1
|
Kheirvari M, Liu H, Tumban E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023; 15:1109. [PMID: 37243195 PMCID: PMC10223759 DOI: 10.3390/v15051109] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Virus-like particles (VLPs) have gained a lot of interest within the past two decades. The use of VLP-based vaccines to protect against three infectious agents-hepatitis B virus, human papillomavirus, and hepatitis E virus-has been approved; they are very efficacious and offer long-lasting immune responses. Besides these, VLPs from other viral infectious agents (that infect humans, animals, plants, and bacteria) are under development. These VLPs, especially those from human and animal viruses, serve as stand-alone vaccines to protect against viruses from which the VLPs were derived. Additionally, VLPs, including those derived from plant and bacterial viruses, serve as platforms upon which to display foreign peptide antigens from other infectious agents or metabolic diseases such as cancer, i.e., they can be used to develop chimeric VLPs. The goal of chimeric VLPs is to enhance the immunogenicity of foreign peptides displayed on VLPs and not necessarily the platforms. This review provides a summary of VLP vaccines for human and veterinary use that have been approved and those that are under development. Furthermore, this review summarizes chimeric VLP vaccines that have been developed and tested in pre-clinical studies. Finally, the review concludes with a snapshot of the advantages of VLP-based vaccines such as hybrid/mosaic VLPs over conventional vaccine approaches such as live-attenuated and inactivated vaccines.
Collapse
Affiliation(s)
| | | | - Ebenezer Tumban
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
2
|
Modeling HPV-Associated Disease and Cancer Using the Cottontail Rabbit Papillomavirus. Viruses 2022; 14:v14091964. [PMID: 36146770 PMCID: PMC9503101 DOI: 10.3390/v14091964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral–host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.
Collapse
|
3
|
Development of a SARS-CoV-2 Vaccine Candidate Using Plant-Based Manufacturing and a Tobacco Mosaic Virus-like Nano-Particle. Vaccines (Basel) 2021; 9:vaccines9111347. [PMID: 34835278 PMCID: PMC8619098 DOI: 10.3390/vaccines9111347] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2–8 °C or 22–28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.
Collapse
|
4
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
D'Arco C, McCormick AA, Arnaboldi PM. Single-dose intranasal subunit vaccine rapidly clears secondary sepsis in a high-dose pneumonic plague infection. Vaccine 2021; 39:1435-1444. [PMID: 33531196 DOI: 10.1016/j.vaccine.2021.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
Yersinia pestis, the causative agent of plague, has killed millions throughout human history. Though public health initiatives have reduced the number of plague cases, it remains endemic in many areas of the world. It also remains a significant threat for use as a biological weapon. Naturally occurring multi-drug antibiotic resistance has been observed in Y. pestis, and resistant strains have been engineered for use as a biological weapon. Vaccines represent our best means of protection against the threat of antibiotic resistant plague. We have developed a vaccine consisting of two Y. pestis virulence factors, LcrV (V) and F1, conjugated to Tobacco Mosaic Virus (TMV), a safe, non-replicating plant virus that can be administered mucosally, providing complete protection against pneumonic plague, the deadliest form of the disease and the one most likely to be seen in a biological attack. A single intranasal (i.n.) dose of TMV-F1 + TMV-V (TMV-F1/V) protected 88% of mice against lethal challenge with 100 LD50 of Y. pestis CO92pgm-, while immunization with rF1 + rV without TMV was not protective. Serum and tissues were collected at various timepoints after challenge to assess bacterial clearance, histopathology, cytokine production, and antibody production. Overall, TMV-F1/V immunized mice showed a significant reduction in histopathology, bacterial burden, and inflammatory cytokine production following challenge compared to rF1 + rV vaccinated and unvaccinated mice. Pneumonic challenge resulted in systemic dissemination of the bacteria in all groups, but only TMV-F1/V immunized mice rapidly cleared bacteria from the spleen and liver. There was a direct correlation between pre-challenge serum F1 titers and recovery in all immunized mice, strongly suggesting a role for antibody in the neutralization and/or opsonization of Y. pestis in this model. Mucosal administration of a single dose of a Y. pestis TMV-based subunit vaccine, without any additional adjuvant, can effectively protect mice from lethal infection.
Collapse
Affiliation(s)
- Christina D'Arco
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, United States
| | - Alison A McCormick
- Department of Biology and Pharmaceutical Sciences, College of Pharmacy, Touro University California, Vallejo, CA 94592, United States
| | - Paul M Arnaboldi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, United States; Biopeptides, Corp., East Setauket, NY 11733, United States.
| |
Collapse
|
6
|
Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines (Basel) 2020; 8:vaccines8040568. [PMID: 33019516 PMCID: PMC7712070 DOI: 10.3390/vaccines8040568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The human papillomaviruses (HPVs) are a family of small DNA tumor viruses including over 200 genotypes classified by phylogeny into several genera. Different genera of HPVs cause ano-genital and oropharyngeal cancers, skin cancers, as well as benign diseases including skin and genital warts. Licensed vaccines composed of L1 virus-like particles (VLPs) confer protection generally restricted to the ≤9 HPV types targeted. Here, we examine approaches aimed at broadening the protection against diverse HPV types by targeting conserved epitopes of the minor capsid protein, L2. Compared to L1 VLP, L2 is less immunogenic. However, with appropriate presentation to the immune system, L2 can elicit durable, broadly cross-neutralizing antibody responses and protection against skin and genital challenge with diverse HPV types. Such approaches to enhance the strength and breadth of the humoral response include the display of L2 peptides on VLPs or viral capsids, bacteria, thioredoxin and other platforms for multimerization. Neither L2 nor L1 vaccinations elicit a therapeutic response. However, fusion of L2 with early viral antigens has the potential to elicit both prophylactic and therapeutic immunity. This review of cross-protective HPV vaccines based on L2 is timely as several candidates have recently entered early-phase clinical trials.
