1
|
Ramos-Duarte VA, Orlowski A, Jaquenod de Giusti C, Corigliano MG, Legarralde A, Mendoza-Morales LF, Atela A, Sánchez MA, Sander VA, Angel SO, Clemente M. Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen. Vaccine 2024; 42:3355-3364. [PMID: 38631949 DOI: 10.1016/j.vaccine.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy "protein mixture" (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- HSP90 Heat-Shock Proteins/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
Collapse
Affiliation(s)
- Victor A Ramos-Duarte
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" (CONICET), Universidad Nacional de La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Carolina Jaquenod de Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" (CONICET), Universidad Nacional de La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Mariana G Corigliano
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Ariel Legarralde
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Luisa F Mendoza-Morales
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Provincia de Buenos Aires, Argentina
| | - Agustín Atela
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Manuel A Sánchez
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Valeria A Sander
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Provincia de Buenos Aires, Argentina
| | - Sergio O Angel
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Parasitología Molecular-UB2, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires, Argentina
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina.
| |
Collapse
|
2
|
Zhang Y, Song Z, Zhang Z, Zhang T, Gu P, Feng Z, Xu S, Yang Y, Wang D, Liu Z. Preparation and characterization of pickering emulsion stabilized by lovastatin nanoparticles for vaccine adjuvants. Int J Pharm 2024; 653:123901. [PMID: 38368969 DOI: 10.1016/j.ijpharm.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
While research on mevalonate inhibitors as vaccine adjuvants has made great progress to enhance the effectiveness of the vaccine, co delivery of lovastatin and antigens (OVA) remains an enormous challenge. Here, we encapsulated lovastatin into PLGA nanoparticles. PLGA loading lovastatin was further emulsified with squalene to prepare Pickering emulsion. The emulsification conditions of Pickering emulsion were optimized, and the optimal preparation conditions were obtained. After loading lovastatin and OVA, the size and zeta potential of LS-PPAS/OVA was 1043.33 nm and -22.07 mv, the adsorption rate of OVA was 63.34 %. The adsorbing of LS-PLGA nanoparticles on the surface of squalene in Pickering emulsions was demonstrated by Fluorescent confocal microscopy. After immunization, LS-PPAS enhanced the activation of dendritic cells in lymph nodes, further study found LS-PPAS not only elicited elevated levels of OVA-specific IgG and its subtypes, but also promoted the secretion of TNF-α, IFN-γ, and IL-6 in serum as a marker of cellular immunity. Importantly, LS-PPAS showed sufficient security through monitoring levels of biochemical parameters in serum and pathological observation of organ following vaccinations. LS-PPAS may act as a promising vaccine carrier to produce strong humoral and cellular immunity with acceptable safety.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhimin Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Cui Y, Huang L, Li J, Wang G, Shi Y. An Attempt of a New Strategy in PRV Prevention: Co-Injection with Inactivated Enterococcus faecium and Inactivated Pseudorabies Virus Intravenously. Viruses 2023; 15:1755. [PMID: 37632097 PMCID: PMC10459850 DOI: 10.3390/v15081755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudorabies virus (PRV) is one of the causative agents of common infectious diseases in swine herds. Enterococcus faecium is a probiotic belonging to the group of lactic acid bacteria and has excellent immunomodulatory effects. Vaccine immunization is an important approach to prevent animal diseases in the modern farming industry, and good immunization outcomes can substantially reduce the damage caused by pathogens to animals, improve the quality of animals' lives, and reduce economic losses. In the present study, we showed that inactivated E. faecium and inactivated PRV when co-injected intravenously significantly reduced the mortality of mice after inoculation with PRV. The inactivated E. faecium + inactivated PRV intravenous injection group induced more production of Th cells and Tc cells. Additionally, the inactivated E. faecium + inactivated PRV intravenous injection group showed higher concentrations of cytokines (IFN-γ and IL-10) and induced higher antibody production. Thus, the co-injection of inactivated E. faecium and inactivated PRV could remarkably prevent and control the lethality of PRV infection in mice, which is a critical finding for vaccination and clinical development.
