1
|
Lee G, Kang HR, Kim A, Park JH, Lee MJ, Kim SM. Preventive effects of quercetin against foot-and-mouth disease virus in vitro and in vivo by inducing type I interferon. Front Microbiol 2023; 14:1121830. [PMID: 37250022 PMCID: PMC10213290 DOI: 10.3389/fmicb.2023.1121830] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Foot-and-mouth disease (FMD) is an acute contagious infectious disease that affects cloven-hoofed animals. Although current emergency FMD vaccines only take effect 7 days after vaccination, antiviral agents, such as quercetin, which is a common flavonoid, could reduce the spread of FMD virus (FMDV) during outbreaks. We investigated the in vitro and in vivo antiviral effects of quercetin against FMDV. Analysis of viral copy numbers showed that quercetin had a dose-dependent inhibitory effect on FMDV at concentrations between 19.5 and 1,250 μM in porcine cells. In addition, we observed a quercetin-induced interferon (IFN)-α protein and interferon-stimulated gene (ISG) upregulation in swine cells. Enzyme-linked immunosorbent assay of sera revealed that quercetin induces the production of IFN-α, IFN-β, IFN-γ, interleukin (IL)-12, and IL-15 in mice. Inoculation of mice with quercetin or a combination of quercetin with an inactivated FMD vaccine enhanced both the survival rate and neutralizing antibody titer. Therefore, we suggest the use of quercetin as a novel and effective antiviral agent for controlling FMDV infection; however, further investigation of its application in livestock is required.
Collapse
|
2
|
Xekouki K, Lagopati N, Demetzos C, Gazouli M, Pippa N. A mini review for lipid-based nanovaccines: from their design to their applications. J Liposome Res 2023:1-20. [PMID: 36856671 DOI: 10.1080/08982104.2023.2170408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.
Collapse
Affiliation(s)
- Katerina Xekouki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
4
|
Fang J, Zhang Q, Xi Y, Lang L, Wang K, Li S. Analysis of the Differential Expression and Antiviral Activity of Porcine Interferon-α In Vitro. Int J Pept Res Ther 2023; 29:42. [PMID: 37065431 PMCID: PMC10082627 DOI: 10.1007/s10989-023-10508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/18/2023]
Abstract
Porcine interferon α (poIFN-α) is a crucial cytokine that can prevent and treat viral infections. Seventeen functional porcine IFN-α subtypes were found in the porcine genome. In this study, multiple sequence alignment was performed to analyze IFN-α protein structure and function. Phylogenetic tree analysis of the poIFN gene family defined the evolutionary relationship of various subtypes. PoIFN-αs, including poIFN-α1-17, were expressed in an Escherichia coli expression system. The antiviral activities of these IFN-α proteins against vesicular stomatitis virus (VSV) and pseudorabies virus (PRV) were examined in PK-15 cells. We found that the antiviral activity of different poIFN-α molecules greatly differed as follows: the poIFN-α14 and 17 subtypes had the greatest antiviral activities against VSV and PRV in PK-15 cells, poIFN-α1, 2, 3, and 8 exhibited lower biological activities, and poIFN-α4, 5, 6, 7, 9, 10, 11, 12, 13, and 16 had minimal or no effect in the tested target cell‒virus systems. Moreover, our studies demonstrated that the antiviral activity of IFN-α was positively correlated with the induction of IFN-stimulated genes, such as 2'-5' oligoadenylate synthetase 1 (OSA1), interferon-stimulated gene 15 (ISG15), myxoma resistance protein 1 (Mx1), and protein kinase R (PKR). Thus, our experimental results provide important information about the antiviral functions and mechanism of poIFN-α.
