1
|
O’Brien A, Hayton A, Cutler K, Adler A, Shaw DJ, Clarke J, Watt N, Harkiss GD. Diagnostic accuracy of the Enferplex Bovine TB antibody test using individual milk samples from cattle. PLoS One 2024; 19:e0301609. [PMID: 38687765 PMCID: PMC11060599 DOI: 10.1371/journal.pone.0301609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine tuberculosis is usually diagnosed using tuberculin skin tests or at post-mortem. Recently, we have developed a serological test for bovine tuberculosis in cattle which shows a high degree of accuracy using serum samples. Here, we have assessed the performance of the test using individual bovine milk samples. The diagnostic specificity estimate using the high sensitivity setting of the test was 99.7% (95% CI: 99.2-99.9). This estimate was not altered significantly by tuberculin boosting. The relative sensitivity estimates of the test using the high sensitivity setting in milk samples from comparative skin test positive animals was 90.8% (95% CI: 87.1-93.6) with boosting. In animals with lesions, the relative sensitivity was 96.0% (95% CI: 89.6-98.7). Analysis of paired serum and milk samples from skin test positive animals showed correlation coefficients ranging from 0.756-0.955 for individual antigens used in the test. Kappa analysis indicated almost perfect agreement between serum and milk results, while McNemar marginal homogeneity analysis showed no statistically significant differences between the two media. The positive and negative likelihood ratio were 347.8 (95% CI: 112.3-1077.5) and 0.092 (95% CI: 0.07-0.13) respectively for boosted samples from skin test positive animals. The results show that the test has high sensitivity and specificity in individual milk samples and thus milk samples could be used for the diagnosis of bovine tuberculosis.
Collapse
Affiliation(s)
| | | | - Keith Cutler
- Synergy Farm Health, Maiden Newton, Dorset, United Kingdom
| | - Andy Adler
- Synergy Farm Health, Maiden Newton, Dorset, United Kingdom
| | - Darren J. Shaw
- Royal (Dick) School of Veterinary Studies & The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John Clarke
- Enfer Scientific, Naas, County Kildare, Ireland
| | - Neil Watt
- MV Diagnostics Ltd, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Gordon D. Harkiss
- MV Diagnostics Ltd, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Diagnostic accuracy of the Enferplex Bovine Tuberculosis antibody test in cattle sera. Sci Rep 2023; 13:1875. [PMID: 36726018 PMCID: PMC9892036 DOI: 10.1038/s41598-023-28410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Bovine tuberculosis is a contagious bacterial disease of worldwide economic, zoonotic and welfare importance caused mainly by Mycobacterium bovis infection. Current regulatory diagnostic methods lack sensitivity and require improvement. We have developed a multiplex serological test for bovine tuberculosis and here we provide an estimate of the diagnostic accuracy of the test in cattle. Positive and negative reference serum samples were obtained from animals from Europe and the United States of America. The diagnostic specificity estimate was 98.4% and 99.7% using high sensitivity and high specificity settings of the test respectively. Tuberculin boosting did not affect the overall specificity estimate. The diagnostic sensitivity in samples from Mycobacterium bovis culture positive animals following tuberculin boosting was 93.9%.The relative sensitivity following boosting in tuberculin test positive, lesion positive animals and interferon gamma test positive, lesion positive animals was 97.2% and 96.9% respectively. In tuberculin test negative, lesion positive animals and in interferon gamma test negative, lesion positive animals, the relative sensitivity following tuberculin boosting was 88.2% and 83.6% respectively. The results show that the test has high diagnostic sensitivity and specificity and can detect infected animals that are missed by tuberculin and interferon gamma testing.
Collapse
|
3
|
Dean GS, Clifford D, Whelan AO, Tchilian EZ, Beverley PCL, Salguero FJ, Xing Z, Vordermeier HM, Villarreal-Ramos B. Protection Induced by Simultaneous Subcutaneous and Endobronchial Vaccination with BCG/BCG and BCG/Adenovirus Expressing Antigen 85A against Mycobacterium bovis in Cattle. PLoS One 2015; 10:e0142270. [PMID: 26544594 PMCID: PMC4636221 DOI: 10.1371/journal.pone.0142270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
The incidence of bovine tuberculosis (bTB) in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission.
