)
- Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Programa de Pós Graduação em Anatomia Patológica, HUCFF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Graduação de Histologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Maria Motta
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Celio Geraldo Freire-de-Lima
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Melo de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Programa de Pós Graduação em Anatomia Patológica, HUCFF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Brazil
- Centro de Pesquisas em Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarisa Beatriz Palatnik-de-Sousa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
17
|
Carrillo E, Fernandez L, Ibarra-Meneses AV, Santos MLB, Nico D, de Luca PM, Correa CB, de Almeida RP, Moreno J, Palatnik-de-Sousa CB. F1 Domain of the Leishmania (Leishmania) donovani Nucleoside Hydrolase Promotes a Th1 Response in Leishmania (Leishmania) infantum Cured Patients and in Asymptomatic Individuals Living in an Endemic Area of Leishmaniasis. Front Immunol 2017; 8:750. [PMID: 28747911 PMCID: PMC5506215 DOI: 10.3389/fimmu.2017.00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023] Open
Abstract
The Leishmania (Leishmania) donovani nucleoside hydrolase NH36 is the main antigen of the Leishmune® vaccine and one of the promising candidates for vaccination against visceral leishmaniasis. The antigenicity of the N-terminal (F1), the central (F2), or the C-terminal recombinant domain (F3) of NH36 was evaluated using peripheral blood mononuclear cells (PBMC) from individuals infected with L. (L.) infantum from an endemic area of visceral leishmaniasis of Spain. Both NH36 and F1 domains significantly increased the PBMC proliferation stimulation index of cured patients and infected asymptomatic individuals compared to healthy controls. Moreover, F1 induced a 19% higher proliferative response than NH36 in asymptomatic exposed subjects. In addition, in patients cured from visceral leishmaniasis, proliferation in response to NH36 and F1 was accompanied by a significant increase of IFN-γ and TNF-α secretion, which was 42-43% higher, in response to F1 than to NH36. The interleukin 17 (IL-17) secretion was stronger in asymptomatic subjects, in response to F1, as well as in cured cutaneous leishmaniasis after NH36 stimulation. While no IL-10 secretion was determined by F1, a granzyme B increase was detected in supernatants from cured patients after stimulation with either NH36 or F1. These data demonstrate that F1 is the domain of NH36 that induces a recall cellular response in individuals with acquired resistance to the infection by L. (L.) infantum. In addition, F1 and NH36 discriminated the IgG3 humoral response in patients with active visceral leishmaniasis due to L. (L.) donovani (Ethiopia) and L. (L.) infantum (Spain) from that of endemic and non-endemic area controls. NH36 showed higher reactivity with sera from L. (L.) donovani-infected individuals, indicating species specificity. We conclude that the F1 domain, previously characterized as an inducer of the Th1 and Th17 responses in cured/exposed patients infected with L. (L.) infantum chagasi, may also be involved in the generation of a protective response against L. (L.) infantum and represents a potential vaccine candidate for the control of human leishmaniasis alone, or in combination with other HLA epitopes/antigens.
Collapse
Affiliation(s)
- Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Fernandez
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Micheli L. B. Santos
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Dirlei Nico
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula M. de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Roque Pacheco de Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Clarisa B. Palatnik-de-Sousa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
18
|
Barbosa Santos ML, Nico D, de Oliveira FA, Barreto AS, Palatnik-de-Sousa I, Carrillo E, Moreno J, de Luca PM, Morrot A, Rosa DS, Palatnik M, Bani-Corrêa C, de Almeida RP, Palatnik-de-Sousa CB. Leishmania donovani Nucleoside Hydrolase (NH36) Domains Induce T-Cell Cytokine Responses in Human Visceral Leishmaniasis. Front Immunol 2017; 8:227. [PMID: 28321221 PMCID: PMC5338038 DOI: 10.3389/fimmu.2017.00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/16/2017] [Indexed: 11/15/2022] Open
Abstract
Development of immunoprotection against visceral leishmaniasis (VL) focused on the identification of antigens capable of inducing a Th1 immune response. Alternatively, antigens targeting the CD8 and T-regulatory responses are also relevant in VL pathogenesis and worthy of being included in a preventive human vaccine. We assessed in active and cured patients and VL asymptomatic subjects the clinical signs and cytokine responses to the Leishmania donovani nucleoside hydrolase NH36 antigen and its N-(F1), central (F2) and C-terminal (F3) domains. As markers of VL resistance, the F2 induced the highest levels of IFN-γ, IL-1β, and TNF-α and, together with F1, the strongest secretion of IL-17, IL-6, and IL-10 in DTH+ and cured subjects. F2 also promoted the highest frequencies of CD3+CD4+IL-2+TNF-α-IFN-γ-, CD3+CD4+IL-2+TNF-α+IFN-γ-, CD3+CD4+IL-2+TNF-α-IFN-γ+, and CD3+CD4+IL-2+TNF-α+IFN-γ+ T cells in cured and asymptomatic subjects. Consistent with this, the IFN-γ increase was correlated with decreased spleen (R = -0.428, P = 0.05) and liver sizes (R = -0.428, P = 0.05) and with increased hematocrit counts (R = 0.532, P = 0.015) in response to F1 domain, and with increased hematocrit (R = 0.512, P 0.02) and hemoglobin counts (R = 0.434, P = 0.05) in response to F2. Additionally, IL-17 increases were associated with decreased spleen and liver sizes in response to F1 (R = -0.595, P = 0.005) and F2 (R = -0.462, P = 0.04). Conversely, F1 and F3 increased the CD3+CD8+IL-2+TNF-α-IFN-γ-, CD3+CD8+IL-2+TNF-α+IFN-γ-, and CD3+CD8+IL-2+TNF-α+IFN-γ+ T cell frequencies of VL patients correlated with increased spleen and liver sizes and decreased hemoglobin and hematocrit values. Therefore, cure and acquired resistance to VL correlate with the CD4+-Th1 and Th-17 T-cell responses to F2 and F1 domains. Clinical VL outcomes, by contrast, correlate with CD8+ T-cell responses against F3 and F1, potentially involved in control of the early infection. The in silico-predicted NH36 epitopes are conserved and bind to many HL-DR and HLA and B allotypes. No human vaccine against Leishmania is available thus far. In this investigation, we identified the NH36 domains and epitopes that induce CD4+ and CD8+ T cell responses, which could be used to potentiate a human universal T-epitope vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Micheli Luize Barbosa Santos