Collapse
Affiliation(s)
- Jianyu Fang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingxian Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Xi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Animal Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Limin Lang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Keling Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Animal Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| |
Collapse
|
5
|
Bolhassani A. Lipid-Based Delivery Systems in Development of Genetic and Subunit Vaccines. Mol Biotechnol 2022; 65:669-698. [PMID: 36462102 PMCID: PMC9734811 DOI: 10.1007/s12033-022-00624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/26/2022] [Indexed: 12/07/2022]
Abstract
Lipidic carriers are composed of natural, synthetic, or physiological lipid/phospholipid materials. The flexibility of lipid-based delivery systems for transferring a variety of molecules such as immunomodulators, antigens, and drugs play a key role in design of effective vaccination and therapeutic strategies against infectious and non-infectious diseases. Genetic and subunit vaccines are two major groups of promising vaccines that have the potential for improving the protective potency against different diseases. These vaccine strategies rely greatly on delivery systems with various functions, including cargo protection, targeted delivery, high bioavailability, controlled release of antigens, selective induction of antigen-specific humoral or cellular immune responses, and low side effects. Lipidic carriers play a key role in local tissue distribution, retention, trafficking, uptake and processing by antigen-presenting cells. Moreover, lipid nanoparticles have successfully achieved to the clinic for the delivery of mRNA. Their broad potential was shown by the recent approval of COVID-19 mRNA vaccines. However, size, charge, architecture, and composition need to be characterized to develop a standard lipidic carrier. Regarding the major roles of lipid-based delivery systems in increasing the efficiency and safety of vaccine strategies against different diseases, this review concentrates on their recent advancements in preclinical and clinical trials.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Razzuoli E, Armando F, De Paolis L, Ciurkiewicz M, Amadori M. The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. Pathogens 2022; 11:175. [PMID: 35215119 PMCID: PMC8875149 DOI: 10.3390/pathogens11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of cytokines that play a pivotal role in orchestrating the innate immune response during viral infections, thus representing the first line of defense in the host. After binding to their respective receptors, they are able to elicit a plethora of biological activities, by initiating signaling cascades which lead to the transcription of genes involved in antiviral, anti-inflammatory, immunomodulatory and antitumoral effector mechanisms. In hindsight, it is not surprising that viruses have evolved multiple IFN escape strategies toward efficient replication in the host. Hence, in order to achieve insight into preventive and treatment strategies, it is essential to explore the mechanisms underlying the IFN response to viral infections and the constraints thereof. Accordingly, this review is focused on three RNA and three DNA viruses of major importance in the swine farming sector, aiming to provide essential data as to how the IFN system modulates the antiviral immune response, and is affected by diverse, virus-driven, immune escape mechanisms.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Massimo Amadori
- National Network of Veterinary Immunology (RNIV), Via Istria 3, 25125 Brescia, Italy;
| |
Collapse
|
7
|
Rodríguez-Habibe I, Celis-Giraldo C, Patarroyo ME, Avendaño C, Patarroyo MA. A Comprehensive Review of the Immunological Response against Foot-and-Mouth Disease Virus Infection and Its Evasion Mechanisms. Vaccines (Basel) 2020; 8:vaccines8040764. [PMID: 33327628 PMCID: PMC7765147 DOI: 10.3390/vaccines8040764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild animals from this order, and a few non-cloven hoofed species, such as mice and elephants. FMD causes large-scale economic losses for agricultural production systems; morbidity is almost 100% in an affected population, accompanied by a high mortality rate in young animals due to myocarditis or an inability to suckle if a mother is ill. The aetiological agent is an Aphthovirus from the family Picornaviridae, having seven serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia 1. Serotype variability means that an immune response is serospecific and vaccines are thus designed to protect against each serotype independently. A host’s adaptive immune response is key in defence against pathogens; however, this virus uses successful strategies (along with most microorganisms) enabling it to evade a host’s immune system to rapidly and efficiently establish itself within such host, and thus remain there. This review has been aimed at an in-depth analysis of the immune response in cattle and swine regarding FMD virus, the possible evasion mechanisms used by the virus and describing some immunological differences regarding these species. Such aspects can provide pertinent knowledge for developing new FMD control and prevention strategies.
Collapse
Affiliation(s)
- Ibett Rodríguez-Habibe
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
- Masters Programme in Veterinary Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
| | - Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
- Correspondence: (C.A.); (M.A.P.); Tel.: +57-6684-700 (C.A.); +57-1324-4672 (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: (C.A.); (M.A.P.); Tel.: +57-6684-700 (C.A.); +57-1324-4672 (M.A.P.)
| |
Collapse
|
8
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
9
|
Yang R, Tao Y, Li G, Chen J, Shu J, He Y. Immunoenhancement of Recombinant Neisseria meningitides PorB Protein on Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Genetically Engineered Vaccines. Protein Pept Lett 2019; 26:776-784. [PMID: 31208304 DOI: 10.2174/0929866526666190430115052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Porcine circovirus and Mycoplasma hyopneumoniae can cause respiratory diseases in pigs, which cause serious economic loss in the worldwide pig industry. Currently, these infections are mainly prevented and controlled by vaccination. The new vaccines on the market are mainly composed of subunits and inactivated vaccines but usually have lower antigenicity than traditional live vaccines. Thus, there is an increasing need to develop new adjuvants that can cause rapid and long-lasting immunity to enhance the antigenic efficacy for vaccines. Studies have shown that meningococcal porin PorB can act as a ligand to combine with Toll-like receptors to activate the production of immunological projections and act as a vaccine immunological adjuvant. OBJECTIVE In this article, we expressed and purified the recombinant PorB protein and verified its immunogenicity against porcine circovirus type 2 and Mycoplasma hyopneumoniae genetically engineered vaccine. METHODS In this article, we used prokaryotic expression to express and purify recombinant PorB protein, four different concentrations of PorB protein, Freund's adjuvant with two genetically engineered vaccines were combined with subcutaneous immunization of mice. RESULTS Our study shows that the appropriate dose of the recombinant protein PorB can enhance the levels of humoral and cellular responses induced by two genetically engineered vaccines in a short period of time in mice. The PorB adjuvant group may cause statistically higher antibody titers for both genetically engineered vaccines compared to Freund's commercial adjuvant (P<0.001). CONCLUSION The recombinant protein PorB may be a good candidate adjuvant for improving the protective effect of vaccines against porcine circovirus type 2 and Mycoplasma hyopneumoniae, and the protein can be used for future practical applications.