Collapse
Affiliation(s)
- Yuan Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (Y.C.); (L.H.)
| | - Libo Huang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (Y.C.); (L.H.)
| | - Jinlian Li
- College of Biology and Brewing Engineering, Taishan University, Tai’an 271021, China;
| | - Gang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (Y.C.); (L.H.)
| | - Youfei Shi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (Y.C.); (L.H.)
| |
Collapse
|
4
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
5
|
Castrodeza-Sanz J, Sanz-Muñoz I, Eiros JM. Adjuvants for COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11050902. [PMID: 37243006 DOI: 10.3390/vaccines11050902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the improvement of traditional vaccines has meant that we have moved from inactivated whole virus vaccines, which provoke a moderate immune response but notable adverse effects, to much more processed vaccines such as protein subunit vaccines, which despite being less immunogenic have better tolerability profiles. This reduction in immunogenicity is detrimental to the prevention of people at risk. For this reason, adjuvants are a good solution to improve the immunogenicity of this type of vaccine, with much better tolerability profiles and a low prevalence of side effects. During the COVID-19 pandemic, vaccination focused on mRNA-type and viral vector vaccines. However, during the years 2022 and 2023, the first protein-based vaccines began to be approved. Adjuvanted vaccines are capable of inducing potent responses, not only humoral but also cellular, in populations whose immune systems are weak or do not respond properly, such as the elderly. Therefore, this type of vaccine should complete the portfolio of existing vaccines, and could help to complete vaccination against COVID-19 worldwide now and over the coming years. In this review we analyze the advantages and disadvantages of adjuvants, as well as their use in current and future vaccines against COVID-19.
Collapse
Affiliation(s)
- Javier Castrodeza-Sanz
- National Influenza Centre, 47005 Valladolid, Spain
- Preventive Medicine and Public Health Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Iván Sanz-Muñoz
- National Influenza Centre, 47005 Valladolid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León, ICSCYL, 42002 Soria, Spain
| | - Jose M Eiros
- National Influenza Centre, 47005 Valladolid, Spain
- Microbiology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
- Microbiology Unit, Hospital Universitario Río Hortega, 47013 Valladolid, Spain
| |
Collapse
|
6
|
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023; 14:1043109. [PMID: 36911719 PMCID: PMC9998920 DOI: 10.3389/fimmu.2023.1043109] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/26/2023] Open
Abstract
In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.
Collapse
Affiliation(s)
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| | - Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Barrientos R, Whalen C, Torres OB, Sulima A, Bow EW, Komla E, Beck Z, Jacobson AE, Rice KC, Matyas GR. Bivalent Conjugate Vaccine Induces Dual Immunogenic Response That Attenuates Heroin and Fentanyl Effects in Mice. Bioconjug Chem 2021; 32:2295-2306. [PMID: 34076427 PMCID: PMC8603354 DOI: 10.1021/acs.bioconjchem.1c00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.
Collapse
Affiliation(s)
- Rodell
C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Eric W. Bow
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Essie Komla
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Zoltan Beck
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Kenner C. Rice
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
8
|
Stokes AH, Franklin K, Fisher DE, Posobiec LM, Binazon O, Tripathi N, Ringenberg MA, Charlap J, Ziejewski MK, Vemireddi V, Khanna Weiss P, Majumdar R, Bouzya B, Donner MN, Rodriguez LA, Baumeister J. Repeated Dose Toxicity Study and Developmental and Reproductive Toxicology Studies of a Respiratory Syncytial Virus Candidate Vaccine in Rabbits and Rats. Int J Toxicol 2021; 40:125-142. [PMID: 33517807 DOI: 10.1177/1091581820985782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections, and vaccines are needed to treat young children and older adults. One of GSK's candidate vaccines for RSV contains recombinant RSVPreF3 protein maintained in the prefusion conformation. The differences in immune function of young children and older adults potentially require different vaccine approaches. For young children, anti-RSV immunity can be afforded during the first months of life by vaccinating the pregnant mother during the third trimester with unadjuvanted RSVPreF3, which results in protection of the infant due to the transplacental passage of anti-RSV maternal antibodies. For older adults with a waning immune response, the approach is to adjuvant the RSVPreF3 vaccine with AS01 to elicit a more robust immune response.The local and systemic effects of biweekly intramuscular injections of the RSVPreF3 vaccine (unadjuvanted, adjuvanted with AS01, or coadministered with a diphtheria-tetanus-acellular pertussis vaccine) was tested in a repeated dose toxicity study in rabbits. After three intramuscular doses, the only changes observed were those commonly related to a vaccine-elicited inflammatory reaction. Subsequently, the effects of unadjuvanted RSVPreF3 vaccine on female fertility, embryo-fetal, and postnatal development of offspring were evaluated in rats and rabbits. There were no effects on pregnancy, delivery, lactation, or the pre- and postnatal development of offspring.In conclusion, the RSVPreF3 vaccine was well-tolerated locally and systemically and was not associated with any adverse effects on female reproductive function or on the pre- and postnatal growth and development of offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey Charlap