Collapse
Affiliation(s)
- Gillian S. Dean
- TB Research Group, APHA Weybridge, Woodham Lane, New Haw, KT15 3NB, Surrey, United Kingdom
| | - Derek Clifford
- TB Research Group, APHA Weybridge, Woodham Lane, New Haw, KT15 3NB, Surrey, United Kingdom
| | - Adam O. Whelan
- TB Research Group, APHA Weybridge, Woodham Lane, New Haw, KT15 3NB, Surrey, United Kingdom
| | - Elma Z. Tchilian
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Peter C. L. Beverley
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Francisco J. Salguero
- TB Research Group, APHA Weybridge, Woodham Lane, New Haw, KT15 3NB, Surrey, United Kingdom
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hans M. Vordermeier
- TB Research Group, APHA Weybridge, Woodham Lane, New Haw, KT15 3NB, Surrey, United Kingdom
| | | |
Collapse
|
4
|
Dean G, Whelan A, Clifford D, Salguero F, Xing Z, Gilbert S, McShane H, Hewinson R, Vordermeier M, Villarreal-Ramos B. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines. Vaccine 2014; 32:1304-10. [DOI: 10.1016/j.vaccine.2013.11.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
|
5
|
Dean G, Clifford D, Gilbert S, McShane H, Hewinson RG, Vordermeier HM, Villarreal-Ramos B. Effect of dose and route of immunisation on the immune response induced in cattle by heterologous Bacille Calmette-Guerin priming and recombinant adenoviral vector boosting. Vet Immunol Immunopathol 2014; 158:208-13. [PMID: 24581917 DOI: 10.1016/j.vetimm.2014.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/21/2014] [Indexed: 11/29/2022]
Abstract
BCG is used experimentally as a vaccine against tuberculosis (TB), induced by Mycobacterium bovis, in cattle (bTB). However, the efficacy of BCG is variable in humans, cattle and guinea pigs. An adenoviral vector expressing Antigen 85A (Ad5Ag85A) has enhanced protection against TB in mice when used in combination with BCG for prime-boost experiments. However, the route of immunisation affects the degree of protection seen. This work examines the immunogenicity of a new vectored vaccine (Ad5-TBF) that expresses Ag85A, Rv0287, Rv0288 and Rv0251c to explore the effects of dose of adenoviral boost and route of inoculation on immunogenicity. We found that 2×10(9) infectious units (iu) delivered intradermally conferred the most consistent and strongest responses of the different regimes tested.
Collapse
Affiliation(s)
- G Dean
- Bovine TB, AHVLA-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - D Clifford
- Bovine TB, AHVLA-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - S Gilbert
- The Jenner Institute Old Road Campus Research Building Oxford University, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - H McShane
- The Jenner Institute Old Road Campus Research Building Oxford University, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - R G Hewinson
- Bovine TB, AHVLA-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - H M Vordermeier
- Bovine TB, AHVLA-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | |
Collapse
|
6
|
Whelan A, Court P, Xing Z, Clifford D, Hogarth PJ, Vordermeier M, Villarreal-Ramos B. Immunogenicity comparison of the intradermal or endobronchial boosting of BCG vaccinates with Ad5-85A. Vaccine 2012; 30:6294-300. [PMID: 22885013 DOI: 10.1016/j.vaccine.2012.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/10/2012] [Accepted: 07/31/2012] [Indexed: 11/18/2022]
Abstract
Experiments in small animal models have indicated that intranasal vaccination confers a greater degree of protection against TB than other routes such as intradermal (i.d.) or intramuscular. In this work, using a prime-boost vaccination strategy, we have compared in cattle vaccinated with BCG as a priming vaccine the boosting capabilities of Ad5-85A delivered either via the endobronchial (e.b.) or i.d. route. We show that Ad5-85A delivered through either route induced comparable peripheral blood antigen specific responses, and that both i.d. and e.b. routes induced bronchioalveolar lavage cells (BALC) that produced antigen-specific IFNgamma. We also show that, regardless of the route of boosting, the kinetics of peripheral blood and BALC responses, as assessed by antigen specific IFNgamma production, are different with systemic responses being detectable earlier than mucosal responses. These results contribute to our understanding on how different vaccination strategies may affect different compartments of the immune response and in turn to the development of safer and more effective vaccines.