Collapse
Affiliation(s)
- Rui Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yu Tao
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gaojian Li
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yulong He
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
10
|
Foot-and-Mouth Disease Virus: Immunobiology, Advances in Vaccines and Vaccination Strategies Addressing Vaccine Failures-An Indian Perspective. Vaccines (Basel) 2019; 7:vaccines7030090. [PMID: 31426368 PMCID: PMC6789522 DOI: 10.3390/vaccines7030090] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
A mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program.
Collapse
|
11
|
Liu L, Fan W, Zhang H, Zhang S, Cui L, Wang M, Bai X, Yang W, Sun L, Yang L, Liu W, Li J. Interferon as a Mucosal Adjuvant for an Influenza Vaccine in Pigs. Virol Sin 2019; 34:324-333. [PMID: 30989429 DOI: 10.1007/s12250-019-00102-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/21/2019] [Indexed: 11/30/2022] Open
Abstract
Interferon, a natural protein that is produced by a variety of cells during viral infection, activates the transcription of multiple functional genes in cells, regulates synergy among various signaling pathways, and mediates many biological functions such as antiviral activity, immune regulation, and cell growth. However, clinical research on interferon in livestock is lacking. In this study, recombinant porcine interferon (PoIFNα) was used as an adjuvant, in combination with inactivated influenza virus, to vaccinate 6-week-old pigs via nasal infusion. The transcription of target genes was then monitored and the functions of PoIFNα were determined with respect to the activation of mucosal immunity. We found that a combination of low-dose PoIFNα and inactivated influenza virus could significantly up-regulate the expression of immunoregulatory cytokines such as IL-2, IL-18, IFN-γ, IL-6, and IL-10 by real-time PCR, suggesting the induction of a strong mucosal innate immune response after administration. In addition, low-dose PoIFNα can significant enhancing the transcription of genes encoding homing factors including CCR9 and CCR10 (P < 0.001), thereby resulting in the induction of higher levels of HA-specific antibodies (P < 0.05), which can be determined by ELISA and IFA. Post-immunization challenges with H1N1 virus demonstrated that PoIFNα, combined with inactivated influenza virus, could alleviate clinical signs in pigs during the early stages of viral infection. These studies reveal low-dose PoIFNα as a potential mucosal adjuvant for influenza virus in pigs.
Collapse
Affiliation(s)
- Lirong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Evaluation on the efficacy and immunogenicity of recombinant DNA plasmids expressing S gene from porcine epidemic diarrhea virus and VP7 gene from porcine rotavirus. Braz J Microbiol 2018; 50:279-286. [PMID: 30637649 PMCID: PMC6863295 DOI: 10.1007/s42770-018-0022-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022] Open
Abstract
Porcine rotavirus (PoRV) and porcine epidemic diarrhea virus (PEDV) usually co-infect pigs in modern large-scale piggery, which both can cause severe diarrhea in newborn piglets and lead to significant economic losses to the pig industry. The VP7 protein is the main coat protein of PoRV, and the S protein is the main structural protein of PEDV, which are capable of inducing neutralizing antibodies in vivo. In this study, a DNA vaccine pPI-2.EGFP.VP7.S co-expressing VP7 protein of PoRV and S protein of PEDV was constructed. Six 8-week-old mice were immunized with the recombinant plasmid pPI-2.EGFP.VP7.S. The high humoral immune responses (virus specific antibody) and cellular immune responses (IFN-γ, IL-4, and spleen lymphocyte proliferation) were evaluated. The immune effect through intramuscular injection increased with plasmid dose when compared with subcutaneous injection. The immune-enhancing effect of IFN-α adjuvant was excellent compared with pig spleen transfer factor and IL-12 adjuvant. These results demonstrated that pPI-2.EGFP.VP7.S possess the immunological functions of the VP7 proteins of PoRV and S proteins of PEDV, indicating that pPI-2.EGFP.VP7.S is a candidate vaccine for porcine rotaviral infection (PoR) and porcine epidemic diarrhea (PED).
Collapse
|
13
|
Abstract
Vaccines are essential tools for the prevention and control of infectious diseases in animals. One of the most important steps in vaccine development is the selection of a suitable adjuvant. The focus of this review is the adjuvants used in vaccines for animals. We will discuss current commercial adjuvants and experimental formulations with attention to mineral salts, emulsions, bacterial-derived components, saponins, and several other immunoactive compounds. In addition, we will also examine the mechanisms of action for different adjuvants, examples of adjuvant combinations in one vaccine formulation, and challenges in the research and development of veterinary vaccine adjuvants.