- Charles River Laboratories, Horsham, PA, USA
- Current affiliation: Chevron, San Ramon, CA, USA
| | | | | | - Payal Khanna Weiss
- 201915Covance Laboratories Inc, Chantilly, VA, USA
- Current affiliation: DEFTEC Corporation, Inc., Chantilly, VA ,USA
| | | | | | | | | | | |
Collapse
|
9
|
Designed DNA-Encoded IL-36 Gamma Acts as a Potent Molecular Adjuvant Enhancing Zika Synthetic DNA Vaccine-Induced Immunity and Protection in a Lethal Challenge Model. Vaccines (Basel) 2019; 7:vaccines7020042. [PMID: 31121939 PMCID: PMC6632123 DOI: 10.3390/vaccines7020042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 01/17/2023] Open
Abstract
Identification of novel molecular adjuvants which can boost and enhance vaccine-mediated immunity and provide dose-sparing potential against complex infectious diseases and for immunotherapy in cancer is likely to play a critical role in the next generation of vaccines. Given the number of challenging targets for which no or only partial vaccine options exist, adjuvants that can address some of these concerns are in high demand. Here, we report that a designed truncated Interleukin-36 gamma (IL-36 gamma) encoded plasmid can act as a potent adjuvant for several DNA-encoded vaccine targets including human immunodeficiency virus (HIV), influenza, and Zika in immunization models. We further show that the truncated IL-36 gamma (opt-36γt) plasmid provides improved dose sparing as it boosts immunity to a suboptimal dose of a Zika DNA vaccine, resulting in potent protection against a lethal Zika challenge.
Collapse
|
10
|
Souza CK, Rajão DS, Sandbulte MR, Lopes S, Lewis NS, Loving CL, Gauger PC, Vincent AL. The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine 2018; 36:6103-6110. [PMID: 30181048 DOI: 10.1016/j.vaccine.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge.
Collapse
Affiliation(s)
- Carine K Souza
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9090, CEP: 91540-000 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Daniela S Rajão
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | - Matthew R Sandbulte
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA
| | - Sara Lopes
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Nicola S Lewis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Crystal L Loving
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | | | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| |
Collapse
|
11
|
Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathog 2018; 14:e1006913. [PMID: 29474444 PMCID: PMC5841823 DOI: 10.1371/journal.ppat.1006913] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
The native-like, soluble SOSIP.664 trimer based on the BG505 clade A env gene of HIV-1 is immunogenic in various animal species, of which the most studied are rabbits and rhesus macaques. The trimer induces autologous neutralizing antibodies (NAbs) consistently but at a wide range of titers and with incompletely determined specificities. A precise delineation of immunogenic neutralization epitopes on native-like trimers could help strategies to extend the NAb response to heterologous HIV-1 strains. One autologous NAb epitope on the BG505 Env trimer is known to involve residues lining a hole in the glycan shield that is blocked by adding a glycan at either residue 241 or 289. This glycan-hole epitope accounts for the NAb response of most trimer-immunized rabbits but not for that of a substantial subset. Here, we have used a large panel of mutant BG505 Env-pseudotyped viruses to define additional sites. A frequently immunogenic epitope in rabbits is blocked by adding a glycan at residue 465 near the junction of the gp120 V5 loop and β24 strand and is influenced by amino-acid changes in the structurally nearby C3 region. We name this new site the “C3/465 epitope”. Of note is that the C3 region was under selection pressure in the infected infant from whom the BG505 virus was isolated. A third NAb epitope is located in the V1 region of gp120, although it is rarely immunogenic. In macaques, NAb responses induced by BG505 SOSIP trimers are more often directed at the C3/465 epitope than the 241/289-glycan hole. A protective vaccine would constitute a breakthrough in efforts to curb the global spread of HIV. Such a vaccine should induce antibodies inhibiting infection by most strains of the virus that circulate worldwide. Engineered SOSIP trimer mimics of the envelope glycoprotein on the surface of HIV particles, which mediates viral entry into cells, can elicit such neutralizing antibodies in rabbits and rhesus monkeys. These antibodies, however, have a narrow specificity, neutralizing mainly the same virus from which the SOSIP trimer protein was derived. Here, we have mapped the sites on the SOSIP trimer to which these antibodies bind, thereby delineating both an already identified binding site and a previously unknown one. The rabbits produced neutralizing antibodies that recognize both binding sites, but the rhesus monkeys responded predominantly to the newly identified one. As immune responses in monkeys are the more likely to resemble those in humans, the findings described here might aid strategies to steer human antibody responses to sites that are cross-reactive among HIV strains. That outcome would be a major step towards an effective vaccine.