Collapse
|
7
|
Evtushenko EA, Ryabchevskaya EM, Nikitin NA, Atabekov JG, Karpova OV. Plant virus particles with various shapes as potential adjuvants. Sci Rep 2020; 10:10365. [PMID: 32587281 PMCID: PMC7316779 DOI: 10.1038/s41598-020-67023-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
Plant viruses are biologically safe for mammals and can be successfully used as a carrier/platform to present foreign epitopes in the course of creating novel putative vaccines. However, there is mounting evidence that plant viruses, their virus-like and structurally modified particles may also have an immunopotentiating effect on antigens not bound with their surface covalently. Here, we present data on the adjuvant properties of plant viruses with various shapes (Tobacco mosaic virus, TMV; Potato virus X, PVX; Cauliflower mosaic virus, CaMV; Bean mild mosaic virus, BMMV) and structurally modified TMV spherical particles (SPs). We have analysed the effectiveness of immune response to individual model antigens (ovalbumin, OVA/hen egg lysozyme, HEL) and to OVA/HEL in compositions with plant viruses/SPs, and have shown that CaMV, TMV and SPs can effectively induce total IgG titers to model antigen. Some intriguing data were obtained when analysing the immune response to the plant viruses/SPs themselves. Strong immunity was induced to CaMV, BMMV and PVX, whereas TMV and SPs stimulated considerably lower self-IgG titers. Our results provide new insights into the immunopotentiating properties of plant viruses and can be useful in devising adjuvants based on plant viruses.
Collapse
Affiliation(s)
- Ekaterina A Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation.
| | - Ekaterina M Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Nikolai A Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Joseph G Atabekov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Olga V Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| |
Collapse
|
8
|
Abrahamian P, Hammond RW, Hammond J. Plant Virus-Derived Vectors: Applications in Agricultural and Medical Biotechnology. Annu Rev Virol 2020; 7:513-535. [PMID: 32520661 DOI: 10.1146/annurev-virology-010720-054958] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major advances in our understanding of plant viral genome expression strategies and the interaction of a virus with its host for replication and movement, induction of disease, and resistance responses have been made through the generation of infectious molecules from cloned viral sequences. Autonomously replicating viral vectors derived from infectious clones have been exploited to express foreign genes in plants. Applications of virus-based vectors include the production of human/animal therapeutic proteins in plant cells and the specific study of plant biochemical processes, including those that confer resistance to pathogens. Additionally, virus-induced gene silencing, which is RNA mediated and triggered through homology-dependent RNA degradation mechanisms, has been exploited as an efficient method to study the functions of host genes in plants and to deliver small RNAs to insects. New and exciting strategies for vector engineering, delivery, and applications of plant virus-based vectors are the subject of this review.
Collapse
Affiliation(s)
- Peter Abrahamian
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Rosemarie W Hammond
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
9
|
Gasanova TV, Koroleva AA, Skurat EV, Ivanov PA. Complexes Formed via Bioconjugation of Genetically Modified TMV Particles with Conserved Influenza Antigen: Synthesis and Characterization. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:224-233. [PMID: 32093598 DOI: 10.1134/s0006297920020091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Recently we obtained complexes between genetically modified Tobacco Mosaic Virus (TMV) particles and proteins carrying conserved influenza antigen such as M2e epitope. Viral vector TMV-N-lys based on TMV-U1 genome was constructed by insertion of chemically active lysine into the exposed N-terminal part of the coat protein. Nicotiana benthamiana plants were agroinjected and TMV-N-lys virions were purified from non-inoculated leaves. Preparation was analyzed by SDS-PAGE/Coomassie staining; main protein with electrophoretic mobility of 21 kDa was detected. Electron microscopy confirmed the stability of modified particles. Chemical conjugation of TMV-N-lys virions and target influenza antigen M2e expressed in E. coli was performed using 5 mM 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 1 mM N-hydroxysuccinimide. The efficiency of chemical conjugation was confirmed by Western blotting. For additional characterization we used conventional electron microscopy. The diameter of the complexes did not differ significantly from the initial TMV-N-lys virions, but complexes formed highly organized and extensive network with dense "grains" on the surface. Dynamic light scattering demonstrated that the single peaks, reflecting the complexes TMV-N-lys/DHFR-M2e were significantly shifted relative to the control TMV-N-lys virions. The indirect enzyme-linked immunosorbent assay with TMV- and DHFR-M2e-specific antibodies showed that the complexes retain stability during overnight adsorption. Thus, the results allow using these complexes for immunization of animals with the subsequent preparation of a candidate universal vaccine against the influenza virus.
Collapse
Affiliation(s)
- T V Gasanova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | - A A Koroleva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - E V Skurat
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - P A Ivanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
10
|
Santoni M, Zampieri R, Avesani L. Plant Virus Nanoparticles for Vaccine Applications. Curr Protein Pept Sci 2020; 21:344-356. [PMID: 32048964 DOI: 10.2174/1389203721666200212100255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/16/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
| | | | - Linda Avesani
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
- Diamante srl. Strada Le Grazie, 15. 37134 Verona, Italy
| |
Collapse
|
11
|
Venkataraman S, Reddy VS, Khurana SMP. Biomedical Applications of Viral Nanoparticles in Vaccine Therapy. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
13
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
14
|
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54:623-637. [PMID: 30008053 DOI: 10.1007/s11262-018-1583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 01/15/2023]
Abstract
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea. .,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
15
|
MacDonald J. History and Promise of Plant-Made Vaccines for Animals. PROSPECTS OF PLANT-BASED VACCINES IN VETERINARY MEDICINE 2018. [PMCID: PMC7122757 DOI: 10.1007/978-3-319-90137-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Abstract
The discovery of genotype 16 as the prototype oncogenic human papillomavirus (HPV) initiated a quarter century of laboratory and epidemiological studies that demonstrated their necessary, but not sufficient, aetiological role in cervical and several other anogenital and oropharyngeal cancers. Early virus-induced immune deviation can lead to persistent subclinical infection that brings the risk of progression to cancer. Effective secondary prevention of cervical cancer through cytological and/or HPV screening depends on regular and widespread use in the general population, but coverage is inadequate in low-resource settings. The discovery that the major capsid antigen L1 could self-assemble into empty virus-like particles (VLPs) that are both highly immunogenic and protective led to the licensure of several prophylactic VLP-based HPV vaccines for the prevention of cervical cancer. The implementation of vaccination programmes in adolescent females is underway in many countries, but their impact critically depends on the population coverage and is improved by herd immunity. This Review considers how our expanding knowledge of the virology and immunology of HPV infection can be exploited to improve vaccine technologies and delivery of such preventive strategies to maximize reductions in HPV-associated disease, including incorporation of an HPV vaccine covering oncogenic types within a standard multitarget paediatric vaccine.
