1
|
Lu S, Ma B, Zhou H, Li Y, Qiao Z, Xiao T, Li H, Wang B, Cui M, Zhang S, Chang J, Du T, Liu J, Wang H. Smartphone recognition-based immune microparticles for rapid on-site visual data-sharing detection of Newcastle disease virus. Talanta 2023; 252:123845. [DOI: 10.1016/j.talanta.2022.123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
2
|
Wang L, Mi S, Madera R, Li Y, Gong W, Tu C, Shi J. A Novel Competitive ELISA for Specifically Measuring and Differentiating Immune Responses to Classical Swine Fever C-Strain Vaccine in Pigs. Viruses 2022; 14:1544. [PMID: 35891524 PMCID: PMC9315997 DOI: 10.3390/v14071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever can be controlled effectively by vaccination with C-strain vaccine. In this study, we developed a novel competitive enzyme-linked immunosorbent assay (cELISA) based on a C-strain Erns specific monoclonal antibody (mAb 1504), aiming to serologically measure immune responses to C-strain vaccine in pigs, and finally to make the C-strain become a DIVA-compatible vaccine. The cELISA system was established based on the strategy that mAb 1504 will compete with the C-strain induced antibodies in the pig serum to bind the C-strain Erns protein. The cELISA was optimized and was further evaluated by testing different categories of pig sera. It can efficiently differentiate C-strain immunized from wild-type CSFV-infected pigs and lacks cross-reaction with other common swine viruses and viruses in genus Pestivirus such as Bovine viral diarrhea virus (BVDV). The C-strain antibody can be tested in pigs 7-14 days post vaccination with this cELISA. The sensitivity and specificity of the established cELISA were 100% (95% confidence interval: 95.60 to 100%) and 100% (95% confidence interval: 98.30 to 100%), respectively. This novel cELISA is a reliable tool for specifically measuring and differentiating immune responses to C-strain vaccine in pigs. By combining with the wild-type CSFV-specific infection tests, it can make the C-strain have DIVA capability.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Shijiang Mi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Yuzhen Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Wenjie Gong
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
| | - Changchun Tu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| |
Collapse
|
3
|
Cao Y, Yuan L, Yang S, Shang Y, Yang B, Jing Z, Guo H, Yin S. Establishment and application of a solid-phase blocking ELISA method for the detection of antibodies against classical swine fever virus. J Vet Sci 2022; 23:e32. [PMID: 36174976 PMCID: PMC9523335 DOI: 10.4142/jvs.21262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yuying Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Li Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Shuanghui Yin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
4
|
Bai Y, Jia R, Wei Q, Wang L, Sun Y, Li Y, Luo J, Zhang G. Development and application of a high-sensitivity immunochromatographic test strip for detecting classical swine fever virus antibodies. Transbound Emerg Dis 2021; 69:e788-e798. [PMID: 34724351 DOI: 10.1111/tbed.14367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Classical swine fever (CSF) is caused by classical swine fever virus (CSFV) and has led to huge economic losses in the pig industry worldwide. Although vaccination and other control measures have been carried out, it is essential to establish a rapid and valid method for CSF vaccination monitoring and clinical diagnosis. The CSFV E2 protein has been widely used as a major antigen for antibody detection. It is important to improve the affinity between the E2 protein and CSFV antibodies to improve the performance of the detection method. In this study, a recombinant E2 extracellular protein (amino acids 1-331) with a native homodimer conformation and high affinity for the anti-CSFV-E2 monoclonal antibody WH303 was expressed using a Bac-to-Bac baculovirus expression system. A novel immunochromatographic test strip based on the recombinant CSFV E2 protein was developed for CSFV antibody detection. The sensitivity of this strip for detecting CSFV standard-positive serum was 1:102400, 4 times higher than that of the previously developed CnC2 test strip. No cross-reactivity with antibodies of other swine viruses was observed. Detection of clinical swine serum samples (n = 813) demonstrated that the agreements of this E2 test strip with three commercial ELISA kits were 97.17% (790/813), 95.94% (780/813), and 93.73% (762/813), respectively. Our data indicate that a novel E2 test strip with enhanced sensitivity has been developed and can be applied for clinical sample detection, providing a new, powerful and simple approach for CSFV antibody monitoring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.,Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Rui Jia
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Li Wang
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Yaning Sun
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Yiwei Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
5
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
6
|
Prevalence of Linda Virus Neutralizing Antibodies in the Austrian Pig Population. Viruses 2021; 13:v13061001. [PMID: 34071946 PMCID: PMC8229103 DOI: 10.3390/v13061001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
A novel pestivirus species, termed Lateral-shaking Inducing Neuro-Degenerative Agent virus (LindaV), was discovered in a piglet-producing farm in Austria in 2015 related to severe congenital tremor cases. Since the initial outbreak LindaV has not been found anywhere else. In this study, we determined the seroprevalence of LindaV infections in the domestic pig population of Austria. A fluorophore labeled infectious cDNA clone of LindaV (mCherry-LindaV) was generated and used in serum virus neutralization (SVN) assays for the detection of LindaV specific neutralizing antibodies in porcine serum samples. In total, 637 sera from sows and gilts from five federal states of Austria, collected between the years 2015 and 2020, were analyzed. We identified a single serum showing a high neutralizing antibody titer, that originated from a farm (Farm S2) in the proximity of the initially affected farm. The analysis of 57 additional sera from Farm S2 revealed a wider spread of LindaV in this pig herd. Furthermore, a second LindaV strain originating from this farm could be isolated in cell culture and was further characterized at the genetic level. Possible transmission routes and virus reservoir hosts of this emerging porcine virus need to be addressed in future studies.
Collapse
|
7
|
Wang L, Madera R, Li Y, McVey DS, Drolet BS, Shi J. Recent Advances in the Diagnosis of Classical Swine Fever and Future Perspectives. Pathogens 2020; 9:pathogens9080658. [PMID: 32824178 PMCID: PMC7460108 DOI: 10.3390/pathogens9080658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious viral disease of pigs, including wild boar. It is regarded as one of the major problems in the pig industry as it is still endemic in many regions of the world and has the potential to cause devastating epidemics, particularly in countries free of the disease. Rapid and reliable diagnosis is of utmost importance in the control of CSF. Since clinical presentations of CSF are highly variable and may be confused with other viral diseases in pigs, laboratory diagnosis is indispensable for an unambiguous diagnosis. On an international level, well-established diagnostic tests of CSF such as virus isolation, fluorescent antibody test (FAT), antigen capture antibody enzyme-linked immunosorbent assay (ELISA), reverse-transcription polymerase chain reaction (RT-PCR), virus neutralization test (VNT), and antibody ELISA have been described in detail in the OIE Terrestrial Manual. However, improved CSF diagnostic methods or alternatives based on modern technologies have been developed in recent years. This review thus presents recent advances in the diagnosis of CSF and future perspectives.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-785-532-4397 (L.W.); +1-785-532-4506 (J.S.)
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Yuzhen Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - David Scott McVey
- United States Department of Agriculture, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA; (D.S.M.); (B.S.D.)
| | - Barbara S. Drolet
- United States Department of Agriculture, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA; (D.S.M.); (B.S.D.)