Collapse
|
12
|
A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens. Sci Rep 2015; 5:17642. [PMID: 26631605 PMCID: PMC4668564 DOI: 10.1038/srep17642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.
Collapse
|
13
|
Primate immune responses to HIV-1 Env formulated in the saponin-based adjuvant AbISCO-100 in the presence or absence of TLR9 co-stimulation. Sci Rep 2015; 5:8925. [PMID: 25762407 PMCID: PMC4356977 DOI: 10.1038/srep08925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/11/2015] [Indexed: 11/08/2022] Open
Abstract
Protein-based vaccines require adjuvants to achieve optimal responses. Toll-like receptor (TLR) 9 agonists were previously shown to improve responses to protein-based vaccines, such as the Hepatitis B virus vaccine formulated in alum. Here, we used CpG-C together with the clinically relevant saponin-based adjuvant AbISCO-100/Matrix-M (AbISCO), to assess if TLR9 co-stimulation would quantitatively or qualitatively modulate HIV-1 envelope glycoprotein (Env)-specific B and T cell responses in rhesus macaques. The macaques were inoculated with soluble Env trimers in AbISCO, with or without the addition of CpG-C, using an interval similar to the Hepatitis B virus vaccine. Following a comprehensive evaluation of antigen-specific responses in multiple immune compartments, we show that the Env-specific circulating IgG, memory B cells and plasma cells displayed similar kinetics and magnitude in the presence or absence of CpG-C and that there was no apparent difference between the two groups in the elicited HIV-1 neutralizing antibody titers or antigen-specific CD4+ T cell responses. Importantly, the control of SHIV viremia was significantly improved in animals from both Env-immunized groups relative to adjuvant alone controls, demonstrating the potential of AbISCO to act as a stand-alone adjuvant for Env-based vaccines.
Collapse
|
14
|
Schistosoma mansoni soluble egg antigens enhance Listeria monocytogenes vector HIV-1 vaccine induction of cytotoxic T cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1232-9. [PMID: 24990901 DOI: 10.1128/cvi.00138-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vaccines are an important public health measure for prevention and treatment of diseases. In addition to the vaccine immunogen, many vaccines incorporate adjuvants to stimulate the recipient's immune system and enhance vaccine-specific responses. While vaccine development has advanced from attenuated organism to recombinant protein or use of plasmid DNA, the development of new adjuvants that safely increase immune responses has not kept pace. Previous studies have shown that the complex mixture of molecules that comprise saline soluble egg antigens (SEA) from Schistosoma mansoni eggs functions to promote CD4(+) T helper 2 (Th2) responses. Therefore, we hypothesized that coadministration of SEA with a Listeria vector HIV-1 Gag (Lm-Gag) vaccine would suppress host cytotoxic T lymphocyte (CTL) and T helper 1 (Th1) responses to HIV-1 Gag epitopes. Surprisingly, instead of driving HIV-1 Gag-specific responses toward Th2 type, we found that coadministration of SEA with Lm-Gag vaccine significantly increased the frequency of gamma interferon (IFN-γ)-producing Gag-specific Th1 and CTL responses over that seen in mice administered Lm-Gag only. Analysis of the functionality and durability of vaccine responses suggested that SEA not only enlarged different memory T cell compartments but induced functional and long-lasting vaccine-specific responses as well. These results suggest there are components in SEA that can synergize with potent inducers of strong and durable Th1-type responses such as those to Listeria. We hypothesize that SEA contains moieties that, if defined, can be used to expand type 1 proinflammatory responses for use in vaccines.
Collapse
|
15
|
Fraser CK, Diener KR, Brown MP, Hayball JD. Improving vaccines by incorporating immunological coadjuvants. Expert Rev Vaccines 2014; 6:559-78. [PMID: 17669010 DOI: 10.1586/14760584.6.4.559] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While vaccination continues to be the most successful interventionist health policy to date, infectious disease remains a significant cause of death worldwide. A primary reason that vaccination is not able to generate effective immunity is a lack of appropriate adjuvants capable of initiating the desired immune response. Adjuvant combinations can potentially overcome this problem; however, the possible permutations to consider, which include the route and kinetics of vaccination, as well as combinations of adjuvants, are practically limitless. This review aims to summarize the current understanding of adjuvants and related immunological processes and how this knowledge can and has been applied to the strategic selection of adjuvant combinations as components of vaccines against human infectious disease.