Collapse
Affiliation(s)
- Yulia Burakova
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas.,2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Rachel Madera
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Scott McVey
- 3 United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas
| | - John R Schlup
- 2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Jishu Shi
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
14
|
Fu Y, Zhu Z, Chang H, Liu Z, Liu J, Chen H. Comparative transcriptome analyses indicate enhanced cellular protection against FMDV in PK15 cells pretreated with IFN-γ. Gene 2016; 586:206-15. [PMID: 27018244 DOI: 10.1016/j.gene.2016.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 01/23/2023]
Abstract
Interferon gamma (IFN-γ) can induce a host antiviral response to foot and mouth disease virus (FMDV) in vivo and in vitro. To elucidate the mechanism of IFN-γ anti FMDV infection in host cells, high-throughput RNA sequencing was analyzed for systemic changes in gene expression profiles in PK15 cells infected by FMDV with or without IFN-γ pretreatment. More than 25 million reads, covering 1.2-1.5 Gb, were analyzed from each experiment panel. FMDV challenge altered the transcription of genes involved in positively and negatively regulating cell death or apoptosis; however, the expected immune suppression response was not obvious. IFN-γ pretreatment combined with FMDV infection normalized the increase in apoptosis. Furthermore, the transcription factors required for IFN-γ functioning, STAT1 and IRF1 were up-regulated by IFN-γ pretreatment and stimulated downstream IFN-stimulated genes (ISGs). These induced ISGs are mainly responsible for antigen processing, antigen presentation or antiviral defense. Interestingly, a synergistic effect on some ISGs, including OAS1, OAS2, MX1, MX2, RIG-I and IFIT1, was observed in the combined treatment compared to the IFN-γ treatment alone. The suggested effects identified by RNA sequencing were consistent with cellular morphology changes and confirmed by related protein markers. This is the first report exploring transcriptome alterations introduced by FMDV infection with or without IFN-γ pretreatment. The identified key host genes that control cell survival in vitro broaden our comprehensive understanding of how IFN-γ inhibits FMDV infection and may shed light on developing improved FMD control approaches.
Collapse
Affiliation(s)
- Yin Fu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Zesen Zhu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jing Liu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Huiyong Chen
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
15
|
Kuo HP, Chung CL, Hung YF, Lai YS, Chiou PP, Lu MW, Kong ZL. Comparison of the responses of different recombinant fish type I interferons against betanodavirus infection in grouper. FISH & SHELLFISH IMMUNOLOGY 2016; 49:143-153. [PMID: 26691305 DOI: 10.1016/j.fsi.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
The nervous necrosis virus (NNV) is an aquatic virus that can infect more than 30 species including the grouper, which is a valuable fish species in Taiwan. NNV causes up to 90-100% mortality in the aquaculture industry. Interferons (IFNs) are a family of cytokines that stimulate the expression of numerous proteins to protect the host against viruses and possess very unique specific characteristics in fish. The cross-reactivity of heterologous IFNs on grouper cells and larvae has not been well-studied to date. To evaluate and compare the anti-NNV effect of different fish IFNs in grouper, we successfully synthesized, subcloned, expressed and purified several fish type I IFNs in the present study: grouper (gIFN), salmon (sIFN), seabass (sbIFN) and tilapia (tpIFN). The gIFN and sIFN proteins up-regulated myxovirus resistance protein (Mx) gene expression in grouper kidney (GK) cells, but similar effects were not observed for sbIFN and tpIFN. Following co- and pre-treatment with the 4 types of IFNs with NNV infection in GK cells, sIFN exhibited the strongest antiviral ability to suppress NNV gene replication (especially at 24 h) and significantly reduced the cytopathic effect (CPE) at 72 h, followed by gIFN. Unsurprisingly, sbIFN and tpIFN had no significant effect on CPE but slightly suppressed NNV gene replication. The cytotoxicity of these four fish IFNs on GK cells was also examined for the first time. In the in vivo test, we confirmed that gIFN and sIFN had a significant protective effect against NNV when administered by intraperitoneal (IP) injection and the oral route in Malabar grouper (Epinephelus malabaricus) larvae. This study compared the protective effects of IFNs from various fish species against NNV and demonstrated crosstalk between sIFN and grouper cells for the first time. These results provide information concerning the efficacy of fish IFNs for possible therapeutic applications.
Collapse
Affiliation(s)
- Hsiang-Ping Kuo
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan, ROC; COO of Sea Party International Co., Ltd., Taipei 104, Taiwan, ROC
| | - Chia-Ling Chung
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Yu-Fang Hung
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Yu-Shen Lai
- Institute of Biotechnology, National Ilan University, Ilan 260, Taiwan, ROC
| | - Pinwen P Chiou
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, ROC.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan, ROC.
| |
Collapse
|
16
|
Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs. J Virol 2015; 89:8267-79. [PMID: 26041279 DOI: 10.1128/jvi.00766-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against FMDV, although the virus has associated mechanisms of resistance to type I interferons and siRNAs. We have developed recombinant adenoviruses for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) to enhance the inhibitory effects of these antiviral agents observed in previous studies. Here, we show enhanced antiviral effects against FMDV by combination treatment with Ad-porcine IFN-αγ and Ad-3siRNA to overcome the mechanisms of resistance of FMDV in swine.