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-785-532-4397 (L.W.); +1-785-532-4506 (J.S.)
| |
Collapse
|
8
|
Tetsuo M, Matsuno K, Tamura T, Fukuhara T, Kim T, Okamatsu M, Tautz N, Matsuura Y, Sakoda Y. Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens 2020; 9:E188. [PMID: 32143534 PMCID: PMC7157198 DOI: 10.3390/pathogens9030188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
A serum neutralization test (SNT) is an essential method for the serological diagnosis of pestivirus infections, including classical swine fever, because of the cross reactivity of antibodies against pestiviruses and the non-quantitative properties of antibodies in an enzyme-linked immunosorbent assay. In conventional SNTs, an immunoperoxidase assay or observation of cytopathic effect after incubation for 3 to 7 days is needed to determine the SNT titer, which requires labor-intensive or time-consuming procedures. Therefore, a new SNT, based on the luciferase system and using classical swine fever virus, bovine viral diarrhea virus, and border disease virus possessing the 11-amino-acid subunit derived from NanoLuc luciferase was developed and evaluated; this approach enabled the rapid and easy determination of the SNT titer using a luminometer. In the new method, SNT titers can be determined tentatively at 2 days post-infection (dpi) and are comparable to those obtained by conventional SNTs at 3 or 4 dpi. In conclusion, the luciferase-based SNT can replace conventional SNTs as a high-throughput antibody test for pestivirus infections.
Collapse
Affiliation(s)
- Madoka Tetsuo
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Keita Matsuno
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
| | - Taksoo Kim
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, D-23562 Lübeck, Germany;
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
9
|
Gao F, Jiang Y, Li G, Zhou Y, Yu L, Li L, Tong W, Zheng H, Zhang Y, Yu H, Shan T, Yang S, Liu H, Zhao K, Tong G. Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV. Vaccine 2018; 36:3269-3277. [PMID: 29724508 DOI: 10.1016/j.vaccine.2018.04.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and classical swine fever (CSF) are economically significant diseases that affect the swine industry worldwide. However, the current vaccination strategy, which uses two single live attenuated vaccines, can result in interference for each other. In addition, the universally used CSFV vaccine C-strain does not allow for differentiation of infected and vaccinated animals. In this study, rPRRSV-E2, PRRS virus (PRRSV) expressing CSF virus (CSFV) E2, was constructed by reverse genetics. The E2 gene of CSFV was inserted between ORF1b and ORF2 in the genome of the PRRS vaccine virus, HuN4-F112. A copy of transcriptional regulatory sequence 6 was inserted at the 3' terminal of the exogenous gene to produce CSFV E2 as a unique subgenomic mRNA transcript. The rPRRSV-E2 was stable for at least 25 serial cell passages. Single-shot intramuscular immunization of rPRRSV-E2 into pigs induced PRRSV-specific and CSFV-specific antibodies and fully protected pigs from lethal challenge with highly-pathogenic PRRSV and CSFV. These results demonstrate that a novel strategy for recombinant PRRSV production is effective, and suggest that rPRRSV-E2 is a promising live, virus-vectored vaccine against PRRS and a marker vaccine against CSF.
Collapse
Affiliation(s)
- Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tongling Shan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shen Yang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Huan Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
10
|
Brown VR, Bevins SN. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front Vet Sci 2018; 5:31. [PMID: 29556501 PMCID: PMC5844918 DOI: 10.3389/fvets.2018.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever (CSF) is caused by CSF virus (CSFV) which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal) and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable.
Collapse
Affiliation(s)
- Vienna R Brown
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Sarah N Bevins
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| |
Collapse
|
11
|
Wang C, Li S, Jia H, Chen G, Fang Y, Zeng S, He X, Yao W, Jin Q, Cheng W, Feng Y, Yin H, Jing Z. Monoclonal and oligoclonal TCR AV and BV gene usage in CD4 + T cells from pigs immunised with C-strain CSFV vaccine. Sci Rep 2018; 8:1655. [PMID: 29374266 PMCID: PMC5786037 DOI: 10.1038/s41598-018-19974-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/05/2018] [Indexed: 11/23/2022] Open
Abstract
The classical swine fever virus C-strain vaccine (C-strain vaccine) plays a vital role in preventing and controlling the spread of classical swine fever (CSF). However, the protective mechanisms of C-strain vaccine and cellular immunity conferred by T cell receptors (TCRs) are less well defined. We aimed to analyse the association between the complementarity determining region 3 (CDR3) spectratype of αβTCR in CD4+ T cells and C-strain vaccine; and to find conserved CDR3 amino acid motifs in specific TCR α- and β-chains. We found that the CDR3 spectratype showed dynamic changes correlating with C-strain vaccine immunisation and that TCR AV5S/8–3S/8–4S/14/38 and BV4S/6S/7S/15S/30 gene families showed clonal expansion in immunised pigs. The sequences of CDR3 from these clonally expanded T cells indicated a high frequency of the ‘KLX’ motif in the TCR α chain and the ‘GGX’ motif in β chain, and Jα39, Jα43, Jβ2.5 and Jβ2.3 genes were also found in high frequency. To the best of our knowledge, this is the first report describing the dynamic changes of αβTCRs and conserved CDR3 amino acid motifs in CD4+ T cells from C-strain vaccine-immunised pigs, which will provide a basis for the development of high-efficiency epitope vaccines.
Collapse
Affiliation(s)
- Chunyan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Shoujie Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Shuang Zeng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Wenjuan Yao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.
| |
Collapse
|
12
|
Schulz K, Staubach C, Blome S. African and classical swine fever: similarities, differences and epidemiological consequences. Vet Res 2017; 48:84. [PMID: 29183365 PMCID: PMC5706370 DOI: 10.1186/s13567-017-0490-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
For the global pig industry, classical (CSF) and African swine fever (ASF) outbreaks are a constantly feared threat. Except for Sardinia, ASF was eradicated in Europe in the late 1990s, which led to a research focus on CSF because this disease continued to be present. However, ASF remerged in eastern Europe in 2007 and the interest in the disease, its control and epidemiology increased tremendously. The similar names and the same susceptible species suggest a similarity of the two viral diseases, a related biological behaviour and, correspondingly, similar epidemiological features. However, there are several essential differences between both diseases, which need to be considered for the design of control or preventive measures. In the present review, we aimed to collate differences and similarities of the two diseases that impact epidemiology and thus the necessary control actions. Our objective was to discuss critically, if and to which extent the current knowledge can be transferred from one disease to the other and where new findings should lead to a critical review of measures relating to the prevention, control and surveillance of ASF and CSF. Another intention was to identify research gaps, which need to be closed to increase the chances of a successful eradication of ASF and therefore for a decrease of the economic threat for pig holdings and the international trade.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| |
Collapse
|
13
|
Guo X, Sang S, Guo J, Jian A, Duan Q, Ji J, Zhang Q, Zhang W. A magnetoelastic biosensor based on E2 glycoprotein for wireless detection of classical swine fever virus E2 antibody. Sci Rep 2017; 7:15626. [PMID: 29142249 PMCID: PMC5688166 DOI: 10.1038/s41598-017-15908-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
A wireless magnetoelastic (ME) biosensor immobilized with E2 glycoprotein was first developed to detect classical swine fever virus (CSFV) E2 antibody. The detection principle is that a sandwich complex of CSFV E2 - rabbit anti-CSFV E2 antibody - alkaline phosphatase (AP) conjugated goat anti-rabbit IgG formed on the ME sensor surface, with biocatalytic precipitation used to amplify the mass change of antigen-antibody specific binding reaction, induces a significant change in resonance frequency of the biosensor. Due to its magnetostrictive feature, the resonance vibrations and resonance frequency can be actuated and wirelessly monitored through magnetic fields. The experimental results show that resonance frequency shift increases with the augmentation of the CSFV E2 antibody concentration. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and fluorescence microscopy analysis proved that the modification and detection process were successful. The biosensor shows a linear response to the logarithm of CSFV E2 antibody concentrations ranging from 5 ng/mL to 10 μg/mL, with a detection limit (LOD) of 2.466 ng/mL and the sensitivity of 56.2 Hz/μg·mL-1. The study provides a low-cost yet highly-sensitive and wireless method for selective detection of CSFV E2 antibody.