Collapse
Affiliation(s)
- Cara K Fraser
- Experimental Therapeutics Laboratory, Hanson Institute, and School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Australia.
| | | | | | | |
Collapse
|
16
|
Drane D, Gittleson C, Boyle J, Maraskovsky E. ISCOMATRIX™ adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines 2014; 6:761-72. [DOI: 10.1586/14760584.6.5.761] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Buglione-Corbett R, Pouliot K, Marty-Roix R, West K, Wang S, Lien E, Lu S. Serum cytokine profiles associated with specific adjuvants used in a DNA prime-protein boost vaccination strategy. PLoS One 2013; 8:e74820. [PMID: 24019983 PMCID: PMC3760864 DOI: 10.1371/journal.pone.0074820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022] Open
Abstract
In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general.
Collapse
Affiliation(s)
- Rachel Buglione-Corbett
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kimberly Pouliot
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robyn Marty-Roix
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Egil Lien
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
18
|
A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice. Vaccine 2013; 31:1197-203. [DOI: 10.1016/j.vaccine.2012.12.074] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/13/2012] [Accepted: 12/23/2012] [Indexed: 12/14/2022]
|
19
|
Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. J Virol 2013; 87:3053-61. [PMID: 23283953 DOI: 10.1128/jvi.02434-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO(4) or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.
Collapse
|
20
|
Lai RPJ, Seaman MS, Tonks P, Wegmann F, Seilly DJ, Frost SDW, LaBranche CC, Montefiori DC, Dey AK, Srivastava IK, Sattentau Q, Barnett SW, Heeney JL. Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants. PLoS One 2012; 7:e35083. [PMID: 22509385 PMCID: PMC3324409 DOI: 10.1371/journal.pone.0035083] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/08/2012] [Indexed: 12/04/2022] Open
Abstract
Adjuvant formulations capable of inducing high titer and high affinity antibody responses would provide a major advance in the development of vaccines to viral infections such as HIV-1. Although oil-in-water emulsions, such as Freund's adjuvant (FCA/FIA), are known to be potent, their toxicity and reactogenicity make them unacceptable for human use. Here, we explored different adjuvants and compared their ability to elicit antibody responses to FCA/FIA. Recombinant soluble trimeric HIV-1 gp140 antigen was formulated in different adjuvants, including FCA/FIA, Carbopol-971P, Carbopol-974P and the licensed adjuvant MF59, or combinations of MF59 and Carbopol. The antigen-adjuvant formulation was administered in a prime-boost regimen into rabbits, and elicitation of antigen binding and neutralizing antibodies (nAbs) was evaluated. When used individually, only FCA/FIA elicited significantly higher titer of nAbs than the control group (gp140 in PBS (p<0.05)). Sequential prime-boost immunizations with different adjuvants did not offer improvements over the use of FCA/FIA or MF59. Remarkably however, the concurrent use of the combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA (p<0.05). This combination was not associated with any obvious local or systemic adverse effects. Antibody competition indicated that the majority of the neutralizing activities were directed to the CD4 binding site (CD4bs). Increased antibody titers to the gp41 membrane proximal external region (MPER) and gp120 V3 were detected when the more potent adjuvants were used. These data reveal that the combination of Carbopol-971P and MF59 is unusually potent for eliciting nAbs to a variety of HIV-1 nAb epitopes.
Collapse
Affiliation(s)
- Rachel P. J. Lai
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Paul Tonks
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frank Wegmann
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - David J. Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon D. W. Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Antu K. Dey
- Novartis Vaccines and Diagnostics Inc., Massachusetts, United States of America
| | | | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics Inc., Massachusetts, United States of America
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Baz Morelli A, Becher D, Koernig S, Silva A, Drane D, Maraskovsky E. ISCOMATRIX: a novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J Med Microbiol 2012; 61:935-943. [PMID: 22442293 DOI: 10.1099/jmm.0.040857-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ISCOMATRIX adjuvant has antigen delivery and presentation properties as well as immunomodulatory capabilities, which combine to provide enhanced and accelerated immune responses. The responses are broad, including a range of subclasses of antibodies as well as CD4(+) and CD8(+) T-cells. A range of ISCOMATRIX vaccines (ISCOMATRIX adjuvant combined with antigen) have now been tested in clinical trials and have been shown to be generally safe and well tolerated as well as immunogenic, generating both antibody (Ab) and T-cell responses. The mechanisms by which ISCOMATRIX adjuvant facilitates its immune effects are the scope of significant study and indicate that ISCOMATRIX adjuvant (i) rapidly traffics antigen into the cytosol of multiple dendritic cell subsets, (ii) induces the induction of an array of cytokines and chemokines and (iii) links the innate and adaptive immune responses in vivo in a Toll-like-receptor-independent but MyD88-dependent manner. These data highlight the clinical utility of ISCOMATRIX adjuvant in the development of prophylactic and therapeutic vaccines for infectious disease.