Collapse
Affiliation(s)
| | - Peter L. Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Transient expression of a bovine leukemia virus envelope glycoprotein in plants by a recombinant TBSV vector. J Virol Methods 2018; 255:1-7. [PMID: 29410083 DOI: 10.1016/j.jviromet.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/23/2022]
Abstract
Plants offer a unique combination of advantages for the production of valuable recombinant proteins in a relatively short time. For instance, a variety of diagnostic tests have been developed that use recombinant antigens expressed in plants. The envelope glycoprotein gp51 encoded by Bovine leukemia virus (BLV) is one of the essential subunits for viral infectivity. It was indicated that the recombinant gp51 (rgp51) of BLV сan be used as an synthetic alternative antigen useful in the diagnosis of BLV infection in cattle. Here we evaluate the potential for using a viral vector based on the genome of Tomato bushy stunt virus (TBSV) for the efficient expression of BLV envelope glycoprotein rgp51 in Nicotiana benthamiana plants. The codon-optimized gene encoding rgp51 was synthesized by the de novo DNA synthesis to replace the GFP gene in the TBSV-derived viral vector that was then delivered into 4-5 week old N. benthamiana plants by agroinfiltration. Expression of recombinant his-tagged rgp51 was verified by protein extraction followed by western blot procedures, and by purification using Ni2+-affinity chromatography. The molecular weight of this plant-expressed rgp51 ranged from 43 to 55 kDa and it was shown to be glycosylated. Important for potential use in diagnostic tests, purified rgp51 specifically reacted with BLV infected bovine sera while no reaction was observed with the negative serum samples.
Collapse
|
18
|
Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res 2016; 231:166-175. [PMID: 27889616 DOI: 10.1016/j.virusres.2016.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022]
Abstract
Infections with sexually transmitted high-risk Human Papillomavirus (hrHPV), of which there are at least 15 genotypes, are responsible for a tremendous disease burden by causing cervical, and subsets of other ano-genital and oro-pharyngeal carcinomas, together representing 5% of all cancer cases worldwide. HPV subunit vaccines consisting of virus-like particles (VLP) self-assembled from major capsid protein L1 plus adjuvant have been licensed. Prophylactic vaccinations with the 2-valent (HPV16/18), 4-valent (HPV6/11/16/18), or 9-valent (HPV6/11/16/18/31/33/45/52/58) vaccine induce high-titer neutralizing antibodies restricted to the vaccine types that cause up to 90% of cervical carcinomas, a subset of other ano-genital and oro-pharyngeal cancers and 90% of benign ano-genital warts (condylomata). The complexity of manufacturing multivalent L1-VLP vaccines limits the number of included VLP types and thus the vaccines' spectrum of protection, leaving a panel of oncogenic mucosal HPV unaddressed. In addition, current vaccines do not protect against cutaneous HPV types causing benign skin warts, or against beta-papillomavirus (betaPV) types implicated in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. In contrast with L1-VLP, the minor capsid protein L2 contains type-common epitopes that induce low-titer yet broadly cross-neutralizing antibodies to heterologous PV types and provide cross-protection in animal challenge models. Efforts to increase the low immunogenicity of L2 (poly)-peptides and thereby to develop broader-spectrum HPV vaccines are the focus of this review.
Collapse
|
19
|
Gasanova TV, Petukhova NV, Ivanov PA. Chimeric particles of tobacco mosaic virus as a platform for the development of next-generation nanovaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Li L, Guo Y, Li Z, Zhou Y, Zeng YI. Protein transduction domain can enhance the humoral immunity and cross-protection of HPV16L2 peptide vaccines. Biomed Rep 2016; 4:746-750. [PMID: 27284417 DOI: 10.3892/br.2016.647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/19/2016] [Indexed: 12/26/2022] Open
Abstract
Due to type-specificity, commercially available human papillomavirus (HPV) vaccines are only effective against homologous HPV serotypes, providing limited protection. Recent studies have highlighted the role of HPV minor capsid protein (known as L2) in inducing cross-protection. The N-terminal peptides of L2 contain conserved cross-response epitopes that can induce neutralizing antibodies against heterogeneous HPVs. However, when compared with L1, these peptides have lower immunogenicity, which limits the application of these vaccines. The protein transduction domain (PTD), located in the Tat protein of human immunodeficiency virus, facilitates delivery of DNA, peptides, proteins and virus particles into cells by unknown mechanisms, and has been reported to enhance immunogenicity of several antigens. In the present study, two peptides derived from the N-terminal of HPV16L2 were chosen as model antigens and constructed a series of L2 peptide vaccines by either fusing or mixing with PTD. Subsequently their immunogenicity was evaluated. The results indicated that the L2 peptides fused with PTD show considerably enhanced humoral immunity. In particular, they increased the titer of cross-neutralizing antibodies, while L2 peptides that had only been mixed with PTD induced only small cross-protection responses. Overall, the data suggest that fusion of L2 peptides with PTD significantly enhances their cross-protection and may be a promising strategy for the development of broad-spectrum HPV prophylactic vaccines.
Collapse
Affiliation(s)
- Lili Li
- College of Life Sciences and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yantao Guo
- College of Life Sciences and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Zelin Li
- College of Life Sciences and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yubai Zhou
- College of Life Sciences and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Y I Zeng
- Institute for Viral Disease Control and Prevention, Beijing 100032, P.R. China
| |
Collapse
|
21
|
Jiang RT, Schellenbacher C, Chackerian B, Roden RBS. Progress and prospects for L2-based human papillomavirus vaccines. Expert Rev Vaccines 2016; 15:853-62. [PMID: 26901354 DOI: 10.1586/14760584.2016.1157479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized.
Collapse
Affiliation(s)
- Rosie T Jiang
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA
| | - Christina Schellenbacher
- b Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology , Medical University Vienna (MUW) , Vienna , Austria
| | - Bryce Chackerian
- c Department of Molecular Genetics and Microbiology , University of New Mexico School of Medicine , Albuquerque , NM , USA
| | - Richard B S Roden
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , The Johns Hopkins University , Baltimore , MD , USA.,e Department of Gynecology & Obstetrics , The Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
22
|
McComb RC, Ho CL, Bradley KA, Grill LK, Martchenko M. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine. Vaccine 2015; 33:6745-51. [PMID: 26514421 DOI: 10.1016/j.vaccine.2015.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/26/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines.