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabrícia Alvisi de Oliveira
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Aline Silva Barreto
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Iam Palatnik-de-Sousa
- Laboratório de Biometrologia, Programa de Pós-Graduação em Metrologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Instituto de Salud Carlos III, Centro Nacional de Microbiologia, Madrid, Comunidad de Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Instituto de Salud Carlos III, Centro Nacional de Microbiologia, Madrid, Comunidad de Madrid, Spain
| | - Paula Mello de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia Integrada, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Santoro Rosa
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, Brazil
- Laboratório de Vacinas experimentais, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marcos Palatnik
- Laboratório de Imunohematologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga-Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Bani-Corrêa
- Departamento de Morfologia, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Roque Pacheco de Almeida
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Clarisa Beatriz Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
19
|
Alves-Silva MV, Nico D, Morrot A, Palatnik M, Palatnik-de-Sousa CB. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection. Front Immunol 2017; 8:100. [PMID: 28280494 PMCID: PMC5322207 DOI: 10.3389/fimmu.2017.00100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022] Open
Abstract
The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Marcus Vinícius Alves-Silva
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia Integrada, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Palatnik
- Programa de Pós-Graduação em Clínica Médica, Faculdade de Medicina-Hospital Universitario Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Rock KS, Quinnell RJ, Medley GF, Courtenay O. Progress in the Mathematical Modelling of Visceral Leishmaniasis. ADVANCES IN PARASITOLOGY 2016; 94:49-131. [PMID: 27756459 DOI: 10.1016/bs.apar.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The leishmaniases comprise a complex of diseases characterized by clinical outcomes that range from self-limiting to chronic, and disfiguring and stigmatizing to life threatening. Diagnostic methods, treatments, and vector and reservoir control options exist, but deciding the most effective interventions requires a quantitative understanding of the population level infection and disease dynamics. The effectiveness of any set of interventions has to be determined within the context of operational conditions, including economic and political commitment. Mathematical models are the best available tools for studying quantitative systems crossing disciplinary spheres (biology, medicine, economics) within environmental and societal constraints. In 2005, the World Health Assembly and government health ministers of India, Nepal, and Bangladesh signed a Memorandum of Understanding to eliminate the life threatening form of leishmaniasis, visceral leishmaniasis (VL), on the Indian subcontinent by 2015 through a combination of early case detection, improved treatments, and vector control. The elimination target is <1 case/10,000 population at the district or subdistrict level compared to the current 20/10,000 in the regions of highest transmission. Towards this goal, this chapter focuses on mathematical models of VL, and the biology driving those models, to enable realistic predictions of the best combination of interventions. Several key issues will be discussed which have affected previous modelling of VL and the direction future modelling may take. Current understanding of the natural history of disease, immunity (and loss of immunity), and stages of infection and their durations are considered particularly for humans, and also for dogs. Asymptomatic and clinical infection are discussed in the context of their relative roles in Leishmania transmission, as well as key components of the parasite-sandfly-vector interaction and intervention strategies including diagnosis, treatment and vector control. Gaps in current biological knowledge and potential avenues to improve model structures and mathematical predictions are identified. Underpinning the marriage between biology and mathematical modelling, the content of this chapter represents the first step towards developing the next generation of models for VL.
Collapse
Affiliation(s)
- K S Rock
- University of Warwick, Coventry, United Kingdom
| | | | - G F Medley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - O Courtenay
- University of Warwick, Coventry, United Kingdom
| |
Collapse
|
21
|
Malta J, Martins GF, Weng JL, Fernandes KM, Munford ML, Ramalho-Ortigão M. Effects of specific antisera targeting peritrophic matrix-associated proteins in the sand fly vector Phlebotomus papatasi. Acta Trop 2016; 159:161-9. [PMID: 27012717 DOI: 10.1016/j.actatropica.2016.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
In many hematophagous insects, the peritrophic matrix (PM) is formed soon after a blood meal (PBM) to compartmentalize the food bolus. The PM is an important component of vector competence, functioning as a barrier to the development of many pathogens including parasites of the genus Leishmania transmitted by sand flies. PM morphology and permeability are associated with the proteins that are part of the PM scaffolding, including several peritrophins, and chitin fibers. Here, we assessed the effects of specific antisera targeting proteins thought to be an integral part of the PM scaffolding and its process of maturation and degradation. Phlebotomus papatasi sand flies were fed with red blood cells reconstituted with antisera targeting the chitinase PpChit1, and the peritrophin PpPer2. Sand fly midguts were dissected at different time points and processed for light microscopy (LM), confocal and transmission electron (TEM) microscopies (24, 42-46, 48 and 72h PBM), scanning electron (SEM) (48h PBM) and atomic force (AFM) (30h PBM) microscopies. TEM and WGA-FITC staining indicate PM degradation was significantly delayed following feeding of flies on anti-PpChit1. AFM analysis at 30h PBM point to an increase in roughness' amplitude of the PM of flies that fed on either anti-PpChit1 or anti-PpPer2. Collective, our data suggest that antibodies targeting PM-associated proteins affects the kinetics of PM maturation, delaying its degradation and disruption and are potential targets on transmission-blocking vaccines strategies.