Collapse
Affiliation(s)
| | - Dorit Becher
- CSL Research, Bio21 Institute, 30 Flemington Road, Parkville, Australia
| | - Sandra Koernig
- CSL Research, Bio21 Institute, 30 Flemington Road, Parkville, Australia
| | - Anabel Silva
- CSL Research, Bio21 Institute, 30 Flemington Road, Parkville, Australia
| | - Debbie Drane
- CSL Limited, 45 Poplar Road, Parkville, Australia
| | | |
Collapse
|
22
|
An overview on the field of micro- and nanotechnologies for synthetic Peptide-based vaccines. JOURNAL OF DRUG DELIVERY 2011; 2011:181646. [PMID: 21773041 PMCID: PMC3134826 DOI: 10.1155/2011/181646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.
Collapse
|
23
|
Kodama S, Hirano T, Noda K, Umemoto S, Suzuki M. Nasal immunization with plasmid DNA encoding P6 protein and immunostimulatory complexes elicits nontypeable Haemophilus influenzae-specific long-term mucosal immune responses in the nasopharynx. Vaccine 2011; 29:1881-90. [PMID: 21237276 DOI: 10.1016/j.vaccine.2010.12.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/26/2010] [Accepted: 12/30/2010] [Indexed: 11/16/2022]
Abstract
Nasal vaccination is an effective therapeutic regimen for preventing upper respiratory infection, while DNA vaccines represent a new approach for controlling infectious diseases. Here, we examined the efficacy of nasally administered DNA vaccine on upper respiratory infections. A DNA plasmid encoding the P6 outer membrane protein of nontypeable Haemophilus influenzae (NTHi) was constructed. Mice were immunized 3 times intranasally with the DNA plasmid and Matrix-M, an immunostimulatory complex adjuvant. P6-specific immune responses were examined using purified P6 protein. Nasal-associated lymphoid tissue (NALT) CD4(+) T cells were purified and incubated with feeder cells in the presence of P6, and the expression of cytokine mRNA was examined. In addition, NTHi challenges were performed and the level of NTHi was quantified in nasal washes. P6-specific nasal wash IgA and serum IgG were elevated following immunization with the DNA plasmid and Matrix-M. The number of specific IgA-producing cells increased in the nasal passages of the immunized mice. In addition to Th1 and Th2 cytokine expression, IL-17 was detected in P6-specific NALT CD4(+) T cells. Moreover, DNA vaccination enhanced bacterial clearance. These findings suggest that a successful DNA vaccination protocol has been developed for inducing in vivo immune responses against NTHi. Nasal vaccination with P6 DNA vaccine and Matrix-M might be a new effective regimen for the induction of specific protective immunity in the upper respiratory tract.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Otolaryngology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hazama-cho, Yufu, Oita 879-5593, Japan.
| | | | | | | | | |
Collapse
|
24
|
Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010; 33:492-503. [PMID: 21029960 DOI: 10.1016/j.immuni.2010.10.002] [Citation(s) in RCA: 1358] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Indexed: 02/06/2023]
Abstract
Adjuvants enhance immunity to vaccines and experimental antigens by a variety of mechanisms. In the past decade, many receptors and signaling pathways in the innate immune system have been defined and these innate responses strongly influence the adaptive immune response. The focus of this review is to delineate the innate mechanisms by which adjuvants mediate their effects. We highlight how adjuvants can be used to influence the magnitude and alter the quality of the adaptive response in order to provide maximum protection against specific pathogens. Despite the impressive success of currently approved adjuvants for generating immunity to viral and bacterial infections, there remains a need for improved adjuvants that enhance protective antibody responses, especially in populations that respond poorly to current vaccines. However, the larger challenge is to develop vaccines that generate strong T cell immunity with purified or recombinant vaccine antigens.