Collapse
Affiliation(s)
- Xing Guo
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Shengbo Sang
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Jinyu Guo
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Aoqun Jian
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Qianqian Duan
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Jianlong Ji
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Qiang Zhang
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Wendong Zhang
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| |
Collapse
|
14
|
Li W, Mao L, Cao Y, Zhou B, Yang L, Han L, Hao F, Lin T, Zhang W, Jiang J. Porcine Viperin protein inhibits the replication of classical swine fever virus (CSFV) in vitro. Virol J 2017; 14:202. [PMID: 29061156 PMCID: PMC5654138 DOI: 10.1186/s12985-017-0868-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Classical swine fever virus (CSFV) is the causative pathogen of Classical swine fever (CSF), a highly contagious disease of swine. Viperin is one of the hundreds of interferon-stimulated genes (ISGs), and possesses a wide range of antiviral activities. The aim of this study was to explore whether porcine Viperin has the anti-CSFV activity. Method The influences of CSFV infection on Viperin expression and Newcastle disease virus (NDV)/Pseudorabies virus (PRV)-induced Viperin expression were examined in 3D4/21 cells and porcine peripheral blood mononuclear cells (PBMCs). Porcine Viperin gene was amplified to generate cell line PK-Vi over-expressing Viperin. CSFV was inoculated in the cell lines and viral load was detected by qRT-PCR, virus titration and Western blot. The influence of Viperin expression on CSFV binding, entry and release in the cells was also examined. The co-localization of Viperin with CSFV and its proteins (E2, NS5B) was determined by confocal laser scanning microscopy test. Co-IP assay was performed to check the interaction of Viperin with CSFV proteins. Results CSFV infection could not induce Viperin expression in vitro while significantly inhibiting NDV/PRV-induced Viperin expression at 12, 24 and 48 h post infection (hpi; P < 0.05). The proliferation of CSFV in PK-Vi was significantly inhibited at 24, 48 and 72 hpi (P < 0.05), comparing with control cells (PK-C1 expressing EGFP). Virus in both cell culture supernatants and cell pellets were reduced equally. CSFV binding and entry in the cells were not interfered by Viperin expression. These results indicated its anti-CSFV function occurred during the genome and/or protein synthesis step. Confocal laser scanning microscopy test showed the Viperin-EGFP protein co-localized with CSFV E2 protein in CSFV infected PK-Vi cells. Further experiments indicated that Viperin protein co-localized with E2 and NS5B proteins of CSFV in the transfected 293 T cells. Furthermore, Co-IP assay confirmed the interaction of Viperin with E2 protein, but not NS5B. Conclusion Porcine Viperin effectively inhibited CSFV replication in vitro, potentially via the interaction of Viperin with CSFV E2 protein in cytoplasm. The results provided foundation for further studies of the interaction of Viperin with CSFV and other viruses.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Linxiao Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jieyuan Jiang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
15
|
Khatoon E, Barman NN, Deka M, Rajbongshi G, Baruah K, Deka N, Bora DP, Kumar S. Molecular characterization of classical swine fever virus isolates from India during 2012-14. Acta Trop 2017; 170:184-189. [PMID: 28279702 DOI: 10.1016/j.actatropica.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
Abstract
Classical swine fever is a highly contagious and economically important viral disease of pigs. Outbreaks of classical swine fever virus (CSFV) were recorded in different places in the Kamrup district of Assam in India between the years 2012 and 2014. The nucleotide sequences of the 10 CSFV isolates were analyzed based on the partial nucleotide sequences of the E2, 5'NTR and NS5B genes. Phylogenetic analysis indicated the dominance of subgroup 2.2 along with 2.1 strains in the northeast part of India. Variation in the nucleotide sequences of E2, 5'NTR and 3'NS5B genes of CSFV allows tracking changes in the virus population over time. The study will provide epidemiological information useful for assessing CSFV circulating genogroups in India.
Collapse
|
16
|
Pastuch-Gawolek G, Chaubey B, Szewczyk B, Krol E. Novel thioglycosyl analogs of glycosyltransferase substrates as antiviral compounds against classical swine fever virus and hepatitis C virus. Eur J Med Chem 2017; 137:247-262. [PMID: 28601004 DOI: 10.1016/j.ejmech.2017.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) and classical swine fever virus (CSFV) are important pathogens for which new therapeutic approaches are in high demand. Herein, we report the synthesis of newly designed thioglycosyl analogs of glycosyltransferase substrates which were evaluated using cell-based assays for cytotoxicity and antiviral activity against both viruses. The antiviral activity of synthesized compounds against CSFV and HCV was confirmed using pseudo-plaque reduction assays where a significant arrest of viral growth was observed in the presence of selected compounds. We showed that compounds 13 and 14 exerted the most significant inhibitory effect on in vitro CSFV and HCV infections in the series. Glycoconjugates 13 and 14 not only inhibited both viral propagation with IC50 values in low micromolar range, but efficiently suppressed the production of viral proteins in a dose-dependent manner. In addition, studies using in vitro HCV infection and replication models have shown that both compounds are able to significantly reduce viral genomic replication. We demonstrated that compounds 13 and 14 showed a strong inhibition, up to 90% of replication which inscribe them in the promising alternative approach for the development of new anti-CSFV and anti-HCV drugs.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawolek
- Silesian University of Technology, Faculty of Chemistry, Chair of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Binay Chaubey
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; Functional Genomics Lab., Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, 700019 Kolkata, India
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
17
|
Classical Swine Fever-An Updated Review. Viruses 2017; 9:v9040086. [PMID: 28430168 PMCID: PMC5408692 DOI: 10.3390/v9040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.