Collapse
Affiliation(s)
| | - Chi-Lee Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth A Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
23
|
Jagu S, Karanam B, Wang JW, Zayed H, Weghofer M, Brendle SA, Balogh KK, Tossi KP, Roden RBS, Christensen ND. Durable immunity to oncogenic human papillomaviruses elicited by adjuvanted recombinant Adeno-associated virus-like particle immunogen displaying L2 17-36 epitopes. Vaccine 2015; 33:5553-5563. [PMID: 26382603 DOI: 10.1016/j.vaccine.2015.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
Abstract
Vaccination with the minor capsid protein L2, notably the 17-36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17-36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum±MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17-36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant.
Collapse
Affiliation(s)
- Subhashini Jagu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Hatem Zayed
- Biomedical Sciences Program, Health Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Sarah A Brendle
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Karla K Balogh
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Richard B S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD, USA; Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD, USA
| | - Neil D Christensen
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
24
|
Wu WH, Alkutkar T, Karanam B, Roden RBS, Ketner G, Ibeanu OA. Capsid display of a conserved human papillomavirus L2 peptide in the adenovirus 5 hexon protein: a candidate prophylactic hpv vaccine approach. Virol J 2015; 12:140. [PMID: 26362430 PMCID: PMC4566294 DOI: 10.1186/s12985-015-0364-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/13/2015] [Indexed: 12/02/2022] Open
Abstract
Background Infection by any one of 15 high risk human papillomavirus (hrHPV) types causes most invasive cervical cancers. Their oncogenic genome is encapsidated by L1 (major) and L2 (minor) coat proteins. Current HPV prophylactic vaccines are composed of L1 virus-like particles (VLP) that elicit type restricted immunity. An N-terminal region of L2 protein identified by neutralizing monoclonal antibodies comprises a protective epitope conserved among HPV types, but it is weakly immunogenic compared to L1 VLP. The major antigenic capsid protein of adenovirus type 5 (Ad5) is hexon which contains 9 hypervariable regions (HVRs) that form the immunodominant neutralizing epitopes. Insertion of weakly antigenic foreign B cell epitopes into these HVRs has shown promise in eliciting robust neutralizing antibody responses. Thus here we sought to generate a broadly protective prophylactic HPV vaccine candidate by inserting a conserved protective L2 epitope into the Ad5 hexon protein for VLP-like display. Methods Four recombinant adenoviruses were generated without significant compromise of viral replication by introduction of HPV16 amino acids L2 12–41 into Ad5 hexon, either by insertion into, or substitution of, either hexon HVR1 or HVR5. Results Vaccination of mice three times with each of these L2-recombinant adenoviruses induced similarly robust adenovirus-specific serum antibody but weak titers against L2. These L2-specific responses were enhanced by vaccination in the presence of alum and monophoryl lipid A adjuvant. Sera obtained after the third immunization exhibited low neutralizing antibody titers against HPV16 and HPV73. L2-recombinant adenovirus vaccination without adjuvant provided partial protection of mice against HPV16 challenge to either the vagina or skin. In contrast, vaccination with each L2-recombinant adenovirus formulated in adjuvant provided robust protection against vaginal challenge with HPV16, but not against HPV56. Conclusion We conclude that introduction of HPV16 L2 12–41 epitope into Ad5 hexon HVR1 or HVR5 is a feasible method of generating a protective HPV vaccine, but further optimization is required to strengthen the L2-specific response and broaden protection to the more diverse hrHPV.
Collapse
Affiliation(s)
- Wai-Hong Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tanwee Alkutkar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | - Richard B S Roden
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Gary Ketner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Okechukwu A Ibeanu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. .,Division of Gynecologic Oncology, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| |
Collapse
|
25
|
Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines (Basel) 2015; 3:620-37. [PMID: 26350598 PMCID: PMC4586470 DOI: 10.3390/vaccines3030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.
Collapse
|
26
|
Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff GP, Ottensmeier C, Diebold SS, Stevenson FK, Savelyeva N. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS One 2015; 10:e0118096. [PMID: 25692288 PMCID: PMC4332868 DOI: 10.1371/journal.pone.0118096] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022] Open
Abstract
Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the "gold standard" Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-α by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe "in-built" ssRNA adjuvant.
Collapse
Affiliation(s)
- Jantipa Jobsri
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alex Allen
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Deepa Rajagopal
- King’s College London, Peter Gorer Department of Immunobiology, Guy’s Hospital, London, United Kingdom
| | - Michael Shipton
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kostya Kanyuka
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, United Kingdom
| | | | - Christian Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sandra S. Diebold
- King’s College London, Peter Gorer Department of Immunobiology, Guy’s Hospital, London, United Kingdom
| | - Freda K. Stevenson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
27
|
Abstract
Plant-made or "biofarmed" viral vaccines are some of the earliest products of the technology of plant molecular farming, and remain some of the brightest prospects for the success of this field. Proofs of principle and of efficacy exist for many candidate viral veterinary vaccines; the use of plant-made viral antigens and of monoclonal antibodies for therapy of animal and even human viral disease is also well established. This review explores some of the more prominent recent advances in the biofarming of viral vaccines and therapies, including the recent use of ZMapp for Ebolavirus infection, and explores some possible future applications of the technology.
Collapse
Affiliation(s)
- Edward P Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
28
|
McCormick AA, Palmer KE. Genetically engineered Tobacco mosaic virus as nanoparticle vaccines. Expert Rev Vaccines 2014; 7:33-41. [DOI: 10.1586/14760584.7.1.33] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Giorgi C, Franconi R, Rybicki EP. Human papillomavirus vaccines in plants. Expert Rev Vaccines 2014; 9:913-24. [DOI: 10.1586/erv.10.84] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Mallajosyula JK, Hiatt E, Hume S, Johnson A, Jeevan T, Chikwamba R, Pogue GP, Bratcher B, Haydon H, Webby RJ, McCormick AA. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge. Hum Vaccin Immunother 2013; 10:586-95. [PMID: 24378714 DOI: 10.4161/hv.27567] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant subunit vaccines are an efficient strategy to meet the demands of a possible influenza pandemic, because of rapid and scalable production. However, vaccines made from recombinant hemagglutinin (HA) subunit protein are often of low potency, requiring high dose or boosting to generate a sustained immune response. We have improved the immunogenicity of a plant-made HA vaccine by chemical conjugation to the surface of the Tobacco mosaic virus (TMV) which is non infectious in mammals. We have previously shown that TMV is taken up by mammalian dendritic cells and is a highly effective antigen carrier. In this work, we tested several TMV-HA conjugation chemistries, and compared immunogenicity in mice as measured by anti-HA IgG titers and hemagglutination inhibition (HAI). Importantly, pre-existing immunity to TMV did not reduce initial or boosted titers. Further optimization included dosing with and without alum or oil-in water adjuvants. Surprisingly, we were able to stimulate potent immunogenicity and HAI titers with a single 15 µg dose of HA as a TMV conjugate. We then evaluated the efficacy of the TMV-HA vaccine in a lethal virus challenge in mice. Our results show that a single dose of the TMV-HA conjugate vaccine is sufficient to generate 50% survival, or 100% survival with adjuvant, compared with 10% survival after vaccination with a commercially available H1N1 vaccine. TMV-HA is an effective dose-sparing influenza vaccine, using a single-step process to rapidly generate large quantities of highly effective flu vaccine from an otherwise low potency HA subunit protein.