Collapse
|
22
|
Abstract
Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite.
Collapse
|
23
|
Moreira ML, Costa-Pereira C, Alves MLR, Marteleto BH, Ribeiro VM, Peruhype-Magalhães V, Giunchetti RC, Martins-Filho OA, Araújo MSS. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol 2016; 220:33-45. [PMID: 26995719 DOI: 10.1016/j.vetpar.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) is transmitted by phlebotomine sandfly vectors and domestic dogs serve as a reservoir. The elimination of seropositive dogs has been a recommended strategy for managing the disease in Brazil. A protective canine vaccine would be an important tool for controlling the disease, reducing the parasites available to sandfly vectors and, consequently, reducing the number of human VL cases. Leishmune(®) is an anti-canine Leishmaniosis (VL Canine) vaccine produced by Zoetis (Pfizer, Brazil) that was commercially available in Brazil until 2014. The main goal of the present study was to investigate the protective immunological events induced by vaccination with Leishmune(®) in the time frame of one year. Healthy, non-vaccinated dogs and dogs of 1, 6 and 10 months post-vaccination were evaluated. Results showed that Leishmune(®) induced an increase in phagocytic activity of neutrophils and monocytes and also increased NO production. Immunological events were correlated with functional responses, as high levels of IgG and an increase of the receptor Fcγ were detected. Vaccination induced an increased expression of TLR (2, 4, 5, 9), integrin (CD29, CD49f), activation (MHCII) and co-stimulatory (CD80, CD81) molecules by neutrophils and monocytes. Vaccination led to decrease of IL-4 and an increase of IL-8 production by monocytes and higher IFN-γ and IL-17 production by T-cells. The results suggested that Leishmune(®) was able to induce a long-lasting change in immune response, mediated by supportive immunological events that may be participating in protective immunity against CL.
Collapse
Affiliation(s)
- Marcela L Moreira
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Christiane Costa-Pereira
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Marina Luiza Rodrigues Alves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruno H Marteleto
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Vitor M Ribeiro
- Clínica Veterinária Santo Agostinho, Belo Horizonte, Minas Gerais, Brazil.
| | - Vanessa Peruhype-Magalhães
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodolfo C Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Olindo A Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Márcio S S Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Abeijon C, Daifalla N, Krautz-Peterson G, Pizzirani S, Beamer G, Frazatti-Gallina NM, Raw I, Campos-Neto A. Immunogenicity in dogs and protection against visceral leishmaniasis induced by a 14kDa Leishmania infantum recombinant polypeptide. ACTA ACUST UNITED AC 2015; 5:1-7. [PMID: 26640609 DOI: 10.1016/j.trivac.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In areas were human visceral leishmaniasis (VL) is endemic, the domestic dog is the main parasite reservoir in the infectious cycle of Leishmania infantum. Development of prophylactic strategies to lower the parasite burden in dogs would reduce sand fly transmission thus lowering the incidence of zoonotic VL. Here we demonstrate that vaccination of dogs with a recombinant 14kDa polypeptide of L. infantum nuclear transport factor 2 (Li-ntf2) mixed with adjuvant BpMPLA-SE resulted in the production of specific anti-Li-ntf2 IgG antibodies as well as IFN-γ release by the animals' peripheral blood mononuclear cells stimulated with the antigen. In addition, immunization with this single and small 14kDa poplypeptide resulted in protracted progression of the infection of the animals after challenging with a high dose of virulent L. infantum. Five months after challenge the parasite load was lower in the bone marrow of immunized dogs compared to non-immunized animals. The antibody response to K39, a marker of active VL, at ten months after challenge was strong and significantly higher in the control dogs than in vaccinated animals. At the study termination vaccinated animals showed significantly more liver granulomas and lymphoid hyperplasia than non-vaccinated animals, which are both histological markers of resistance to infection. Together, these results indicate that the 14kDa polypeptide is an attractive protective molecule that can be easily incorporated in a leishmanial polyprotein vaccine candidate to augment/complement the overall protective efficacy of the final product.
Collapse
Affiliation(s)
| | | | | | | | - Gillian Beamer
- Cummings School of Veterinary Medicine at Tufts, Grafton MA
| | | | - Isaias Raw
- BioIndustrial Division, Butantan Institute/Foundation, São Paulo, SP, Brazil
| | | |
Collapse
|
25
|
Miura R, Kooriyama T, Yoneda M, Takenaka A, Doki M, Goto Y, Sanjoba C, Endo Y, Fujiyuki T, Sugai A, Tsukiyama-Kohara K, Matsumoto Y, Sato H, Kai C. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs. PLoS Negl Trop Dis 2015; 9:e0003914. [PMID: 26162094 PMCID: PMC4498809 DOI: 10.1371/journal.pntd.0003914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/16/2015] [Indexed: 12/02/2022] Open
Abstract
Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.