Collapse
|
18
|
Muñoz-González S, Pérez-Simó M, Colom-Cadena A, Cabezón O, Bohórquez JA, Rosell R, Pérez LJ, Marco I, Lavín S, Domingo M, Ganges L. Classical Swine Fever Virus vs. Classical Swine Fever Virus: The Superinfection Exclusion Phenomenon in Experimentally Infected Wild Boar. PLoS One 2016; 11:e0149469. [PMID: 26919741 PMCID: PMC4768946 DOI: 10.1371/journal.pone.0149469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/31/2016] [Indexed: 12/02/2022] Open
Abstract
Two groups with three wild boars each were used: Group A (animals 1 to 3) served as the control, and Group B (animals 4 to 6) was postnatally persistently infected with the Cat01 strain of CSFV (primary virus). The animals, six weeks old and clinically healthy, were inoculated with the virulent strain Margarita (secondary virus). For exclusive detection of the Margarita strain, a specific qRT-PCR assay was designed, which proved not to have cross-reactivity with the Cat01 strain. The wild boars persistently infected with CSFV were protected from superinfection by the virulent CSFV Margarita strain, as evidenced by the absence of clinical signs and the absence of Margarita RNA detection in serum, swabs and tissue samples. Additionally, in PBMCs, a well-known target for CSFV viral replication, only the primary infecting virus RNA (Cat01 strain) could be detected, even after the isolation in ST cells, demonstrating SIE at the tissue level in vivo. Furthermore, the data analysis of the Margarita qRT-PCR, by means of calculated ΔCt values, supported that PBMCs from persistently infected animals were substantially protected from superinfection after in vitro inoculation with the Margarita virus strain, while this virus was able to infect naive PBMCs efficiently. In parallel, IFN-α values were undetectable in the sera from animals in Group B after inoculation with the CSFV Margarita strain. Furthermore, these animals were unable to elicit adaptive humoral (no E2-specific or neutralising antibodies) or cellular immune responses (in terms of IFN-γ-producing cells) after inoculation with the second virus. Finally, a sequence analysis could not detect CSFV Margarita RNA in the samples tested from Group B. Our results suggested that the SIE phenomenon might be involved in the evolution and phylogeny of the virus, as well as in CSFV control by vaccination. To the best of our knowledge, this study was one of the first showing efficient suppression of superinfection in animals, especially in the absence of IFN-α, which might be associated with the lack of innate immune mechanisms.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Andreu Colom-Cadena
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Oscar Cabezón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José Alejandro Bohórquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi natural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | | | - Ignasi Marco
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Santiago Lavín
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals (DAAM), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
19
|
Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Appl Biochem Biotechnol 2016; 178:1567-85. [PMID: 26728654 PMCID: PMC7091396 DOI: 10.1007/s12010-015-1968-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Abstract
Cell-based reporter systems have facilitated studies of viral replication and pathogenesis, virus detection, and drug susceptibility testing. There are three types of cell-based reporter systems that express certain reporter protein for positive-sense single strand RNA virus infections. The first type is classical reporter system, which relies on recombinant virus, reporter virus particle, or subgenomic replicon. During infection with the recombinant virus or reporter virus particle, the reporter protein is expressed and can be detected in real time in a dose-dependent manner. Using subgenomic replicon, which are genetically engineered viral RNA molecules that are capable of replication but incapable of producing virions, the translation and replication of the replicon could be tracked by the accumulation of reporter protein. The second type of reporter system involves genetically engineered cells bearing virus-specific protease cleavage sequences, which can sense the incoming viral protease. The third type is based on viral replicase, which can report the specific virus infection via detection of the incoming viral replicase. This review specifically focuses on the major technical breakthroughs in the design of cell-based reporter systems and the application of these systems to the further understanding and control of viruses over the past few decades.
Collapse
|
20
|
Bhaskar N, Ravishankar C, Rajasekhar R, Sumod K, Sumithra TG, John K, Mini M, Ravindran R, Shaji S, Aishwarya J. Molecular typing and phylogenetic analysis of classical swine fever virus isolates from Kerala, India. Virusdisease 2015; 26:260-6. [PMID: 26645036 PMCID: PMC4663717 DOI: 10.1007/s13337-015-0271-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022] Open
Abstract
Classical swine fever (CSF) is an economically important disease of pigs caused by CSF virus (CSFV) belonging to the genus Pestivirus within the family Flaviviridae. The disease is endemic in many countries including India. A comprehensive study was carried out to assess the type of CSFV circulating in the South Indian state of Kerala. During the period 2013-2014, clinical samples were collected from 19 suspected CSF outbreaks of domestic pigs in different districts of Kerala. The samples were tested using nested reverse transcription PCR (RT-PCR) targeting the E2 gene and RT-PCR for 5'UTR of the virus. Partial 5' UTR and E2 gene regions of six CSFV isolates were sequenced. Phylogenetic analysis revealed that all the CSFV isolates belonged to subgroup 2.2. The isolates showed close resemblance to the other CSFV isolates circulating in India. It was also observed that the CSFV viruses from Kannur district were distinct from those circulating in the other districts as evidenced by their divergence from other Kerala isolates in the phylogenetic tree. Close relationship was seen to the CSFV isolates from South East Asian countries.
Collapse
Affiliation(s)
- Nimisha Bhaskar
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| | - Chintu Ravishankar
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| | - R. Rajasekhar
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| | - K. Sumod
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| | - T. G. Sumithra
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala 680651 India
| | - Koshy John
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| | - M. Mini
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala 680651 India
| | - Reghu Ravindran
- />Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| | - Shiju Shaji
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| | - J. Aishwarya
- />Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Lakkidi P.O., Wayanad, Kerala 673576 India
| |
Collapse
|
21
|
Moennig V. The control of classical swine fever in wild boar. Front Microbiol 2015; 6:1211. [PMID: 26594202 PMCID: PMC4635204 DOI: 10.3389/fmicb.2015.01211] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever (CSF) is a viral disease with severe economic consequences for domestic pigs. Natural hosts for the CSF virus (CSFV) are members of the family Suidae, i.e., Eurasian wild boar (sus scrofa) are also susceptible. CSF in wild boar poses a serious threat to domestic pigs. CSFV is an enveloped RNA virus belonging to the pestivirus genus of the Flaviviridae family. Transmission of the infection is usually by direct contact or by feeding of contaminated meat products. In recent decades CSF has been successfully eradicated from Australia, North America, and the European Union. In areas with dense wild boar populations CSF tends to become endemic whereas it is often self-limiting in small, less dense populations. In recent decades eradication strategies of CSF in wild boar have been improved considerably. The reduction of the number of susceptible animals to a threshold level where the basic reproductive number is R 0 < 1 is the major goal of all control efforts. Depending on the epidemiological situation, hunting measures combined with strict hygiene may be effective in areas with a relatively low density of wild boar. Oral immunization was shown to be highly effective in endemic situations in areas with a high density of wild boar.
Collapse
Affiliation(s)
- Volker Moennig
- Department of Infectious Diseases, Institute for Virology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
22
|
Kim YK, Lim SI, Kim JJ, Cho YY, Song JY, Cho IS, Hyun BH, Choi SH, Kim SH, Park EH, An DJ. Surveillance of classical swine fever in wild boar in South Korea from 2010-2014. J Vet Med Sci 2015; 77:1667-71. [PMID: 26178821 PMCID: PMC4710727 DOI: 10.1292/jvms.14-0519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious systemic hemorrhagic viral disease of
pigs. Wild boar plays a crucial role in the epidemiology of CSF. Between 2010 and 2014,
samples were collected nationwide from 6,654 wild boars hunted in South Korea. Anti-CSF
antibodies were identified in 0.59% (39 of 6,654) of the wild boar samples using a virus
neutralization test and were primarily detected in wild boars living close to the
demilitarized zone and the area of the Taebaek Mountains surroundings. The CSF virus
(subgroup 2.1b) was isolated from two wild boars captured in a nearby border area. The
criteria used to define high-risk areas for targeted CSF surveillance in South Korea
should be further expanded to include other regions nationwide.