Collapse
Affiliation(s)
| | - Ernie Hiatt
- Kentucky BioProcessing LLC; Owensboro, KY USA
| | - Steve Hume
- Kentucky BioProcessing LLC; Owensboro, KY USA
| | | | | | - Rachel Chikwamba
- Council for Scientific and Industrial Research; Pretoria, South Africa
| | - Gregory P Pogue
- Kentucky BioProcessing LLC; Owensboro, KY USA; IC2 Institute; The University of Texas at Austin; Austin, TX USA
| | | | - Hugh Haydon
- Kentucky BioProcessing LLC; Owensboro, KY USA
| | | | | |
Collapse
|
31
|
Wang JW, Roden RBS. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 2013; 12:129-41. [PMID: 23414405 DOI: 10.1586/erv.12.151] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As compared with peptide- or protein-based vaccines, naked DNA vectors and even traditional attenuated or inactivated virus vaccines, virus-like particles (VLPs) are an attractive vaccine platform, as they offer a combination of safety, ease of production and both high-density B-cell epitope display and intracellular presentation of T-cell epitopes that induce potent humoral and cellular immune responses, respectively. Indeed, HPV vaccines based on VLP production by recombinant expression of major capsid antigen L1 in yeast (Gardasil(®), Merck & Co., NJ, USA) or insect cells (Cervarix(®), GlaxoSmithKline, London, UK) have been licensed for the prevention of cervical and anogenital infection and disease associated with the genotypes targeted by each vaccine. However, these HPV vaccines have not been demonstrated as effective to treat existing infections, and efforts to develop a therapeutic HPV vaccine continue. Furthermore, current HPV L1-VLP vaccines provide type-restricted protection, requiring highly multivalent formulations to broaden coverage to the dozen or more oncogenic HPV genotypes. This raises the complexity and cost of vaccine production. The lack of access to screening and high disease burden in developing countries has spurred efforts to develop second-generation HPV vaccines that are more affordable, induce wider protective coverage and offer therapeutic coverage against HPV-associated malignancies. Given the previous success with L1-VLP-based vaccines against HPV, VLPs have been also adopted as platforms for many second-generation HPV and non-HPV vaccine candidates with both prophylactic and therapeutic intent. In this article, the authors examine the progress and challenges of these efforts, with a focus on how they inform VLP vaccine design.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287-0014, USA
| | | |
Collapse
|
32
|
Zeitler B, Bernhard A, Meyer H, Sattler M, Koop HU, Lindermayr C. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2013; 81:259-72. [PMID: 23242916 DOI: 10.1007/s11103-012-9996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Antimicrobial peptides are important defense compounds of higher organisms that can be used as therapeutic agents against bacterial and/or viral infections. We designed several antimicrobial peptides containing hydrophobic and positively charged clusters that are active against plant and human pathogens. Especially peptide SP1-1 is highly active with a MIC value of 0.1 μg/ml against Xanthomonas vesicatoria, Pseudomonas corrugata and Pseudomonas syringae pv syringae. However, for commercial applications high amounts of peptide are necessary. The synthetic production of peptides is still quite expensive and, depending on the physico-chemical features, difficult. Therefore we developed a plant/tobacco mosaic virus-based production system following the 'full virus vector strategy' with the viral coat protein as fusion partner for the designed antimicrobial peptide. Infection of Nicotiana benthamiana plants with such recombinant virus resulted in production of huge amounts of virus particles presenting the peptides all over their surface. After extraction of recombinant virions, peptides were released from the coat protein by chemical cleavage. A protocol for purification of the antimicrobial peptides using high resolution chromatographic methods has been established. Finally, we yielded up to 0.025 mg of peptide per g of infected leaf biomass. Mass spectrometric and NMR analysis revealed that the in planta produced peptide differs from the synthetic version only in missing of N-terminal amidation. But its antimicrobial activity was in the range of the synthetic one. Taken together, we developed a protocol for plant-based production and purification of biologically active, hydrophobic and positively charged antimicrobial peptide.
Collapse
Affiliation(s)
- Benjamin Zeitler
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Munich, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
35
|
Govan VA. A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil). Ther Clin Risk Manag 2011; 4:65-70. [PMID: 18728721 PMCID: PMC2503667 DOI: 10.2147/tcrm.s856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are one of the most common sexually transmitted infections and remains a public health problem worldwide. There is strong evidence that HPV causes cervical, vulva and vaginal cancers, genital warts and recurrent respiratory papillomatosis. The current treatments for HPV-induced infections are ineffective and recurrence is common-place. Therefore, to reduce the burden of HPV-induced infections, several studies have investigated the effi cacy of different prophylactic vaccines in clinical human trials directed against HPV types 6, 11, 16, or 18. Notably, these HPV types contribute to a signifi cant proportion of disease worldwide. This review will focus on the published results of Merck & Co’s prophylactic quadrivalent recombinant vaccine targeting HPV types 6, 11, 16, and 18 (referred to as Gardasil®). Data from the Phase III trial demonstrated that Gardasil was 100% effi cacious in preventing precancerous lesions of the cervix, vulva, and vagina and effective against genital warts. Due to the success of these human clinical trials, the FDA approved the registration of Gardasil on the 8 June 2006. In addition, since Gardasil has been effi cacious for 5 years post vaccination, the longest evaluation of an HPV vaccine, it is expected to reduce the incidence of these type specifi c HPV-induced diseases in the future.