Collapse
Affiliation(s)
- Adam Whelan
- TB Research Group, Animal Health and Veterinary Laboratories Agency, Weybridge, Surrey KT 15 3NB, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Hogg AE, Worth A, Beverley P, Howard CJ, Villarreal-Ramos B. The antigen-specific memory CD8+ T-cell response induced by BCG in cattle resides in the CD8+gamma/deltaTCR-CD45RO+ T-cell population. Vaccine 2008; 27:270-9. [PMID: 18996428 DOI: 10.1016/j.vaccine.2008.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/03/2008] [Accepted: 10/12/2008] [Indexed: 01/11/2023]
Abstract
Tuberculosis (TB) remains a worldwide leading cause of death among infectious diseases. Development of safer and more efficacious vaccines requires a basic understanding of the protective mechanisms induced by BCG. Here we show that vaccination of cattle with BCG induces CD8+gamma/deltaTCR-CD45RO+ T-cells that can produce IFN-gamma, up-regulate transcription and expression of perforin, lyse BCG-infected monocyte-derived macrophages (MoMvarphi) and contribute to a reduction in the number of intracellular mycobacteria. We also observed BCG-induced CD8+ responses in vivo. After infection of cattle with Mycobacterium bovis, CD8+gamma/deltaTCR-CD45RO+ cells responded more strongly to M. bovis-infected MoMvarphi than to BCG-infected MoMvarphi. These results indicate that the antigen-specific CD8+ memory response resides in the CD8+gamma/deltaTCR-CD45RO+ cell population.
Collapse
Affiliation(s)
- Alison E Hogg
- Institute for Animal Health, Compton, Nr. Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | |
Collapse
|
8
|
Chang-hong S, Xiao-wu W, Hai Z, Ting-fen Z, Li-Mei W, Zhi-kai X. Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis. DNA Cell Biol 2008; 27:199-207. [PMID: 18163878 DOI: 10.1089/dna.2007.0648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Genetic immunity is a new promising approach for the development of novel tuberculosis vaccines. In this study, it is shown that DNA vaccines expressing the fusion protein of antigen 85B (Ag85B) and early secreted antigenic target 6-kDa antigen (ESAT6) can induce high levels of specific IgG2a antibody subtype in the mice. With the prolongation of postimmunization time, the levels of IgG2a antibody decrease gradually. Although a high-level specific IgG2a antibody subtype is also elicited by classical BCG, the ratio of antibody subtypes IgG2a to IgG1 changes 4 weeks after immunization, and IgG1 is gradually shifted to the main antibody subtype. DNA vaccines also elicit cellular immunity as shown by specific spleen lymphocytes proliferation to Ag85B or ESAT6 protein and the production of high levels of IFN-gamma and IL-2, which is similar to that elicited by BCG. Vaccination of mice with DNA vaccines expressing the fusion protein Ag85B-ESAT6 results in a significant level of protection against the subsequent high-dose challenge with virulent Mycobacterium tuberculosis (MTB) H37Rv. Dramatic reduction in the number of MTB colony-forming units in the spleens and lungs is observed. Pathological examination showed that recombinant plasmid and BCG groups have only minor damage and organizational structures that are kept relatively complete, while in the control group, spleens and lungs are damaged seriously. Therefore, although the reducing degree of mycobacterial loads in the organ of mice immunized with recombinant plasmid is not more than that of BCG, through the analysis of pathological changes, we may conclude that the protective effect provided by DNA vaccine expressing the Ag85B-ESAT6 fusion protein is equivalent to that afforded by the classical BCG.
Collapse
Affiliation(s)
- Shi Chang-hong
- Lab Animal Center, The Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | |
Collapse
|