Collapse
Affiliation(s)
- Ryuichi Miura
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanori Kooriyama
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Takenaka
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Miho Doki
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Goto
- Department of Molecular Immunology, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Sanjoba
- Department of Molecular Immunology, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Endo
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Fujiyuki
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiro Sugai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Yoshitsugu Matsumoto
- Department of Molecular Immunology, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
|
27
|
Spada JCP, Silva DTD, Martins KRR, Rodas LAC, Alves ML, Faria GA, Buzutti MC, Silva HR, Starke-Buzetti WA. Occurrence of Lutzomyia longipalpis (Phlebotominae) and canine visceral leishmaniasis in a rural area of Ilha Solteira, SP, Brazil. ACTA ACUST UNITED AC 2014; 23:456-62. [PMID: 25517523 DOI: 10.1590/s1984-29612014087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/10/2014] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the occurrence of Lutzomyia longipalpis and also the canine visceral leishmaniasis (CVL) in a rural area of Ilha Solteira, state of São Paulo. Blood samples were collected from 32 dogs from different rural properties (small farms) and were analyzed by ELISA and the indirect immunofluorescence antibody test (IFAT) in order to diagnose CVL. From these serological tests, 31.25% of the dogs were positive for CVL and these were distributed in 66.7% (8/12) of the rural properties, which were positive for L. longipalpis. CDC (Center for Disease Control and Prevention) light traps were installed in 12 properties (one per property) and insects were caught on three consecutive days per month for one year. L. longipalpis was present on 100% of the rural properties visited, at least once during the twelve-month interval, totaling 64 males and 25 females. The insects were more numerous after the peak of the rain, but the association between prevalence of peridomestic vectors and the climatic data (precipitation, relative air humidity and temperature) and the occurrences of CVL among dogs on each rural property were not statistical significant (p <0.05). However, the occurrence of CVL cases in dogs and the presence of L. longipalpis indicate that more attention is necessairy for the control of this disease in the rural area studied.
Collapse
Affiliation(s)
- Julio Cesar Pereira Spada
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | - Diogo Tiago da Silva
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | | | | | - Maria Luana Alves
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | - Glaucia Amorim Faria
- Departamento de Matemática, Faculdade de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | - Marcelo Costa Buzutti
- Departamento de Fitossanidade e Engenharia Rural de Solos, Faculdade de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | - Hélio Ricardo Silva
- Departamento de Fitossanidade e Engenharia Rural de Solos, Faculdade de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | - Wilma Aparecida Starke-Buzetti
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| |
Collapse
|
28
|
Joshi S, Rawat K, Yadav NK, Kumar V, Siddiqi MI, Dube A. Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Front Immunol 2014; 5:380. [PMID: 25202307 PMCID: PMC4141159 DOI: 10.3389/fimmu.2014.00380] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/24/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) or kala-azar, a vector-borne protozoan disease, shows endemicity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report suggested that an annual incidence of VL is nearly 200,000 to 400,000 cases, resulting in 20,000 to 30,000 deaths per year. Treatment with available anti-leishmanial drugs are not cost effective, with varied efficacies and higher relapse rate, which poses a major challenge to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against VL is imperative and knowing the fact that recovered individuals developed lifelong immunity against re-infection, it is feasible. Vaccine development program, though time taking, has recently gained momentum with the emergence of omic era, i.e., from genomics to immunomics. Classical as well as molecular methodologies have been overtaken with alternative strategies wherein proteomics based knowledge combined with computational techniques (immunoinformatics) speed up the identification and detailed characterization of new antigens for potential vaccine candidates. This may eventually help in the designing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention measures to control the disease in endemic areas. This review focuses on such newer approaches being utilized for vaccine development against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | - Keerti Rawat
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | | | - Vikash Kumar
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Anuradha Dube
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| |
Collapse
|
29
|
Nico D, Gomes DC, Palatnik-de-Sousa I, Morrot A, Palatnik M, Palatnik-de-Sousa CB. Leishmania donovani Nucleoside Hydrolase Terminal Domains in Cross-Protective Immunotherapy Against Leishmania amazonensis Murine Infection. Front Immunol 2014; 5:273. [PMID: 24966857 PMCID: PMC4052736 DOI: 10.3389/fimmu.2014.00273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
Nucleoside hydrolases of the Leishmania genus are vital enzymes for the replication of the DNA and conserved phylogenetic markers of the parasites. Leishmania donovani nucleoside hydrolase (NH36) induced a main CD4(+) T cell driven protective response against L. chagasi infection in mice which is directed against its C-terminal domain. In this study, we used the three recombinant domains of NH36: N-terminal domain (F1, amino acids 1-103), central domain (F2 aminoacids 104-198), and C-terminal domain (F3 amino acids 199-314) in combination with saponin and assayed their immunotherapeutic effect on Balb/c mice previously infected with L. amazonensis. We identified that the F1 and F3 peptides determined strong cross-immunotherapeutic effects, reducing the size of footpad lesions to 48 and 64%, and the parasite load in footpads to 82.6 and 81%, respectively. The F3 peptide induced the strongest anti-NH36 antibody response and intradermal response (IDR) against L. amazonenis and a high secretion of IFN-γ and TNF-α with reduced levels of IL-10. The F1 vaccine, induced similar increases of IgG2b antibodies and IFN-γ and TNF-α levels, but no IDR and no reduction of IL-10. The multiparameter flow cytometry analysis was used to assess the immune response after immunotherapy and disclosed that the degree of the immunotherapeutic effect is predicted by the frequencies of the CD4(+) and CD8(+) T cells producing IL-2 or TNF-α or both. Total frequencies and frequencies of double-cytokine CD4 T cell producers were enhanced by F1 and F3 vaccines. Collectively, our multifunctional analysis disclosed that immunotherapeutic protection improved as the CD4 responses progressed from 1+ to 2+, in the case of the F1 and F3 vaccines, and as the CD8 responses changed qualitatively from 1+ to 3+, mainly in the case of the F1 vaccine, providing new correlates of immunotherapeutic protection against cutaneous leishmaniasis in mice based on T-helper TH1 and CD8(+) mediated immune responses.