Collapse
Affiliation(s)
- Vandana A Govan
- Division of Medical Virology, Department of Clinical Laboratory Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Observatory, Cape Town, South Africa
| |
Collapse
|
36
|
Li M, Li P, Song R, Xu Z. An induced hypersensitive-like response limits expression of foreign peptides via a recombinant TMV-based vector in a susceptible tobacco. PLoS One 2010; 5:e15087. [PMID: 21124743 PMCID: PMC2993970 DOI: 10.1371/journal.pone.0015087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/19/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND By using tobacco mosaic virus (TMV)-based vectors, foreign epitopes of the VP1 protein from food-and-month disease virus (FMDV) could be fused near to the C-terminus of the TMV coat protein (CP) and expressed at high levels in susceptible tobacco plants. Previously, we have shown that the recombinant TMV vaccines displaying FMDV VP1 epitopes could generate protection in guinea pigs and swine against the FMDV challenge. Recently, some recombinant TMV, such as TMVFN20 that contains an epitope FN20 from the FMDV VP1, were found to induce local necrotic lesions (LNL) on the inoculated leaves of a susceptible tobacco, Nicotiana tabacum Samsun nn. This hypersensitive-like response (HLR) blocked amplification of recombinant TMVFN20 in tobacco and limited the utility of recombinant TMV vaccines against FMDV. METHODOLOGY/PRINCIPAL FINDINGS Here we investigate the molecular mechanism of the HLR in the susceptible Samsun nn. Histochemical staining analyses show that these LNL are similar to those induced in a resistant tobacco Samsun NN inoculated with wild type (wt) TMV. The recombinant CP subunits are specifically related to the HLR. Interestingly, this HLR in Samsun nn (lacking the N/N'-gene) was able to be induced by the recombinant TMV at both 25°C and 33°C, whereas the hypersensitive response (HR) in the resistant tobacco plants induced by wt TMV through the N/N'-gene pathways only at a permissive temperature (below 30°C). Furthermore, we reported for the first time that some of defense response (DR)-related genes in tobacco were transcriptionally upregulated during HLR. CONCLUSIONS Unlike HR, HLR is induced in the susceptible tobacco through N/N'-gene independent pathways. Induction of the HLR is associated with the expression of the recombinant CP subunits and upregulation of the DR-related genes.
Collapse
Affiliation(s)
- Mangmang Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengkai Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
37
|
Trastuzumab-binding peptide display by Tobacco mosaic virus. Virology 2010; 407:7-13. [PMID: 20801474 DOI: 10.1016/j.virol.2010.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 06/09/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022]
Abstract
Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.
Collapse
|
38
|
Rybicki EP. Plant-made vaccines for humans and animals. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:620-37. [PMID: 20233333 PMCID: PMC7167690 DOI: 10.1111/j.1467-7652.2010.00507.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 05/17/2023]
Abstract
The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents.
Collapse
Affiliation(s)
- Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa. ed.rybicki@ uct.ac.za
| |
Collapse
|
39
|
Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Garger SJ, White E, Bai Y, Haydon H, Bratcher B. Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:638-54. [PMID: 20514694 DOI: 10.1111/j.1467-7652.2009.00495.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants have been proposed as an attractive alternative for pharmaceutical protein production to current mammalian or microbial cell-based systems. Eukaryotic protein processing coupled with reduced production costs and low risk for mammalian pathogen contamination and other impurities have led many to predict that agricultural systems may offer the next wave for pharmaceutical product production. However, for this to become a reality, the quality of products produced at a relevant scale must equal or exceed the predetermined release criteria of identity, purity, potency and safety as required by pharmaceutical regulatory agencies. In this article, the ability of transient plant virus expression systems to produce a wide range of products at high purity and activity is reviewed. The production of different recombinant proteins is described along with comparisons with established standards, including high purity, specific activity and promising preclinical outcomes. Adaptation of transient plant virus systems to large-scale manufacturing formats required development of virus particle and Agrobacterium inoculation methods. One transient plant system case study illustrates the properties of greenhouse and field-produced recombinant aprotinin compared with an US Food and Drug Administration-approved pharmaceutical product and found them to be highly comparable in all properties evaluated. A second transient plant system case study demonstrates a fully functional monoclonal antibody conforming to release specifications. In conclusion, the production capacity of large quantities of recombinant protein offered by transient plant expression systems, coupled with robust downstream purification approaches, offers a promising solution to recombinant protein production that compares favourably to cell-based systems in scale, cost and quality.
Collapse
|
40
|
Caldeira JDC, Medford A, Kines RC, Lino CA, Schiller JT, Chackerian B, Peabody DS. Immunogenic display of diverse peptides, including a broadly cross-type neutralizing human papillomavirus L2 epitope, on virus-like particles of the RNA bacteriophage PP7. Vaccine 2010; 28:4384-93. [PMID: 20434554 DOI: 10.1016/j.vaccine.2010.04.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 12/27/2022]
Abstract
The immunogenicity of an antigen can be dramatically increased by displaying it in a dense, multivalent context, such as on the surface of a virus or virus-like particle (VLP). Here we describe a highly versatile VLP platform for peptide display based on VLPs of the RNA bacteriophage PP7. We show that this platform can be used for the engineered display of specific peptide sequences as well as for the construction of random peptide libraries. Peptides representing the FLAG epitope, the V3 loop of HIV gp120, and a broadly cross-type neutralizing epitope from L2, the minor capsid protein of Human Papillomavirus type 16 (HPV16), were inserted into an exposed surface loop of a form of PP7 coat protein in which the two identical polypeptides of coat were fused together to form a single-chain dimer. The recombinant proteins assembled into VLPs, displayed these peptides on their surfaces, and induced high-titer antibody responses. The single-chain dimer was also highly tolerant of random 6-, 8-, and 10-amino acid insertions. PP7 VLPs displaying the HPV16 L2 epitope generated robust anti-HPV16 L2 serum antibodies after intramuscular injection that protected mice from genital infection with HPV16 pseudovirus as well as a heterologous HPV pseudovirus type, HPV45. Thus, PP7 VLPs are well-suited for the display of a wide diversity of peptides in a highly immunogenic format.