Collapse
Affiliation(s)
- Yong Kwan Kim
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The swine CD81 enhances E2-based DNA vaccination against classical swine fever. Vaccine 2015; 33:3542-8. [DOI: 10.1016/j.vaccine.2015.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 11/20/2022]
|
24
|
A dark-to-bright reporter cell for classical swine fever virus infection. Antiviral Res 2015; 117:44-51. [PMID: 25746332 DOI: 10.1016/j.antiviral.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022]
Abstract
Current methods to quantitate classical swine fever virus (CSFV) infectivity in cell culture are time-consuming and labor-intensive. This study described the generation of a dark-to-bright fluorescent reporter cells to facilitate in vitro studies of CSFV infection and replication. This assay was based on a novel reporter cell stably expressing the enhanced green fluorescent protein (EGFP) fused in-frame to a quenching peptide via a special recognition sequence of the CSFV NS3 protease. Chromophore maturation of EGFP can be prevented by quenching peptide until the quenching peptide was specifically cleaved by NS3 protease during CSFV infection, making it a dark-to-bright reporter of CSFV infection. The result demonstrated that the CSFV-infected cells were clearly distinguishable from mock-infected cells and cells infected with other viruses. There was a strong correlation between the fluorescence intensity and viral RNA replication in CSFV-infected cells. The cell enabled rapid and sensitive detection of CSFV infection and viral replication in cell culture. The best time to examine the fluorescence in CSFV-infected cells was at 48h post-inoculation. These data suggested that the cells can be used as a reporter cell in CSFV infection assays. This reporter cell provides a sensitive method for the detection and isolation of CSFV and it will be useful for the screening of antiviral drugs or neutralizing antibody assays.
Collapse
|
25
|
Brosig J, Traulsen I, Krieter J. Multicriteria Evaluation of Classical Swine Fever Control Strategies Using the Choquet Integral. Transbound Emerg Dis 2014; 63:68-78. [PMID: 24661927 DOI: 10.1111/tbed.12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Indexed: 11/29/2022]
Abstract
An outbreak of the highly contagious animal disease classical swine fever (CSF) requires the selection of an optimal control strategy. The choice of a control strategy is a decision process depending on different aspects. Besides epidemiology, economic and ethical/social aspects must be taken into account. In this study, multicriteria decision-making (MCDM) was used to evaluate six control strategies for two regions with different farm densities. A strategy including only the minimum EU control measures and the traditional control strategy based on preventive culling were compared to alternative control strategies using emergency vaccination and/or rapid PCR testing ('emergency vaccination', 'test to slaughter', 'test to control' and 'vaccination in conjunction with rapid testing'). The MACBETH approach was used in order to assess the three main criteria (epidemiology, economics and ethical/social aspects). Subcriteria with both quantitative and qualitative performance levels were translated into a normalized scale. The Choquet integral approach was adopted to obtain a ranking of the six CSF control strategies based on the three main criteria, taking interactions into account. Three different rankings of the importance of the main criteria, which were to reflect the potential perceptions of stakeholders, were examined. Both the region under investigation and the ranking of the main criteria had an influence on the 'best' choice. Alternative control strategies were favourable to the minimum EU control and the traditional control measures independent of the farm density. Because the choice of the 'best' control strategy does not solely depend on the epidemiological efficiency, MCDM can help to find the best solution. Both MACBETH and the Choquet integral approach are feasible MCDM approaches. MACBETH only needs a qualitative evaluation and is therefore a comparatively intuitive approach. The Choquet integral does not only take the importance of the criteria into account but also the interaction between them.
Collapse
Affiliation(s)
- J Brosig
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - I Traulsen
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - J Krieter
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
26
|
Lin YC, Wu SC, Yang MY, Chen GT, Li TH, Liau MY. Application of real-time quantitative polymerase chain reaction to monitoring infection of classic swine fever virus and determining optimal harvest time in large-scale production. Vaccine 2013; 31:5565-71. [PMID: 24021314 DOI: 10.1016/j.vaccine.2013.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/25/2013] [Accepted: 08/27/2013] [Indexed: 11/16/2022]
Abstract
Due to the non-cytopathogenic replication of classical swine fever virus (CSFV) in cell culture, large-scale production of CSFV using bioreactor system remains the problem of monitoring the time of maximum virus production for optimal harvest. In this study, we proposed the application of real-time quantitative PCR assay to monitoring the progress of CSFV infection and yield determination in large scale. The region of NS5B of CSFV responsible for CSFV genome replication was used for the designation of primers and probe. Viral titers determined by the real-time quantitative PCR assay were compared with the conventional cell-culture based method of immunofluorescent staining. Results from large scale production show that a similar profile of CSFV production was successfully outlined by real-time quantitative PCR and virus yields were comparable to the results from immunofluorescent staining assay. By using this method, an optimal harvesting time of the production could be rapidly and precisely determined leading to an improvement in virus harvest.
Collapse
Affiliation(s)
- Ya-Ching Lin
- Department of Biotechnology, Fooyin University, 151 Jinxue Road, Daliao District, Kaohsiung City 83102, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
27
|
Li W, Mao L, Yang L, Zhou B, Jiang J. Development and partial validation of a recombinant E2-based indirect ELISA for detection of specific IgM antibody responses against classical swine fever virus. J Virol Methods 2013; 191:63-8. [DOI: 10.1016/j.jviromet.2013.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 03/02/2013] [Accepted: 03/06/2013] [Indexed: 01/12/2023]
|
28
|
Leslie E, Cowled B, Graeme Garner M, Toribio JALML, Ward MP. Effective surveillance strategies following a potential classical Swine Fever incursion in a remote wild pig population in North-Western Australia. Transbound Emerg Dis 2013; 61:432-42. [PMID: 23294519 DOI: 10.1111/tbed.12044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 12/01/2022]
Abstract
Early disease detection and efficient methods of proving disease freedom can substantially improve the response to incursions of important transboundary animal diseases in previously free regions. We used a spatially explicit, stochastic disease spread model to simulate the spread of classical swine fever in wild pigs in a remote region of northern Australia and to assess the performance of disease surveillance strategies to detect infection at different time points and to delineate the size of the resulting outbreak. Although disease would likely be detected, simple random sampling was suboptimal. Radial and leapfrog sampling improved the effectiveness of surveillance at various stages of the simulated disease incursion. This work indicates that at earlier stages, radial sampling can reduce epidemic length and achieve faster outbreak delineation and control, but at later stages leapfrog sampling will outperform radial sampling in relation to supporting faster disease control with a less-extensive outbreak area. Due to the complexity of wildlife population dynamics and group behaviour, a targeted approach to surveillance needs to be implemented for the efficient use of resources and time. Using a more situation-based surveillance approach and accounting for disease distribution and the time period over which an epidemic has occurred is the best way to approach the selection of an appropriate surveillance strategy.