Collapse
Affiliation(s)
- Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Crespo Gomes
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iam Palatnik-de-Sousa
- Programa de Pós Graduação em Metrologia, Laboratório de Biometrologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Palatnik
- Programa de Pós Graduação em Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarisa Beatriz Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Nico D, Gomes DC, Alves-Silva MV, Freitas EO, Morrot A, Bahia D, Palatnik M, Rodrigues MM, Palatnik-de-Sousa CB. Cross-Protective Immunity to Leishmania amazonensis is Mediated by CD4+ and CD8+ Epitopes of Leishmania donovani Nucleoside Hydrolase Terminal Domains. Front Immunol 2014; 5:189. [PMID: 24822054 PMCID: PMC4013483 DOI: 10.3389/fimmu.2014.00189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
The nucleoside hydrolase (NH) of Leishmania donovani (NH36) is a phylogenetic marker of high homology among Leishmania parasites. In mice and dog vaccination, NH36 induces a CD4+ T cell-driven protective response against Leishmania chagasi infection directed against its C-terminal domain (F3). The C-terminal and N-terminal domain vaccines also decreased the footpad lesion caused by Leishmania amazonensis. We studied the basis of the crossed immune response using recombinant generated peptides covering the whole NH36 sequence and saponin for mice prophylaxis against L. amazonensis. The F1 (amino acids 1-103) and F3 peptide (amino acids 199-314) vaccines enhanced the IgG and IgG2a anti-NH36 antibodies to similar levels. The F3 vaccine induced the strongest DTH response, the highest proportions of NH36-specific CD4+ and CD8+ T cells after challenge and the highest expression of IFN-γ and TNF-α. The F1 vaccine, on the other hand, induced a weaker but significant DTH response and a mild enhancement of IFN-γ and TNF-α levels. The in vivo depletion with anti-CD4 or CD8 monoclonal antibodies disclosed that cross-protection against L. amazonensis infection was mediated by a CD4+ T cell response directed against the C-terminal domain (75% of reduction of the size of footpad lesion) followed by a CD8+ T cell response against the N-terminal domain of NH36 (57% of reduction of footpad lesions). Both vaccines were capable of inducing long-term cross-immunity. The amino acid sequence of NH36 showed 93% identity to the sequence of the NH A34480 of L. amazonensis, which also showed the presence of completely conserved predicted epitopes for CD4+ and CD8+ T cells in F1 domain, and of CD4+ epitopes differing by a single amino acid, in F1 and F3 domains. The identification of the C-terminal and N-terminal domains as the targets of the immune response to NH36 in the model of L. amazonensis infection represents a basis for the rationale development of a bivalent vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Crespo Gomes
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus Vinícius Alves-Silva
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisangela Oliveira Freitas
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Palatnik
- Programa de Pós Graduação em Clínica Médica Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio M. Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Terapia Celular e Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Fernandes CB, Junior JTM, de Jesus C, Souza BMPDS, Larangeira DF, Fraga DBM, Tavares Veras PS, Barrouin-Melo SM. Comparison of two commercial vaccines against visceral leishmaniasis in dogs from endemic areas: IgG, and subclasses, parasitism, and parasite transmission by xenodiagnosis. Vaccine 2014; 32:1287-95. [DOI: 10.1016/j.vaccine.2013.12.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
|
32
|
Successful vaccines for naturally occurring protozoal diseases of animals should guide human vaccine research. A review of protozoal vaccines and their designs. Parasitology 2014; 141:624-40. [PMID: 24476952 PMCID: PMC3961066 DOI: 10.1017/s0031182013002060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Effective vaccines are available for many protozoal diseases of animals, including vaccines for zoonotic pathogens and for several species of vector-transmitted apicomplexan haemoparasites. In comparison with human diseases, vaccine development for animals has practical advantages such as the ability to perform experiments in the natural host, the option to manufacture some vaccines in vivo, and lower safety requirements. Although it is proper for human vaccines to be held to higher standards, the enduring lack of vaccines for human protozoal diseases is difficult to reconcile with the comparatively immense amount of research funding. Common tactical problems of human protozoal vaccine research include reliance upon adapted rather than natural animal disease models, and an overwhelming emphasis on novel approaches that are usually attempted in replacement of rather than for improvement upon the types of designs used in effective veterinary vaccines. Currently, all effective protozoal vaccines for animals are predicated upon the ability to grow protozoal organisms. Because human protozoal vaccines need to be as effective as animal vaccines, researchers should benefit from a comparison of existing veterinary products and leading experimental vaccine designs. With this in mind, protozoal vaccines are here reviewed.
Collapse
|
33
|
Estimating the optimal control of zoonotic visceral leishmaniasis by the use of a mathematical model. ScientificWorldJournal 2013; 2013:810380. [PMID: 23990761 PMCID: PMC3748747 DOI: 10.1155/2013/810380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
We argue that the strategy of culling infected dogs is not the most efficient way to control zoonotic visceral leishmaniasis (ZVL) and that, in the presence of alternative control strategies with better potential results, official programs of compulsory culling adopted by some countries are inefficient and unethical. We base our arguments on a mathematical model for the study of control strategies against ZVL, which allows the comparison of the efficacies of 5, alternative strategies. We demonstrate that the culling program, previously questioned on both theoretical and practical grounds is the less effective control strategy. In addition, we show that vector control and the use of insecticide-impregnated dog collars are, by far, more efficient at reducing the prevalence of ZVL in humans.