Collapse
Affiliation(s)
- Jerri do Carmo Caldeira
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Christensen ND, Bounds CE. Cross-protective responses to human papillomavirus infection. Future Virol 2010. [DOI: 10.2217/fvl.10.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human papillomavirus (HPV) infections with oncogenic types account for approximately 500,000 deaths per year worldwide, predominantly in underdeveloped countries. The major cause of death is cervical cancer in women, but some additional cancers of the head and neck and anogenital sites also have an HPV etiology. Current virus-like particle-based vaccines are in clinical trials, and show very strong, long-lasting protection against vaccine-matched HPV types. These vaccines currently contain virus-like particles for the HPV types 6, 11, 16 and 18 (Gardasil®) and HPV16 and -18 (Cervarix®). Although type-specific neutralizing antibodies develop from immunizations with these virus-like particle vaccines, promising evidence for cross-protection against related but nonvaccine HPV types is emerging. Strategies to increase cross-protection to cover all oncogenic HPV types (currently approximately 20 types) are underway. These strategies include increasing the number of HPV types in the virus-like particle vaccine, and to the development of second-generation HPV vaccines that include the minor coat protein.
Collapse
Affiliation(s)
- ND Christensen
- Penn State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - CE Bounds
- Penn State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
42
|
Quantitation of cytokine mRNA by real-time RT-PCR during a vaccination trial in a rabbit model of fascioliasis. Vet Parasitol 2009; 169:82-92. [PMID: 20056331 DOI: 10.1016/j.vetpar.2009.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/11/2009] [Accepted: 12/11/2009] [Indexed: 11/23/2022]
Abstract
Use of the rabbit as disease model has long been hampered by a lack of immunological assays specific to this species. In the present study we developed a SYBR Green-based, real-time RT-PCR protocol to quantitate cytokine mRNA in freshly harvested rabbit peripheral mononuclear cells. The method was validated in the course of a vaccination trial in which animals vaccinated with the recombinant antigen FhSAP2 were challenged with Fasciola hepatica metacercariae. Changes in the levels of rabbit interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha (TNFalpha), and interferon-gamma (IFNgamma) mRNA were determined. Messenger RNA from the universally expressed housekeeping gene GAPDH was used as an amplification control and allowed for correction of variations in the efficiencies of RNA extraction and reverse transcription. Rabbits vaccinated with FhSAP2 showed an 83.3% reduction in liver fluke burden after challenge infection when compared to non-vaccinated controls. All cytokine mRNAs were found at detectable levels; however, the levels of IFNgamma, TNFalpha, IL-2 and IL-10 were significantly higher in the vaccinated group compared to the non-vaccinated group. These results suggest that protection conferred by FhSAP2 protein could be associated with a mixed Th1/Th2 immune response in which Th1 cytokines are dominant. The real-time RT-PCR method described herein can be a useful tool for monitoring changes in basic immune functions in the rabbit model of fascioliasis and may also aid in studies of human diseases for which the rabbit is an important experimental model.
Collapse
|
43
|
In silico DNA vaccine designing against human papillomavirus (HPV) causing cervical cancer. Vaccine 2009; 28:120-31. [DOI: 10.1016/j.vaccine.2009.09.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/17/2009] [Accepted: 09/22/2009] [Indexed: 12/15/2022]
|
44
|
Developing vaccines against minor capsid antigen L2 to prevent papillomavirus infection. Immunol Cell Biol 2009; 87:287-99. [PMID: 19421199 DOI: 10.1038/icb.2009.13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A subset of human papillomavirus (HPV) genotypes is responsible for approximately 5% of all cancer deaths globally, and uterine cervical carcinoma accounts for the majority of these cases. The impact of HPV is greatest for women who do not have access to effective secondary preventive measures, and consequently over 80% of cervical cancer deaths worldwide occur in developing nations. The understanding that persistent infection by this 'oncogenic' subset of HPV genotypes is necessary for the development of cervical carcinoma has driven the development of preventive vaccines. Two preventive vaccines comprising recombinant HPV L1 virus-like particles (VLPs) have been licensed. However, the current cost of these vaccines precludes sustained global delivery, and they target only two of the approximately 15 known oncogenic HPV types, although approximately 70% of cervical cancer cases are attributed to these two types and there is evidence for some degree of cross-protection against other closely related types. A possible approach to broader immunity at lower cost is to consider vaccination against L2. L2 vaccines can be produced inexpensively and they also have the promise of conferring much broader cross-type protective immunity than that observed with L1 VLP immunization. However, L2 vaccine development lags behind L1 VLP vaccines and several technical hurdles remain.
Collapse
|
45
|
Palmer KE, Jenson AB, Kouokam JC, Lasnik AB, Ghim SJ. Recombinant vaccines for the prevention of human papillomavirus infection and cervical cancer. Exp Mol Pathol 2009; 86:224-33. [DOI: 10.1016/j.yexmp.2009.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Indexed: 10/21/2022]
|
46
|
Jagu S, Karanam B, Gambhira R, Chivukula SV, Chaganti RJ, Lowy DR, Schiller JT, Roden RBS. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. J Natl Cancer Inst 2009; 101:782-92. [PMID: 19470949 PMCID: PMC2689872 DOI: 10.1093/jnci/djp106] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vaccination with minor capsid protein L2 induces antibodies that cross-neutralize diverse papillomavirus types. However, neutralizing antibody titers against the papillomavirus type from which the L2 vaccine was derived are generally higher than the titers against heterologous types, which could limit effectiveness against heterologous types. We hypothesized that vaccination with concatenated multitype L2 fusion proteins derived from known cross-protective epitopes of several divergent human papillomavirus (HPV) types might enhance immunity across clinically relevant HPV genotypes. METHODS Antibody responses of mice (n = 120) and rabbits (n = 23) to vaccination with HPV-16 amino-terminal L2 polypeptides or multitype L2 fusion proteins, namely, 11-200 x 3 (HPV types 6, 16, 18), 11-88 x 5 (HPV types 1, 5, 6, 16, 18), or 17-36 x 22 (five cutaneous, two mucosal low-risk, and 15 oncogenic types), that were formulated alone or in GPI-0100, alum, or 1018 ISS adjuvants were compared with vaccination with L1 virus-like particles (VLPs), including Gardasil, a licensed quadrivalent HPV L1 vaccine, and a negative control. Mice were challenged with HPV-16 pseudovirions 4 months after vaccination. Statistical tests were two-sided. RESULTS The HPV-16 L2 polypeptides generated robust HPV-16-neutralizing antibody responses, albeit lower than those to HPV-16 L1 VLPs, and lower responses against other HPVs. In contrast, vaccination with the multitype L2 fusion proteins 11-200 x 3 and 11-88 x 5 induced high serum neutralizing antibody titers against all heterologous HPVs tested. 11-200 x 3 formulated in GPI-0100 adjuvant or alum with 1018 ISS protected mice against HPV-16 challenge (reduction in HPV-16 infection vs phosphate-buffered saline control, P < .001) 4 months after vaccination as well as HPV-16 L1 VLPs, but 11-200 x 3 alone or formulated with either alum or 1018 ISS was less effective (reduction in HPV-16 infection, P < .001). CONCLUSION Concatenated multitype L2 proteins in adjuvant have potential as pan-oncogenic HPV vaccines.