Collapse
|
17
|
Galliher-Beckley A, Pappan LK, Madera R, Burakova Y, Waters A, Nickles M, Li X, Nietfeld J, Schlup JR, Zhong Q, McVey S, Dritz SS, Shi J. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines. Vaccine 2015; 33:2903-8. [PMID: 25936722 DOI: 10.1016/j.vaccine.2015.04.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
Abstract
Vaccines consisting of subunit or inactivated bacteria/virus and potent adjuvants are widely used to control and prevent infectious diseases. Because inactivated and subunit antigens are often less antigenic than live microbes, a growing need exists for the development of new and improved vaccine adjuvants that can elicit rapid and long-lasting immunity. Here we describe the development and characterization of a novel oil-in-water emulsion, OW-14. OW-14 contains low-cost plant-based emulsifiers and was added to antigen at a ratio of 1:3 with simple hand mixing. OW-14 was stable for prolonged periods of time at temperatures ranging from 4 to 40°C and could be sterilized by autoclaving. Our results showed that OW-14 adjuvanted inactivated swine influenza viruses (SIV; H3N2 and H1N1) and Mycoplasma hyopneumoniae (M. hyo) vaccines could be safely administered to piglets in two doses, three weeks apart. Injection sites were monitored and no adverse reactions were observed. Vaccinated pigs developed high and prolonged antibody titers to both SIV and M. hyo. Interestingly, antibody titers were either comparable or greater than those produced by commercially available FluSure (SIV) or RespiSure (M. hyo) vaccines. We also found that OW-14 can induce high antibody responses in pigs that were vaccinated with a decreased antigen dose. This study provides direct evidence that we have developed an easy-to-use and low-cost emulsion that can act as a powerful adjuvant in two common types of swine vaccines.
Collapse
Affiliation(s)
- A Galliher-Beckley
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - L K Pappan
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Y Burakova
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Chemical Engineering, College of Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - A Waters
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - M Nickles
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - X Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - J Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - J R Schlup
- Department of Chemical Engineering, College of Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Q Zhong
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - S McVey
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, KS 66502, USA
| | - S S Dritz
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - J Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
18
|
Kaur G, STS C, Nimker C, Bansal A. rIL-22 as an adjuvant enhances the immunogenicity of rGroEL in mice and its protective efficacy against S. Typhi and S. Typhimurium. Cell Mol Immunol 2015; 12:96-106. [PMID: 24858422 PMCID: PMC4654370 DOI: 10.1038/cmi.2014.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/28/2014] [Accepted: 04/16/2014] [Indexed: 01/05/2023] Open
Abstract
Salmonella infection, ranging from mild, self-limiting diarrhea to severe gastrointestinal, septicemic disease and enteric fever, is a global health problem both in humans and animals. Rapid development of microbial drug resistance has led to a need for efficacious and affordable vaccines against Salmonella. Microbial heat shock proteins (HSPs), including HSP60 and HSP70, are the dominant antigens that promote the host immune response. Co-administration of these antigens with cytokines, such as IL-22, which plays an important role in antimicrobial defense, can enhance the immune response and protection against pathogens. Therefore, the aim of the present study was to determine the immunogenicity of rGroEL (Hsp60) of S. Typhi, alone or administered in combination with murine rIL-22, and its protective efficacy against lethal infection with Salmonella, in mice. There was appreciable stimulation of the humoral and cell-mediated immune responses in mice immunized with rGroEL alone. However, co-administration of rGroEL with rIL-22 further boosted the antibody titers (IgG, IgG1 and IgG2a), T-cell proliferative responses and the secretion of both Th1 and Th2 cytokines. Additionally, rGroEL alone accorded 65%-70% protection against lethal challenge with S. Typhi and S. Typhimurium, which increased to 90% when co-administered with rIL-22.
Collapse
|
19
|
Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:159-82. [PMID: 25364509 DOI: 10.1177/2051013614541440] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome-DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized.