Collapse
|
25
|
Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:174-196. [PMID: 20872839 PMCID: PMC7169818 DOI: 10.1002/wnan.119] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current vaccines that provide protection against infectious diseases have primarily relied on attenuated or inactivated pathogens. Virus‐like particles (VLPs), comprised of capsid proteins that can initiate an immune response but do not include the genetic material required for replication, promote immunogenicity and have been developed and approved as vaccines in some cases. In addition, many of these VLPs can be used as molecular platforms for genetic fusion or chemical attachment of heterologous antigenic epitopes. This approach has been shown to provide protective immunity against the foreign epitopes in many cases. A variety of VLPs and virus‐based nanoparticles are being developed for use as vaccines and epitope platforms. These particles have the potential to increase efficacy of current vaccines as well as treat diseases for which no effective vaccines are available. WIREs Nanomed Nanobiotechnol 2011 3 174–196 DOI: 10.1002/wnan.119 This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
Collapse
Affiliation(s)
- Emily M Plummer
- Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
das Neves J, Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev 2010; 62:458-77. [PMID: 19914314 DOI: 10.1016/j.addr.2009.11.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/14/2009] [Indexed: 11/27/2022]
Abstract
The HIV/AIDS pandemic is an increasing global burden with devastating health-related and socioeconomic effects. The widespread use of antiretroviral therapy has dramatically improved life quality and expectancy of infected individuals, but limitations of currently available drug regimens and dosage forms, alongside with the extraordinary adapting capacity of the virus, have impaired further success. Alongside, circumventing the escalating number of new infections can only be attained with effective and practical preventative strategies. Recent advances in the field of drug delivery are providing evidence that engineered nanosystems may contribute importantly for the enhancement of current antiretroviral therapy. Additionally, groundwork is also being carried out in the field nanotechnology-based systems for developing preventative solutions for HIV transmission. This manuscript reviews recent advances in the field of nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Particular attention is given to antiretroviral drug targeting to HIV reservoirs and the usefulness of nanosystems for developing topical microbicides and vaccines.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To summarize recent progress in the development of adjuvants with a special focus on adjuvants that enhance B-cell responses to protein-based vaccines. Both established and new experimental approaches are described and also briefly we discuss how adjuvants and virus-based vaccines interact with the immune system. RECENT FINDINGS Two new adjuvants were recently approved for human applications and many others are in preclinical or clinical testing. Significant advances were made to describe the mechanism of action of adjuvants. For example, aluminum hydroxide salts were shown to engage Nalp3, a member of the cytosolic NOD-like receptors and activation of B cells via invariant natural killer cell presentation of alpha-galactosylceramide was described. The effects of Toll-like receptor ligands on B-cell differentiation were further characterized and a peptide derived from IPS-1, a cytosolic signaling molecule, was shown to provide adjuvant effect. Stimulation of protective antibodies against HIV-1 may require extensive antibody affinity maturation, thus long-term exposure or repeated administration of antigen may be needed to induce effective B-cell responses. SUMMARY Advances in our understanding of how specific signaling pathways link innate and adaptive immunity provides a basis for the design of improved adjuvants to promote broad and potent B-cell responses.
Collapse
|
28
|
Carey AJ, Timms P, Rawlinson G, Brumm J, Nilsson K, Harris JM, Beagley KW. ORIGINAL ARTICLE: A Multi-Subunit Chlamydial Vaccine Induces Antibody and Cell-Mediated Immunity in Immunized Koalas (Phascolarctos cinereus): Comparison of Three Different Adjuvants. Am J Reprod Immunol 2010; 63:161-72. [DOI: 10.1111/j.1600-0897.2009.00776.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Madhun AS, Haaheim LR, Nilsen MV, Cox RJ. Intramuscular Matrix-M-adjuvanted virosomal H5N1 vaccine induces high frequencies of multifunctional Th1 CD4+ cells and strong antibody responses in mice. Vaccine 2009; 27:7367-76. [DOI: 10.1016/j.vaccine.2009.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/31/2009] [Accepted: 09/11/2009] [Indexed: 11/26/2022]
|
30
|
CpG oligodeoxynucleotides are a potent adjuvant for an inactivated polio vaccine produced from Sabin strains of poliovirus. Vaccine 2009; 27:6558-63. [PMID: 19729087 DOI: 10.1016/j.vaccine.2009.08.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 08/04/2009] [Accepted: 08/16/2009] [Indexed: 11/22/2022]
Abstract
Poliovirus transmission is controlled globally through world-wide use of a live attenuated oral polio vaccine (OPV). However, the imminence of global poliovirus eradication calls for a switch to the inactivated polio vaccine (IPV). Given the limited manufacturing capacity and high cost of IPV, this switch is unlikely in most developing and undeveloped countries. Adjuvantation is an effective strategy for antigen sparing. In this study, we evaluated the adjuvanticity of CpG oligodeoxynucleotides (CpG-ODN) for an experimental IPV produced from Sabin strains of poliovirus. Our results showed that CpG-ODN, alone or in combination with alum, can significantly enhance both the humoral and cellular immune responses to IPV in mice, and, consequently, the antigen dose could be reduced substantially. Therefore, our study suggests that the global use of IPV could be facilitated by using CpG-ODN or other feasible adjuvants.