Collapse
Affiliation(s)
- E Leslie
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | | | | | | | | |
Collapse
|
29
|
Brosig J, Traulsen I, Krieter J. Control of classical swine fever epidemics under varying conditions--with special focus on emergency vaccination and rapid PCR testing. Transbound Emerg Dis 2012; 61:258-65. [PMID: 23113941 DOI: 10.1111/tbed.12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Indexed: 11/28/2022]
Abstract
SUMMARY In case of a classical swine fever outbreak in the European Union (EU), its control is based upon the culling of swine on infected farms, movement restrictions in the protection and surveillance zones, and contact tracing. Additionally, preventive culling may be carried out. Emergency vaccination and rapid PCR testing are discussed as alternatives to avoid this measure. An outbreak of classical swine fever and the success of its control are influenced by different factors. Using a spatial and temporal Monte-Carlo simulation model the control strategies 'Restriction Zone', 'Traditional Control', 'Emergency Vaccination', 'Test To Slaughter', 'Test To Control' and 'Vaccination in conjunction with Rapid Testing' were compared under various conditions. Farm density, compliance with movement restrictions and delay in the establishment of an emergency vaccination were analysed as influencing factors. It was found that all these factors had a significant influence on the number of infected and culled farms. In a low-density region, the basic measures are sufficient to control an epidemic, provided strict compliance with movement restrictions is adhered to. In a high-density region, additional measures are necessary. They can compensate non-strict compliance with movement restriction to a certain extent. In the high-density region, 'Emergency Vaccination' and 'Vaccination in conjunction with Rapid Testing' reached the same level of infected farms as 'Traditional Control', independent of the value of compliance with movement restrictions. However, in the case of an emergency vaccination, an early start to the vaccination campaign is essential for successful disease control.
Collapse
Affiliation(s)
- J Brosig
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | | | | |
Collapse
|
30
|
Blome S, Aebischer A, Lange E, Hofmann M, Leifer I, Loeffen W, Koenen F, Beer M. Comparative evaluation of live marker vaccine candidates "CP7_E2alf" and "flc11" along with C-strain "Riems" after oral vaccination. Vet Microbiol 2012; 158:42-59. [PMID: 22397931 DOI: 10.1016/j.vetmic.2012.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/04/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Due to the tremendous socio-economic impact of classical swine fever (CSF) outbreaks, emergency vaccination scenarios are continuously under discussion. Unfortunately, all currently available vaccines show restrictions either in terms of marker capacities or immunogenicity. Recent research efforts were therefore directed at the design of new modified live marker vaccines. Among the most promising candidates the chimeric pestiviruses "CP7_E2alf" and "flc11" were identified. Within an international research project, these candidates were comparatively tested in challenge experiments after a single oral vaccination. Challenge infection was carried out with highly virulent CSF virus strain "Koslov", 14 or 21 days post vaccination (dpv), respectively. Safety, efficacy, and marker potential were addressed. All assessments were done in comparison with the conventional "gold standard" C-strain "Riems" vaccine. In addition to the challenge trials, multiple vaccinations with both candidates were performed to further assess their marker vaccine potential. All vaccines were safe and yielded full protection upon challenge 21 days post vaccination. Neither serological nor virological investigations showed major differences among the three vaccines. Whereas CP7_E2alf also provided clinical protection upon challenge at 14 days post vaccination, only 50% of animals vaccinated with flc11, and 83% vaccinated with C-strain "Riems" survived challenge at this time point. No marked differences were seen in protected animals. Despite the fact that all multiple-vaccinated animals stayed sero-negative in the accompanying marker test, the discriminatory assay remains a weak point due to delayed or inexistent detection of some of the vaccinated and subsequently infected animals. Nevertheless, the potential as live marker vaccines could be confirmed for both vaccine candidates. Future efforts will therefore be directed at the licensing of "Cp7_E2alf" as the first live marker vaccine for CSF.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Eberling AJ, Bieker-Stefanelli J, Reising MM, Siev D, Martin BM, McIntosh MT, Beckham TR. Development, optimization, and validation of a Classical swine fever virus real-time reverse transcription polymerase chain reaction assay. J Vet Diagn Invest 2011; 23:994-8. [DOI: 10.1177/1040638711416970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever (CSF) is an economically devastating disease of pigs. Instrumental to the control of CSF is a well-characterized assay that can deliver a rapid, accurate diagnosis prior to the onset of clinical signs. A real-time fluorogenic-probe hydrolysis (TaqMan) reverse transcription polymerase chain reaction (RT-PCR) for CSF was developed by the United States Department of Agriculture (USDA) at the Plum Island Animal Disease Center (CSF PIADC assay) and evaluated for analytical and diagnostic sensitivity and specificity. A well-characterized panel including Classical swine fever virus (CSFV), Bovine viral diarrhea virus (BVDV), and Border disease virus (BDV) isolates was utilized in initial feasibility and optimization studies. The assay was initially designed and validated for use on the ABI 7900HT using the Qiagen QuantiTect® Probe RT-PCR chemistry. However, demonstrating equivalency with multiple one-step RT-PCR chemistries and PCR platforms increased the versatility of the assay. Limit of detection experiments indicated that the Qiagen QuantiTect® Multiplex (NoROX) and the Invitrogen SuperScript® III RT-PCR kits were consistently the most sensitive one-step chemistries for use with the CSF PIADC primer/probe set. Analytical sensitivity of the CSF PIADC assay ranged from <1–2.95 log10 TCID50/ml on both the ABI 7900HT and ABI 7500 platforms. The CSF PIADC assay had 100% diagnostic sensitivity and specificity when tested on a panel of 152 clinical samples from the Dominican Republic and Colombia. The ability to perform this newly developed assay in 96-well formats provides an increased level of versatility for use in CSF surveillance programs.