Collapse
|
34
|
Alvar J, Croft SL, Kaye P, Khamesipour A, Sundar S, Reed SG. Case study for a vaccine against leishmaniasis. Vaccine 2013; 31 Suppl 2:B244-9. [PMID: 23598489 DOI: 10.1016/j.vaccine.2012.11.080] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 01/27/2023]
Abstract
Leishmaniasis in many ways offers a unique vaccine case study. Two reasons for this are that leishmaniasis is a disease complex caused by several different species of parasite that are highly related, thus raising the possibility of developing a single vaccine to protect against multiple diseases. Another reason is the demonstration that a leishmaniasis vaccine may be used therapeutically as well as prophylactically. Although there is no registered human leishmaniasis vaccine today, immunization approaches using live or killed organisms, as well as defined vaccine candidates, have demonstrated at least some degree of efficacy in humans to prevent and to treat some forms of leishmaniasis, and there is a vigorous pipeline of candidates in development. Current approaches include using individual or combined antigens of the parasite or of salivary gland extract of the parasites' insect vector, administered with or without formulation in adjuvant. Animal data obtained with several vaccine candidates are promising and some have been or will be entered into clinical testing in the near future. There is sufficient scientific and epidemiological justification to continue to invest in the development of vaccines against leishmaniasis.
Collapse
Affiliation(s)
- Jorge Alvar
- Drugs for Neglected Disease initiative (DNDi) 15, Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Mutiso JM, Macharia JC, Kiio MN, Ichagichu JM, Rikoi H, Gicheru MM. Development of Leishmania vaccines: predicting the future from past and present experience. J Biomed Res 2013; 27:85-102. [PMID: 23554800 PMCID: PMC3602867 DOI: 10.7555/jbr.27.20120064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/14/2012] [Accepted: 08/12/2012] [Indexed: 01/13/2023] Open
Abstract
Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. Resistance to infection is associated with a T-helper-1 immune response that activates macrophages to kill the intracellular parasite in a nitric oxide-dependent manner. Conversely, disease progression is generally associated with a T-helper-2 response that activates humoral immunity. Current control is based on chemotherapeutic treatments which are expensive, toxic and associated with high relapse and resistance rates. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and affordable antileishmanial vaccine is a critical global public-health priority. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunization with defined subunit vaccines or live-attenuated strains of Leishmania. However, to date, no vaccine is available despite substantial efforts by many laboratories. Major impediments in Leishmania vaccine development include: lack of adequate funding from national and international agencies, problems related to the translation of data from animal models to human disease, and the transition from the laboratory to the field. Furthermore, a thorough understanding of protective immune responses and generation and maintenance of the immunological memory, an important but least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed. This review focuses on the progress of the search for an effective vaccine against human and canine leishmaniasis.
Collapse
Affiliation(s)
- Joshua Muli Mutiso
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
- Department of Zoological Sciences, Kenyatta University, Nairobi 43844-00100, Kenya.
| | - John Chege Macharia
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - Maria Ndunge Kiio
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - James Maina Ichagichu
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - Hitler Rikoi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | | |
Collapse
|
36
|
Hotez PJ, Bethony JM. Parasitic disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
37
|
Kashino SS, Abeijon C, Qin L, Kanunfre KA, Kubrusly FS, Silva FO, Costa DL, Campos D, Costa CHN, Raw I, Campos-Neto A. Identification of Leishmania infantum chagasi proteins in urine of patients with visceral leishmaniasis: a promising antigen discovery approach of vaccine candidates. Parasite Immunol 2012; 34:360-71. [PMID: 22443237 DOI: 10.1111/j.1365-3024.2012.01365.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients' urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.
Collapse
Affiliation(s)
- S S Kashino
- The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dumonteil E. DNA Vaccines against Protozoan Parasites: Advances and Challenges. J Biomed Biotechnol 2012; 2007:90520. [PMID: 17710244 PMCID: PMC1940056 DOI: 10.1155/2007/90520] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 03/21/2007] [Indexed: 01/30/2023] Open
Abstract
Over the past 15 years, DNA vaccines have gone from a scientific curiosity to one of the most dynamic research field and may offer new alternatives for the control of parasitic diseases such as leishmaniasis and Chagas disease. We review here some of the advances and challenges for the development of DNA vaccines against these diseases. Many studies have validated the concept of using DNA vaccines for both protection and therapy against these protozoan parasites in a variety of mouse models. The challenge now is to translate what has been achieved in these models into veterinary or human vaccines of comparable efficacy. Also, genome-mining and new antigen discovery strategies may provide new tools for a more rational search of novel vaccine candidates.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, Mexico
- *Eric Dumonteil:
| |
Collapse
|
39
|
Das A, Ali N. Vaccine Development Against Leishmania donovani. Front Immunol 2012; 3:99. [PMID: 22615707 PMCID: PMC3351671 DOI: 10.3389/fimmu.2012.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/14/2012] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani and Leishmania infantum/chagasi represents the second most challenging infectious disease worldwide, leading to nearly 500,000 new cases and 60,000 deaths annually. Zoonotic VL caused by L. infantum is a re-emergent canid zoonoses which represents a complex epidemiological cycle in the New world where domestic dogs serve as a reservoir host responsible for potentially fatal human infection and where dog culling is the only measure for reservoir control. Life-long immunity to VL has motivated development of prophylactic vaccines against the disease but very few have progressed beyond the experimental stage. No licensed vaccine is available till date against any form of leishmaniasis. High toxicity and increasing resistance to the current chemotherapeutic regimens have further complicated the situation in VL endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge of pathogenesis, immune response, and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine candidates, their developmental status and future prospects in a quest for rational vaccine development against the disease. In addition, several challenges such as safety issues, renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing prophylactic strategies for protection against this lethal infection.