Collapse
Affiliation(s)
- Subhashini Jagu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Karasev AV, Fitzmaurice WP, Turpen TH, Palmer KE. Display of peptides on the surface of tobacco mosaic virus particles. Curr Top Microbiol Immunol 2009; 332:13-31. [PMID: 19401819 PMCID: PMC7122513 DOI: 10.1007/978-3-540-70868-1_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this review, we focus on the potential that tobacco mosaic virus (TMV) has as a carrier for immunogenic epitopes, and the factors that must be considered in order to bring products based on this platform to the market. Large Scale Biology Corporation developed facile and scaleable methods for manufacture of candidate peptide display vaccines based on TMV. We describe how rational design of peptide vaccines can improve the manufacturability of particular TMV products. We also discuss downstream processing and purification of the vaccine products, with particular attention to the metrics that a product must attain in order to meet criteria for regulatory approval as injectable biologics.
Collapse
Affiliation(s)
- Alexander V. Karasev
- Department of Plant, Soil & Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 USA
| | | | | | | |
Collapse
|
48
|
Karanam B, Gambhira R, Peng S, Jagu S, Kim DJ, Ketner GW, Stern PL, Adams RJ, Roden RBS. Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine 2008; 27:1040-9. [PMID: 19095032 DOI: 10.1016/j.vaccine.2008.11.099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
A vaccine comprising human papillomavirus type 16 (HPV16) L2, E6 and E7 in a single tandem fusion protein (termed TA-CIN) has the potential advantages of both broad cross-protection against HPV transmission through induction of L2 antibodies able to cross neutralize different HPV types and of therapy by stimulating T cell responses targeting HPV16 early proteins. However, patients vaccinated with TA-CIN alone develop weak HPV neutralizing antibody and E6/E7-specific T cell responses. Here we test TA-CIN formulated along with the adjuvant GPI-0100, a semi-synthetic quillaja saponin analog that was developed to promote both humoral and cellular immune responses. Subcutaneous administration to mice of TA-CIN (20 microg) with 50microg GPI-0100, three times at biweekly intervals, elicited high titer HPV16 neutralizing serum antibody, robust neutralizing titers for other HPV16-related types, including HPV31 and HPV58, and neutralized to a lesser extent other genital mucosatropic papillomaviruses like HPV18, HPV45, HPV6 and HPV11. Notably, vaccination with TA-CIN in GPI-0100 protected mice from cutaneous HPV16 challenge as effectively as HPV16 L1 VLP without adjuvant. Formulation of TA-CIN with GPI-0100 enhanced the production of E7-specific, interferon gamma producing CD8(+) T cell precursors by 20-fold. Vaccination with TA-CIN in GPI-0100 also completely prevented tumor growth after challenge with 5x10(4) HPV16-transformed TC-1 tumor cells, whereas vaccination with TA-CIN alone delayed tumor growth. Furthermore, three monthly vaccinations with 125 microg of TA-CIN and 1000 microg GPI-0100 were well tolerated by pigtail macaques and induced both HPV16 E6/E7-specific T cell responses and serum antibodies that neutralized all HPV types tested.
Collapse
|
49
|
Schroeder U, Graff A, Buchmeier S, Rigler P, Silvan U, Tropel D, Jockusch BM, Aebi U, Burkhard P, Schoenenberger CA. Peptide nanoparticles serve as a powerful platform for the immunogenic display of poorly antigenic actin determinants. J Mol Biol 2008; 386:1368-81. [PMID: 19063898 DOI: 10.1016/j.jmb.2008.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/14/2008] [Accepted: 11/15/2008] [Indexed: 11/19/2022]
Abstract
The role of actin in transcription and RNA processing is now widely accepted but the form of nuclear actin remains enigmatic. Monomeric, oligomeric or polymeric forms of actin seem to be involved in nuclear functions. Moreover, uncommon forms of actin such as the "lower dimer" have been observed in vitro. Antibodies have been pivotal in revealing the presence and distribution of different forms of actin in different cellular locations. Because of its high degree of conservation, actin is a poor immunogen and only few specific actin antibodies are available. To unravel the mystery of less common forms of actin, in particular those in the nucleus, we chose to tailor monoclonal antibodies to recognize distinct forms of actin. To increase the immune response, we used a new approach based on peptide nanoparticles, which are designed to mimic an icosahedral virus capsid and allow the repetitive, ordered display of a specific epitope on their surface. Actin sequences representing the highly conserved "hydrophobic loop," which is buried in the filamentous actin filament, were grafted onto the surface of nanoparticles by genetic engineering. After immunization with "loop nanoparticles," a number of monoclonal antibodies were established that bind to the hydrophobic loop both in vitro and in situ. Immunofluorescence studies on cells revealed that filamentous actin filaments were only labeled once the epitope had been exposed. Our studies indicate that self-assembling peptide nanoparticles represent a versatile platform that can easily be customized to present antigenic determinants in repetitive, ordered arrays and elicit an immune response against poor antigens.
Collapse
Affiliation(s)
- Ulrich Schroeder
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Plant-produced vaccines: promise and reality. Drug Discov Today 2008; 14:16-24. [PMID: 18983932 DOI: 10.1016/j.drudis.2008.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/21/2022]
Abstract
Plant-produced vaccines are a much-hyped development of the past two decades, whose time to embrace reality may have finally come. Vaccines have been developed against viral, bacterial, parasite and allergenic antigens, for humans and for animals; a wide variety of plants have been used for stable transgenic expression as well as for transient expression via Agrobacterium tumefaciens and plant viral vectors. A great many products have shown significant immunogenicity; several have shown efficacy in target animals or in animal models. The realised potential of plant-produced vaccines is discussed, together with future prospects for production and registration.
Collapse
|