Collapse
Affiliation(s)
- August J. Eberling
- Plum Island Animal Disease Center, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY (Eberling, Bieker-Stefanelli, McIntosh)
- Center for Veterinary Biologics (Reising, Siev)
- National Animal Health Laboratory Network (Martin)
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, USDA, Ames, IA
- Office of the Director, National Center for Foreign Animal and Zoonotic Disease Defense Center and Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Beckham)
| | - Jill Bieker-Stefanelli
- Plum Island Animal Disease Center, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY (Eberling, Bieker-Stefanelli, McIntosh)
- Center for Veterinary Biologics (Reising, Siev)
- National Animal Health Laboratory Network (Martin)
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, USDA, Ames, IA
- Office of the Director, National Center for Foreign Animal and Zoonotic Disease Defense Center and Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Beckham)
| | - Monica M. Reising
- Plum Island Animal Disease Center, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY (Eberling, Bieker-Stefanelli, McIntosh)
- Center for Veterinary Biologics (Reising, Siev)
- National Animal Health Laboratory Network (Martin)
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, USDA, Ames, IA
- Office of the Director, National Center for Foreign Animal and Zoonotic Disease Defense Center and Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Beckham)
| | - David Siev
- Plum Island Animal Disease Center, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY (Eberling, Bieker-Stefanelli, McIntosh)
- Center for Veterinary Biologics (Reising, Siev)
- National Animal Health Laboratory Network (Martin)
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, USDA, Ames, IA
- Office of the Director, National Center for Foreign Animal and Zoonotic Disease Defense Center and Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Beckham)
| | - Barbara M. Martin
- Plum Island Animal Disease Center, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY (Eberling, Bieker-Stefanelli, McIntosh)
- Center for Veterinary Biologics (Reising, Siev)
- National Animal Health Laboratory Network (Martin)
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, USDA, Ames, IA
- Office of the Director, National Center for Foreign Animal and Zoonotic Disease Defense Center and Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Beckham)
| | - Michael T. McIntosh
- Plum Island Animal Disease Center, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY (Eberling, Bieker-Stefanelli, McIntosh)
- Center for Veterinary Biologics (Reising, Siev)
- National Animal Health Laboratory Network (Martin)
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, USDA, Ames, IA
- Office of the Director, National Center for Foreign Animal and Zoonotic Disease Defense Center and Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Beckham)
| | - Tammy R. Beckham
- Plum Island Animal Disease Center, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY (Eberling, Bieker-Stefanelli, McIntosh)
- Center for Veterinary Biologics (Reising, Siev)
- National Animal Health Laboratory Network (Martin)
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, USDA, Ames, IA
- Office of the Director, National Center for Foreign Animal and Zoonotic Disease Defense Center and Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Beckham)
| |
Collapse
|
32
|
Development and validation of a novel SYBR Green real-time RT-PCR assay for the detection of classical swine fever virus evaluated on different real-time PCR platforms. J Virol Methods 2011; 174:53-9. [DOI: 10.1016/j.jviromet.2011.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 03/16/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022]
|
33
|
Leifer I, Blome S, Beer M, Hoffmann B. Development of a highly sensitive real-time RT-PCR protocol for the detection of Classical swine fever virus independent of the 5' untranslated region. J Virol Methods 2010; 171:314-7. [PMID: 21111760 DOI: 10.1016/j.jviromet.2010.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 11/30/2022]
Abstract
Classical swine fever (CSF) is one of the most severe diseases of pigs, and can cause immense economic losses. Real-time reverse transcription polymerase chain reaction (rRT-PCR) can be used as a sensitive and specific method for detection of Classical swine fever virus (CSFV). Different published protocols are used routinely for CSFV diagnosis. However, almost all these systems use the highly conserved 5' untranslated region (5'UTR) of the CSFV genome as template. For a reliable diagnosis in outbreaks, a confirmatory assay that amplifies a different genome region is advisable. In this study a new CSFV specific rRT-PCR system using the NS5A region as template is described. The assay is multiplexed with a β-actin detection system that is used as an internal control in a single tube assay. The system was validated using recent European CSFV field isolates, dilution series of an in vitro transcribed RNA standard, and a panel of RNAs representing all available Pestivirus species and genotypes. It was shown that the new assay allows reliable detection of CSFV genomes independent of the 5'UTR region. It presents a very useful diagnostic tool, also allowing a 'double check' approach to rule out 5'UTR amplicon contaminations.
Collapse
Affiliation(s)
- Immanuel Leifer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
34
|
Blome S, Grotha I, Moennig V, Greiser-Wilke I. Classical swine fever virus in South-Eastern Europe--retrospective analysis of the disease situation and molecular epidemiology. Vet Microbiol 2010; 146:276-84. [PMID: 20541876 DOI: 10.1016/j.vetmic.2010.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/14/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
Classical swine fever (CSF) is among the most important diseases of domestic pigs and causes great socio-economic losses. Therefore, control of CSF is given high priority within the European Union, including financial support of concerted control actions in candidate and in potential candidate countries. Unfortunately, from some of these countries information on the CSF situation and related data is very limited. This study was undertaken to gather all available information on the domestic pig population and husbandry, and of the CSF situation in domestic pigs and wild boar in South-Eastern European countries that have recently joined or are applying to join the European Union. A characteristic feature of pig production in Eastern Europe is that most of them are in backyard holdings. Although mandatory vaccination is carried out in most of these countries, sporadic CSF outbreaks still occur. Little is still known about the CSF situation in wild boar. In addition, molecular epidemiology of 97 CSF virus isolates available from these countries, from outbreaks that occurred between 1994 and 2007, was performed. Most of the isolates were from Romania and Bulgaria. Genetic typing showed that almost all isolates (with exception of Croatian and of the Macedonian isolates) belonged to genotype 2.3. On the basis of these sequences, and additional sequences from outbreaks in Eastern and Western European countries taken from the database held at the European Union Reference Laboratory (EURL), two clusters could be distinguished within subtype 2.3. They were tentatively named 2.3.1 and 2.3.2.
Collapse
Affiliation(s)
- Sandra Blome
- Friedrich-Loeffler-Institute, Institute of Diagnostic Virology, Suedufer 10, 17493 Greifswald-Isle of Riems, Germany
| | | | | | | |
Collapse
|
35
|
Weesendorp E, Willems EM, Loeffen WL. The effect of tissue degradation on detection of infectious virus and viral RNA to diagnose classical swine fever virus. Vet Microbiol 2010; 141:275-81. [DOI: 10.1016/j.vetmic.2009.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/04/2009] [Accepted: 09/22/2009] [Indexed: 11/27/2022]
|
36
|
A novel RT-LAMP assay for rapid and simple detection of classical swine fever virus. Virol Sin 2010; 25:59-64. [PMID: 20960285 DOI: 10.1007/s12250-010-3043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 10/27/2009] [Indexed: 10/19/2022] Open
Abstract
A simple and rapid assay for the detection of Classical swine fever virus (CSFV) was established using reverse transcription loop-mediated isothermal amplification (RT-LAMP). This study describes the amplification of the genomic RNA of CSFV under isothermal conditions (63 °C) within one hour, using a set of six primers (two outer primers, two inner primers and two loop primers). This RT-LAMP assay showed 100-fold higher sensitivity than the standard RT-PCR method and identified eighteen additional positive cases that were negative when tested by RT-PCR. This RT-LAMP was able to detect all the 13 strains of CSFV but not the BVDV. PRRSV. SIV. PRV-PCV, thus showed a good specificity. Products amplified by RT-LAMP can be visualized by agarose gel electrophoresis and in addition, either as a white precipitate at the bottom of the tube after a pulse spin or as a color change when dyed with SYBR Green I which are visible to the naked eye. Because RT-LAMP is low-cost and produces rapid results, it has the potential to be an excellent tool for CSFV surveillance in the field, especially in developing countries.
Collapse
|
37
|
Zhao HP, Sun JF, Li N, Sun Y, Wang Y, Qiu HJ. Prime-boost immunization using alphavirus replicon and adenovirus vectored vaccines induces enhanced immune responses against classical swine fever virus in mice. Vet Immunol Immunopathol 2009; 131:158-66. [DOI: 10.1016/j.vetimm.2009.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 02/06/2023]
|
38
|
Pérez LJ, de Arce HD. Development of a polymerase chain reaction assay for the detection of pseudorabies virus in clinical samples. Braz J Microbiol 2009; 40:433-8. [PMID: 24031383 PMCID: PMC3768535 DOI: 10.1590/s1517-83822009000300002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 07/23/2008] [Accepted: 05/03/2009] [Indexed: 11/28/2022] Open
Abstract
Aujeszky’s disease, also known as pseudorabies causes severe economic losses in swine industry and affects the pig husbandry all over the world. The conventional diagnostic procedure is time-consuming and false-negative results may occur in submissions from latently infected animals. The development, optimization and evaluation of a polymerase chain reaction (PCR) assay are presented for the diagnosis of pseudorabies infection. This assay was based on the amplification of a highly conserved viral gD gene fragment. PCR products of the expected size were obtained from PRV strains. Non-specific reactions were not observed when a related herpesvirus, other porcine DNA genome viruses and uninfected cells were used to assess PCR. The analytical sensitivity of the test was estimated to be 1.34 TCID50/ 50 uL. The analysis of tissue homogenate samples from naturally infected animals proved the potential usefulness of the method for a rapid disease diagnosis from field cases. A rapid, sensitive and specific PCR-based diagnostic assay to detect pseudorabies virus in clinical samples is provided.