Collapse
Affiliation(s)
- Reto A Schwendener
- Institute of Molecular Cancer Research, Laboratory of Liposome Research, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
20
|
|
21
|
Baird FJ, Lopata AL. The dichotomy of pathogens and allergens in vaccination approaches. Front Microbiol 2014; 5:365. [PMID: 25076945 PMCID: PMC4100532 DOI: 10.3389/fmicb.2014.00365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022] Open
Abstract
Traditional prophylactic vaccination to prevent illness is the primary objective of many research activities worldwide. The golden age of vaccination began with an approach called variolation in ancient China and the evolution of vaccines still continues today with modern developments such as the production of Gardasil(TM) against HPV and cervical cancer. The historical aspect of how different forms of vaccination have changed the face of medicine and communities is important as it dictates our future approaches on both a local and global scale. From the eradication of smallpox to the use of an experimental vaccine to save a species, this review will explore these successes in infectious disease vaccination and also discuss a few significant failures which have hampered our efforts to eradicate certain diseases. The second part of the review will explore designing a prophylactic vaccine for the growing global health concern that is allergy. Allergies are an emerging global health burden. Of particular concern is the rise of food allergies in developed countries where 1 in 10 children is currently affected. The formation of an allergic response results from the recognition of a foreign component by our immune system that is usually encountered on a regular basis. This may be a dust-mite or a prawn but this inappropriate immune response can result in a life-time of food avoidance and lifestyle restrictions. These foreign components are very similar to antigens derived from infectious pathogens. The question arises: should the allergy community be focussing on protective measures rather than ongoing therapeutic interventions to deal with these chronic inflammatory conditions? We will explore the difficulties and benefits of prophylactic vaccination against various allergens by means of genetic technology that will dictate how vaccination against allergens could be utilized in the near future.
Collapse
Affiliation(s)
- Fiona J. Baird
- Centre for Biodiscovery & Molecular Development of Therapeutics, Centre for Biosecurity in Tropical Infectious Diseases, Australian Institute of Tropical Health & Medicine, James Cook UniversityTownsville, QLD, Australia
- Molecular Immunology Group, School of Pharmacy and Molecular Biology, James Cook UniversityTownsville, QLD, Australia
| | - Andreas L. Lopata
- Centre for Biodiscovery & Molecular Development of Therapeutics, Centre for Biosecurity in Tropical Infectious Diseases, Australian Institute of Tropical Health & Medicine, James Cook UniversityTownsville, QLD, Australia
- Molecular Immunology Group, School of Pharmacy and Molecular Biology, James Cook UniversityTownsville, QLD, Australia
| |
Collapse
|
22
|
Fan W, Xu L, Ren L, Qu H, Li J, Liang J, Liu W, Yang L, Luo T. Functional characterization of canine interferon-lambda. J Interferon Cytokine Res 2014; 34:848-57. [PMID: 24950142 DOI: 10.1089/jir.2014.0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study, we provide the first comprehensive annotation of canine interferon-λ (CaIFN-λ, type III IFN). Phylogenetic analysis based on genomic sequences indicated that CaIFN-λ is located in the same branch with Swine IFN-λ1 (SwIFN-λ), Bat IFN-λ1 (BaIFN-λ), and human IFN-λ1 (HuIFN-λ1). CaIFN-λ was cloned, expressed in Escherichia coli, and purified to further investigate the biological activity in vitro. The recombinant CaIFN-λ (rCaIFN-λ) displayed potent antiviral activity on both homologous and heterologous animal cells in terms of inhibiting the replication of the New Jersey serotype of vesicular stomatitis virus (VSV), canine parvovirus, and influenza virus A/WSN/33 (H1N1), respectively. In addition, we also found that rCaIFN-λ exhibits a significant antiproliferative response against A72 canine tumor cells and MDCK cells in a dose-dependent manner. Furthermore, CaIFN-λ activated the JAK-STAT signaling pathway. To evaluate the expression of CaIFN-λ induced by virus and the expression of IFN-stimulated genes (ISGs) induced by rCaIFN-λ in the MDCK cells, we measured the relative mRNA level of CaIFN-λ and ISGs (ISG15, Mx1, and 2'5'-OAS) by quantitative real-time PCR and found that the mRNA level of CaIFN-λ and the ISGs significantly increased after treating the MDCK cells with viruses and rCaIFN-λ protein, respectively. Finally, to evaluate the binding activity of rCaIFN-λ to its receptor, we expressed the extracellular domain of the canine IFN-λ receptor 1 (CaIFN-λR1-EC) and determined the binding activity via ELISA. Our results demonstrated that rCaIFN-λ bound tightly to recombinant CaIFN-λR1-EC (rCaIFN-λR1-EC).
Collapse
Affiliation(s)
- Wenhui Fan
- 1 College of Animal Sciences and Veterinary Medicine, Guangxi University , Nanning, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bracci L, La Sorsa V, Belardelli F, Proietti E. Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Rev Vaccines 2014; 7:373-81. [DOI: 10.1586/14760584.7.3.373] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Poly(I:C) combined with multi-epitope protein vaccine completely protects against virulent foot-and-mouth disease virus challenge in pigs. Antiviral Res 2012; 97:145-53. [PMID: 23219974 DOI: 10.1016/j.antiviral.2012.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 11/20/2022]
Abstract
We designed a series of epitope proteins containing the G-H loops of three topotypes of foot-and-mouth disease virus (FMDV) serotype O and promiscuous artificial Th sites and selected one epitope protein (designated as B4) with optimal immunogenicity and cross-reactivity. Three out of five pigs immunized intramuscularly with this B4 were protected against virulent FMDV challenge after a single inoculation, while all pigs co-immunized with B4 and polyinosinic-cytidylic acid [poly(I:C)] conferred complete protection following FMDV challenge. Additionally, we demonstrated that all pigs co-immunized with B4 and poly(I:C) elicited FMDV-specific neutralizing antibodies, total IgG antibodies, type I interferon (IFN-α/β) and cytokines IFN-γ. In contrast, some pigs immunized with B4 alone produced parameters mentioned above, while some not, suggesting that poly(I:C) reduced animal-to-animal variations in both cellular and humoral responses often observed in association with epitope-based vaccines and up-regulated T-cell immunity often poorly observed in protein-based vaccines. We propose that poly(I:C) is an effective adjuvant for this epitope-based vaccine of FMDV. This combination could yield an effective and safe candidate vaccine for the control and eradication of FMD in pigs.