Collapse
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology Kolkata, India
| | | |
Collapse
|
40
|
Abstract
Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL.
Collapse
Affiliation(s)
- Clarisa B. Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
41
|
Vaccine candidates for leishmaniasis: A review. Int Immunopharmacol 2011; 11:1464-88. [DOI: 10.1016/j.intimp.2011.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023]
|
42
|
Evans KJ, Kedzierski L. Development of Vaccines against Visceral Leishmaniasis. J Trop Med 2011; 2012:892817. [PMID: 21912561 PMCID: PMC3170777 DOI: 10.1155/2012/892817] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/31/2011] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected disease resulting in a global morbidity of 2,090 thousand Disability-Adjusted Life Years and a mortality rate of approximately 60,000 per year. Among the three clinical forms of leishmaniasis (cutaneous, mucosal, and visceral), visceral leishmaniasis (VL) accounts for the majority of mortality, as if left untreated VL is almost always fatal. Caused by infection with Leishmania donovani or L. infantum, VL represents a serious public health problem in endemic regions and is rapidly emerging as an opportunistic infection in HIV patients. To date, no vaccine exists for VL or any other form of leishmaniasis. In endemic areas, the majority of those infected do not develop clinical symptoms and past infection leads to robust immunity against reinfection. Thus the development of vaccine for Leishmania is a realistic public health goal, and this paper summarizes advances in vaccination strategies against VL.
Collapse
Affiliation(s)
- Krystal J. Evans
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Lukasz Kedzierski
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
43
|
Kaye PM, Aebischer T. Visceral leishmaniasis: immunology and prospects for a vaccine. Clin Microbiol Infect 2011; 17:1462-70. [PMID: 21851483 DOI: 10.1111/j.1469-0691.2011.03610.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human visceral leishmaniasis (HVL) is the most severe clinical form of a spectrum of neglected tropical diseases caused by protozoan parasites of the genus Leishmania. Caused mainly by L. donovani and L. infantum/chagasi, HVL accounts for more than 50 000 deaths every year. Drug therapy is available but costly, and resistance against several drug classes has evolved. Here, we review our current understanding of the immunology of HVL and approaches to and the status of vaccine development against this disease.
Collapse
Affiliation(s)
- P M Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, UK.
| | | |
Collapse
|
44
|
Podaliri Vulpiani M, Iannetti L, Paganico D, Iannino F, Ferri N. Methods of Control of the Leishmania infantum Dog Reservoir: State of the Art. Vet Med Int 2011; 2011:215964. [PMID: 21772963 PMCID: PMC3134973 DOI: 10.4061/2011/215964] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/02/2011] [Accepted: 05/11/2011] [Indexed: 02/02/2023] Open
Abstract
Leishmania infantum is a protozoan parasite causing severe vector-borne visceral diseases both in humans and dogs. The latter are the most important natural reservoir and therefore should be the main target of control measures. The real efficacy of seropositive dogs culling as a direct control method is still debated, and the new sensitivity of large part of population considers ethically unacceptable this kind of approach. Treatment of infectious dogs with one of the available therapeutic protocols is recommendable as it allows to reduce parasite burdens and therefore the possibility of transmission of Leishmania infantum to vectors. Vaccination has been proven to be a very effective control tool, but the absence of a commonly recognized diagnostic method able to distinguish vaccinate from seropositive individuals is still an important limit. Concerning indirect control methods, a number of studies have demonstrated the efficacy of topical insecticides treatment (collars, spot-on, and sprays) in reducing incidence and prevalence of L. infantum. Also, the reduction of the odds of seroconversion in humans in endemic areas has been reported after the application of indirect control measures on dogs. The contemporary use of direct and indirect methods is even more effective in reducing seroprevalence in dogs.
Collapse
Affiliation(s)
- Michele Podaliri Vulpiani
- Divisione Veterinaria di Salute Pubblica, Istituto "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | | | | | | | | |
Collapse
|
45
|
LeishVet guidelines for the practical management of canine leishmaniosis. Parasit Vectors 2011; 4:86. [PMID: 21599936 PMCID: PMC3125381 DOI: 10.1186/1756-3305-4-86] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 11/15/2022] Open
Abstract
The LeishVet group has formed recommendations designed primarily to help the veterinary clinician in the management of canine leishmaniosis. The complexity of this zoonotic infection and the wide range of its clinical manifestations, from inapparent infection to severe disease, make the management of canine leishmaniosis challenging. The recommendations were constructed by combining a comprehensive review of evidence-based studies, extensive clinical experience and critical consensus opinion discussions. The guidelines presented here in a short version with graphical topic displays suggest standardized and rational approaches to the diagnosis, treatment, follow-up, control and prevention of canine leishmaniosis. A staging system that divides the disease into four stages is aimed at assisting the clinician in determining the appropriate therapy, forecasting prognosis, and implementing follow-up steps required for the management of the leishmaniosis patient.