Collapse
Affiliation(s)
- Lester J Pérez
- Grupo de Virología, Centro Nacional de Sanidad Agropecuaria. San José de las Lajas , La Habana , Cuba
| | | |
Collapse
|
39
|
Animal health safety of fresh meat derived from pigs vaccinated against Classic Swine Fever. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Vrancken R, Haegeman A, Dewulf J, Paeshuyse J, Puerstinger G, Tignon M, Le Potier MF, Neyts J, Koenen F. The reduction of CSFV transmission to untreated pigs by the pestivirus inhibitor BPIP: a proof of concept. Vet Microbiol 2009; 139:365-8. [PMID: 19592179 DOI: 10.1016/j.vetmic.2009.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 06/03/2009] [Accepted: 06/12/2009] [Indexed: 11/26/2022]
Abstract
5-[(4-Bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) is a representative molecule of a novel class of highly active in vitro inhibitors of the replication of Classical swine fever virus (CSFV). We recently demonstrated in a proof of concept study that the molecule has a marked effect on viral replication in CSFV-infected pigs. Here, the effect of antiviral treatment on virus transmission to untreated sentinel pigs was studied. Therefore, BPIP-treated pigs (n=4), intra-muscularly infected with CSFV, were placed into contact with untreated sentinel pigs (n=4). Efficient transmission of CSFV from four untreated seeder pigs to four untreated sentinels was observed. In contrast, only two out of four sentinel animals in contact with BPIP-treated seeder animals developed a short transient infection, of which one was likely the result of sentinel to sentinel transmission. A significant lower viral genome load was measured in tonsils of sentinels in contact with BPIP-treated seeder animals compared to the positive control group (p=0.015). Although no significant difference (p=0.126) in the time of onset of viraemia could be detected between the groups of contact animals, a tendency towards the reduction of virus transmission was observed. Since sentinel animals were left untreated in this exploratory trial, the study can be regarded as a worst case scenario and gives therefore an underestimation of the potential efficacy of the activity of BPIP on virus transmission.
Collapse
Affiliation(s)
- R Vrancken
- Veterinary and Agrochemical Research Centre, Groeselenberg 99, B-1180 Ukkel, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Díaz de Arce H, Pérez LJ, Frías MT, Rosell R, Tarradas J, Núñez JI, Ganges L. A multiplex RT-PCR assay for the rapid and differential diagnosis of classical swine fever and other pestivirus infections. Vet Microbiol 2009; 139:245-52. [PMID: 19577384 DOI: 10.1016/j.vetmic.2009.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/26/2022]
Abstract
Classical swine fever is a highly contagious viral disease causing severe economic losses in pig production almost worldwide. All pestivirus species can infect pigs, therefore accurate and rapid pestivirus detection and differentiation is of great importance to assure control measures in swine farming. Here we describe the development and evaluation of a novel multiplex, highly sensitive and specific RT-PCR for the simultaneous detection and rapid differentiation between CSFV and other pestivirus infections in swine. The universal and differential detection was based on primers designed to amplify a fragment of the 5' non-coding genome region for the detection of pestiviruses and a fragment of the NS5B gene for the detection of classical swine fever virus. The assay proved to be specific when different pestivirus strains from swine and ruminants were evaluated. The analytical sensitivity was estimated to be as little as 0.89TCID(50). The assay analysis of 30 tissue homogenate samples from naturally infected and non-CSF infected animals and 40 standard serum samples evaluated as part of two European Inter-laboratory Comparison Tests conducted by the European Community Reference Laboratory, Hanover, Germany proved that the multiplex RT-PCR method provides a rapid, highly sensitive, and cost-effective laboratory diagnosis for classical swine fever and other pestivirus infections in swine.
Collapse
|
42
|
|
43
|
Zhao HP, Sun JF, Li N, Sun Y, Xia ZH, Wang Y, Cheng D, Qi QF, Jin ML, Qiu HJ. Assessment of the cell-mediated immunity induced by alphavirus replicon-vectored DNA vaccines against classical swine fever in a mouse model. Vet Immunol Immunopathol 2008; 129:57-65. [PMID: 19150136 DOI: 10.1016/j.vetimm.2008.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 12/01/2008] [Accepted: 12/04/2008] [Indexed: 11/30/2022]
Abstract
We have previously shown that an alphavirus replicon-vectored DNA vaccine (pSFV1CS-E2) encoding the E2 glycoprotein of classical swine fever virus (CSFV) completely protected the immunized pigs from lethal challenge. These animals developed only low or moderate level viral-specific antibody titers before challenge, implying that cell-mediated immunity (CMI) probably played an important role in the protective immunity against CSFV conferred by the DNA vaccine. In this study, the CMI induced by pSFV1CS-E2 and its derivative pSFV1CS-E2-UL49 encoding a fusion protein of CSFV E2 and pseudorabies virus (PRV) VP22 was evaluated in a mouse model by lymphoproliferation assays based on CFSE or WST-8, intracellular cytokine staining, and cytokine ELISA. The results showed that both vaccines induced CSFV-specific lymphoproliferative responses and cytokine production, and pSFV1CS-E2-UL49 induced stronger lymphoproliferative responses and higher cytokine levels than pSFV1CS-E2. These findings suggest that the alphavirus replicon-delivered DNA vaccines are capable of inducing CMI, and PRV VP22 is able to enhance the immunogenicity of the co-delivered antigen.
Collapse
Affiliation(s)
- He-Ping Zhao
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pol F, Rossi S, Mesplède A, Kuntz-Simon G, Le Potier MF. Two outbreaks of classical swine fever in wild boar in France. Vet Rec 2008; 162:811-6. [DOI: 10.1136/vr.162.25.811] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- F. Pol
- Agence Française de Sécurité Sanitaire des Aliments - Laboratorie d'Etudes et de Recherches Avicoles Porcines et Piscicoles - Unité de Virologie et Immunologie Porcines; Laboratorie National de Référence pour les Pestes Porcines, Zoopôle; 22440 Ploufragan France
| | - S. Rossi
- Office National de la Chasse et de la Faune Sauvage; ZI Mayencin; 5 allée de Bethléem 38610 Gières France
| | - A. Mesplède
- Agence Française de Sécurité Sanitaire des Aliments - Laboratorie d'Etudes et de Recherches Avicoles Porcines et Piscicoles - Unité de Virologie et Immunologie Porcines; Laboratorie National de Référence pour les Pestes Porcines, Zoopôle; 22440 Ploufragan France
| | - G. Kuntz-Simon
- Agence Française de Sécurité Sanitaire des Aliments - Laboratorie d'Etudes et de Recherches Avicoles Porcines et Piscicoles - Unité de Virologie et Immunologie Porcines; Laboratorie National de Référence pour les Pestes Porcines, Zoopôle; 22440 Ploufragan France
| | - M-F. Le Potier
- Agence Française de Sécurité Sanitaire des Aliments - Laboratorie d'Etudes et de Recherches Avicoles Porcines et Piscicoles - Unité de Virologie et Immunologie Porcines; Laboratorie National de Référence pour les Pestes Porcines, Zoopôle; 22440 Ploufragan France
| |
Collapse
|