Collapse
|
25
|
Korsholm KS, Andersen PL, Christensen D. Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev Vaccines 2012; 11:561-77. [PMID: 22827242 DOI: 10.1586/erv.12.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic liposome formulations can function as efficient vaccine adjuvants. However, due to the highly diverse nature of lipids, cationic liposomes have different physical-chemical characteristics that influence their adjuvant mechanisms and their relevance for use in different vaccines. These characteristics can be further manipulated by incorporation of additional lipids or stabilizers, and inclusion of carefully selected immunostimulators is a feasible strategy when tailoring cationic liposomal adjuvants for specific disease targets. Thus, cationic liposomes present a plasticity, which makes them promising adjuvants for future vaccines. This versatility has also led to a vast amount of literature on different experimental liposomal formulations in combination with a wide range of immunostimulators. Here, we have compiled information about the animal challenge models and administration routes that have been used to study vaccine adjuvants based on cationic liposomes and provide an overview of the applicability, progress and clinical status of cationic liposomal vaccine adjuvants.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, DK-2300 Copenhagen, Denmark.
| | | | | |
Collapse
|
26
|
Zhao X, Cheng G, Jiao Y, Yan W, Liu M, Zheng Z. Cloning and Characterization of Porcine Interferon-δ-Related Genes Identified by Genomic Database Screening. J Interferon Cytokine Res 2012; 32:378-85. [DOI: 10.1089/jir.2011.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P.R. China
| | - Gong Cheng
- Center for Infectious Diseases Reasearch, School of Medicine, Tsinghua University, Beijing, P.R. China
| | - Ye Jiao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P.R. China
| | - Weiyao Yan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P.R. China
| | - Mingqiu Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P.R. China
| | - Zhaoxin Zheng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P.R. China
| |
Collapse
|
27
|
Gaikwad S, Kumar S, Prashanth T, Rama Reddy G, Sanyasi Suryanarayana V, Joyappa Dechamma H. Transcriptional Expression Profile of Toll Like Receptor 1 - 10 mRNA in Bovine Peripheral Mononuclear Cells in Response to Foot and Mouth Disease Antigens. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.24053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Toporovski R, Morrow MP, Weiner DB. Interferons as potential adjuvants in prophylactic vaccines. Expert Opin Biol Ther 2011; 10:1489-500. [PMID: 20836750 DOI: 10.1517/14712598.2010.521495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE OF THE FIELD Vaccines are still one of the best approaches to manage infectious diseases. Despite the advances in drug therapies, prophylactic medicine is still more cost efficient and minimizes the burden in the heath system. Despite all the research in vaccine development, many infectious diseases are still without an effective vaccine. The use of adjuvants in vaccines has been one successful strategy to increase efficacy. IFNs are widely expressed cytokines that have potent antiviral effects. These cytokines are the first line of defense against viral infections and have important roles in immuno surveillance for malignant cells. One of the most promising uses of IFNs is as adjuvants that are co-applied with antigen in vaccines. AREAS COVERED IN THIS REVIEW In this review, a cumulative analysis of many of the studies that have used IFN-α, -β, -γ and -λ as adjuvants between 1987 and the present suggests that many do possess the capacity to serve as potent immunoadjuvants for vaccination. WHAT THE READER WILL GAIN This review provides a very large collection of studies involving all types of IFNs used as adjuvants in vaccines using different vaccination strategies and various animal models. TAKE HOME MESSAGE It is clear that the use of IFNs not only improved the efficacy and safety of most vaccines, but also had important immunomodulatory effect directing T(H)1 immune responses.