Collapse
|
46
|
Nieto A, Domínguez-Bernal G, Orden JA, De La Fuente R, Madrid-Elena N, Carrión J. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Vet Res 2011; 42:39. [PMID: 21345200 PMCID: PMC3052183 DOI: 10.1186/1297-9716-42-39] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/23/2011] [Indexed: 11/10/2022] Open
Abstract
Several animal models have been established to study visceral leishmaniosis (VL), a worldwide vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem. BALB/c mice and Syrian hamsters are the most widely used experimental models. In this paper, we summarize the advantages and disadvantages of these two experimental models and discuss the results obtained using these models in different studies of VL. Studies using the BALB/c mouse model have underscored differences between the liver and spleen in the course of VL, indicating that pathological evaluation of the visceral organs is essential for understanding the immune mechanisms induced by Leishmania infantum infection. The main goal of this review is to collate the relevant literature on Leishmania pathogenesis into a sequence of events, providing a schematic view of the main components of adaptive and innate immunity in the liver and spleen after experimental infection with L. infantum or L. donovani. This review also presents several viewpoints and reflections about some controversial aspects of Leishmania research, including the choice of experimental model, route of administration, inoculum size and the relevance of pathology (intimately linked to parasite persistence): a thorough understanding of which is essential for future VL research and the successful development of efficient control strategies for Leishmania spp.
Collapse
Affiliation(s)
- Ana Nieto
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Nico D, Claser C, Borja-Cabrera GP, Travassos LR, Palatnik M, da Silva Soares I, Rodrigues MM, Palatnik-de-Sousa CB. Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response. PLoS Negl Trop Dis 2010; 4:e866. [PMID: 21085470 PMCID: PMC2976684 DOI: 10.1371/journal.pntd.0000866] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/01/2010] [Indexed: 11/29/2022] Open
Abstract
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Collapse
Affiliation(s)
- Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carla Claser
- Centro Interdisciplinar de Terapia Gênica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gulnara P. Borja-Cabrera
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz R. Travassos
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Palatnik
- Hospital Universitário Clementino Fraga Filho-Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Irene da Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio Martins Rodrigues
- Centro Interdisciplinar de Terapia Gênica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Abstract
SUMMARYAnti-trypanosomiasis vaccination still remains the best theoretical option in the fight against a disease that is continuously hovering between its wildlife reservoir and its reservoir in man and livestock. While antigentic variation of the parasite surface coat has been considered the major obstacle in the development of a functional vaccine, recent research into the biology of B cells has indicated that the problems might go further than that. This paper reviews past and current attempts to design both anti-trypanosome vaccines, as well as vaccines directed towards the inhibition of infection-associated pathology.
Collapse
|
49
|
Ramalho-Ortigao M, Saraiva EM, Traub-Csekö YM. Sand fly- Leishmania interactions: long relationships are not necessarily easy. ACTA ACUST UNITED AC 2010; 4:195-204. [PMID: 24159365 DOI: 10.2174/1874421401004010195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sand fly and Leishmania are one of the best studied vector-parasite models. Much is known about the development of these parasites within the sand fly, and how transmission to a suitable vertebrate host takes place. Various molecules secreted by the vector assist the establishment of the infection in a vertebrate, and changes to the vector are promoted by the parasites in order to facilitate or enhance transmission. Despite a generally accepted view that sand flies and Leishmania are also one of the oldest vector-pathogen pairs known, such long history has not been translated into a harmonic relationship. Leishmania are faced with many barriers to the establishment of a successful infection within the sand fly vector, and specific associations have been developed which are thought to represent aspects of a co-evolution between the parasite and its vectors. In this review, we highlight the journey taken by Leishmania during its development within the vector, and describe the issues associated with the natural barriers encountered by the parasite. Recent data revealed sexual replication of Leishmania within the sand fly, but it is yet unknown if such reproduction affects disease outcome. New approaches targeting sand fly molecules to prevent parasite transmission are being sought, and various techniques related to genetic manipulation of sand flies are being utilized.
Collapse
|
50
|
Trigo J, Abbehusen M, Netto EM, Nakatani M, Pedral-Sampaio G, de Jesus RS, Goto Y, Guderian J, Howard RF, Reed SG. Treatment of canine visceral leishmaniasis by the vaccine Leish-111f+MPL-SE. Vaccine 2010; 28:3333-40. [PMID: 20206667 DOI: 10.1016/j.vaccine.2010.02.089] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/27/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Immunotherapy of canine visceral leishmaniasis (CVL) may provide an alternative to both marginally effective chemotherapy and undesired euthanasia of infected dogs and could have a great impact not only on animal welfare, but also on control of human disease. Therefore, we examined the potential immunotherapeutic efficacy of the subunit vaccine Leish-111f+MPL-SE, which has undergone rigorous preclinical testing and been demonstrated safe in human clinical trials. Two separate trials were performed in Salvador, Brazil, to evaluate the vaccine for therapeutic efficacy against CVL caused by natural infection: an Open Trial and a Blinded Trial. In the Open Trial 59 dogs with clinically active CVL were sequentially allocated to four groups: group 1 received Leish-111f+MPL-SE; group 2 was treated with Glucantime; group 3 received a combination of the vaccine and Glucantime; and group 4 was given no treatment. At the 6-month assessment, the 13 non-treated dogs had either died or showed no clinical improvement. In contrast, most dogs in groups 1-3 showed initial improvement (100%, 80%, and 92%, respectively). Upon evaluation for a mean of 36 months after therapy, the following cure rates were observed: 75% for group 1 dogs (exact 95% confidence interval [CI] 43-95%), 64% for group 2 dogs (exact 95% CI 31-89%), and 50% for group 3 dogs (exact 95% CI 19-81%). Therapeutic efficacy of the Leish-111f+MPL-SE vaccine was reconfirmed in a subsequent Blinded Trial. The vaccine was effective for mild cases of CVL and was compromised in dogs with severe disease. Although further studies are required to understand mechanisms of action, the Leish-111f+MPL-SE vaccine is a promising tool to control VL in both dogs and humans.
Collapse
Affiliation(s)
- Joelma Trigo
- Canil Avançado em Monte Gordo de Pesquisa em Leishmanioses, Camaçari, Bahia-Clinvet, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|