Collapse
|
31
|
Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine 2009; 27:4388-401. [PMID: 19450632 DOI: 10.1016/j.vaccine.2009.05.032] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 02/22/2009] [Accepted: 05/09/2009] [Indexed: 10/25/2022]
Abstract
Immunostimulatory complexes (ISCOMs) are particulate antigen delivery systems composed of antigen, cholesterol, phospholipid and saponin, while ISCOMATRIX is a particulate adjuvant comprising cholesterol, phospholipid and saponin but without antigen. The combination of an antigen with ISCOMATRIX is called an ISCOMATRIX vaccine. ISCOMs and ISCOMATRIX combine the advantages of a particulate carrier system with the presence of an in-built adjuvant (Quil A) and consequently have been found to be more immunogenic, while removing its haemolytic activity of the saponin, producing less toxicity. ISCOMs and ISCOMATRIX vaccines have now been shown to induce strong antigen-specific cellular or humoral immune responses to a broad range of antigens of viral, bacterial, parasite origin or tumor in a number of animal species including non-human primates and humans. These vaccines produced by well controlled and reproducible processes have also been evaluated in human clinical trials. In this review, we summarize the recent progress of ISCOMs and ISCOMATRIX, including preparation technology as well as their application in humans and veterinary vaccine designs with particular emphasis on the current understanding of the properties and features of ISCOMs and ISCOMATRIX vaccines to induce immune responses. The mechanisms of adjuvanticity are also discussed in the light of recent findings.
Collapse
Affiliation(s)
- Hong-Xiang Sun
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, Zhejiang, China.
| | | | | |
Collapse
|
32
|
Development of prophylactic and therapeutic vaccines using the ISCOMATRIX adjuvant. Immunol Cell Biol 2009; 87:371-6. [PMID: 19381160 DOI: 10.1038/icb.2009.21] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adjuvants are components that when added to subunit antigen (Ag) vaccines boost their immunogenicity and thus immune efficacy. However, there are few adjuvants that are approved for clinical use resulting in a critical need for the development of safe and effective adjuvants for use in both prophylactic and therapeutic vaccines. The paucity of appropriate adjuvants is more chronic for the development of therapeutic vaccines for cancer and chronic infectious disease, which need to induce cytotoxic T-cell responses via cross-presentation of the vaccine Ag by dendritic cells. The ISCOMATRIX adjuvant represents a unique adjuvant system that facilitates Ag delivery and presentation as well as immunomodulation to provide enhanced and accelerated immune responses. The immune responses generated are of broad specificity to the vaccine Ag, and include robust antibody responses of multiple subclasses as well as both CD4(+) and CD8(+) T-cell responses. Here we discuss our understanding of the mechanisms of action by which ISCOMATRIX adjuvant may facilitate these integrated immune responses and touch on insights gained through its clinical experience.
Collapse
|
33
|
Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood 2008; 112:3671-8. [PMID: 18713944 DOI: 10.1182/blood-2008-05-157016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The development of novel human vaccines would be greatly facilitated by the development of in vivo models that permit preclinical analysis of human immune responses. Here, we show that nonobese diabetic severe combined immunodeficiency (NOD/SCID) beta(2) microglobulin(-/-) mice, engrafted with human CD34+ hematopoietic progenitors and further reconstituted with T cells, can mount specific immune responses against influenza virus vaccines. Live attenuated trivalent influenza virus vaccine induces expansion of CD8+ T cells specific to influenza matrix protein (FluM1) and nonstructural protein 1 in blood, spleen, and lungs. On ex vivo exposure to influenza antigens, antigen-specific CD8+ T cells produce IFN-gamma and express cell-surface CD107a. FluM1-specific CD8+ T cells can be also expanded in mice vaccinated with inactivated trivalent influenza virus vaccine. Expansion of antigen-specific CD8+ T cells is dependent on reconstitution of the human myeloid compartment. Thus, this humanized mouse model permits preclinical testing of vaccines designed to induce cellular immunity, including those against influenza virus. Furthermore, this work sets the stage for systematic analysis of the in vivo functions of human DCs. This, in turn, will allow a new approach to the rational design and preclinical testing of vaccines that cannot be tested in human volunteers.
Collapse
|