Collapse
Affiliation(s)
- Roberta Toporovski
- University of Pennsylvania School of Medicine, Department of Pathology and Laboratory Medicine, 422 Curie Blvd, 505 Stellar Chance Labs, Philadelphia, PA, USA
| | | | | |
Collapse
|
29
|
|
30
|
Toledo JR, Barrera M, Farnós O, Gómez S, Rodríguez MP, Aguero F, Ormazabal V, Parra NC, Suárez L, Sánchez O. Human αIFN co-formulated with milk derived E2-CSFV protein induce early full protection in vaccinated pigs. Vaccine 2010; 28:7907-14. [PMID: 20933567 DOI: 10.1016/j.vaccine.2010.09.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/06/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
Subunit vaccines are a suitable alternative for the control of classical swine fever. However, such vaccines have as the main drawback the relatively long period of time required to induce a protective response, which hampers their use under outbreak conditions. In this work, type I interferon is used as an immunostimulating molecule in order to increase the immunogenicity of a vaccine candidate based on the E2-CSFV antigen produced in goat milk. Pigs vaccinated with E2-CSFV antigen co-formulated with recombinant human alpha interferon were protected against clinical signs and viremia as early as 7 days post-vaccination. It was also demonstrated that interferon stimulates a response of specific anti-CSFV neutralizing antibodies. The present work constitutes the first report of a subunit vaccine able to confer complete protection by the end of the first week after vaccination. These results suggest that the E2-CSFV antigen combined with type I interferons could be potentially used under outbreak conditions to stop CSFV spread and for eradication programs in CSF enzootic areas.
Collapse
Affiliation(s)
- Jorge R Toledo
- Department of Physiopathology, Faculty of Biological Sciences, University of Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
McCullough KC, Summerfield A. Targeting the porcine immune system--particulate vaccines in the 21st century. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:394-409. [PMID: 18771683 PMCID: PMC7103233 DOI: 10.1016/j.dci.2008.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 05/15/2023]
Abstract
During the last decade, the propagation of immunological knowledge describing the critical role of dendritic cells (DC) in the induction of efficacious immune responses has promoted research and development of vaccines systematically targeting DC. Based on the promise for the rational design of vaccine platforms, the current review will provide an update on particle-based vaccines of both viral and synthetic origin, giving examples of recombinant virus carriers such as adenoviruses and biodegradable particulate carriers. The viral carriers carry pathogen-associated molecular patterns (PAMP), used by the original virus for targeting DC, and are particularly efficient and versatile gene delivery vectors. Efforts in the field of synthetic vaccine carriers are focussing on decorating the particle surface with ligands for DC receptors such as heparan sulphate glycosaminoglycan structures, integrins, Siglecs, galectins, C-type lectins and toll-like receptors. The emphasis of this review will be placed on targeting the porcine immune system, but reference will be made to advances with murine and human vaccine delivery systems where information on DC targeting is available.
Collapse
Affiliation(s)
- Kenneth C McCullough
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | |
Collapse
|
32
|
Park SH, Lee SR, Hyun BH, Kim BM, Sung YC. Codelivery of PEG-IFN-α inhibits HCV DNA vaccine-induced T cell responses but not humoral responses in African green monkeys. Vaccine 2008; 26:3978-83. [DOI: 10.1016/j.vaccine.2008.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 04/17/2008] [Accepted: 05/09/2008] [Indexed: 11/28/2022]
|
33
|
Ooi EL, Verjan N, Haraguchi I, Oshima T, Kondo H, Hirono I, Aoki T, Kiyono H, Yuki Y. Innate immunomodulation with recombinant interferon-alpha enhances resistance of rainbow trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1211-1220. [PMID: 18466972 DOI: 10.1016/j.dci.2008.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/12/2008] [Accepted: 03/25/2008] [Indexed: 05/26/2023]
Abstract
We examined the in vivo immunostimulatory effects of a recombinant Atlantic salmon (Salmo salar) interferon-alpha2 (rSasaIFN-alpha2). The mature rSasaIFN-alpha2, expressed and purified from Escherichia coli, was administered to rainbow trout (Oncorhynchus mykiss) via the oral, immersion, or intraperitoneal (IP) injection route. Injection of rSasaIFN-alpha2 at 0.1microg/g fish gave significantly greater protection than a phosphate buffered saline (PBS) injection against a lethal challenge of infectious hematopoietic necrosis virus (IHNV), with a relative percent survival of 39%. Relative percent survival (RPS) increased significantly to 92% when the fish were injected with rSasaIFN-alpha2 at 1microg/g fish. Antiviral protection was evident for up to 7 days post-injection of rSasaIFN-alpha2. Administration of rSasaIFN-alpha2 by the oral or immersion route was not protective, and the fish succumbed to virus infection. The level of systemic IFN-induced expression of the Mx1 gene was significantly greater (p<0.01) in the IFN-injected group than in the PBS-injected group, and this was correlated with the fish survival rates in the challenge study. We used relative quantitative real-time polymerase chain reactions to examine the systemic expression of several other IFN-induced genes (including genes for IFN1, IFN regulatory factors 1 and 2, MHC-I, STAT1, vig-1, and GBP) and found that their expression was significantly increased 1-day post-rSasaIFN-alpha2 injection. Expression of the IFN-gamma and interleukin-1beta genes was not significantly increased. Thus, a salmonid rIFN-alpha can modulate the innate immune response of rainbow trout and mediate early antiviral protection against IHNV.
Collapse
Affiliation(s)
- Ei Lin Ooi
- Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|