1
|
Colello R, Vélez MV, Rodríguez M, Rogé A, Etcheverría AI, Padola NL. Detection of Shiga toxin-producing Escherichia coli in dairy cows: genetic characterization and inhibition of adherence by cattle anti-STEC antibodies to HEp-2 cell. Vet Res Commun 2024:10.1007/s11259-024-10557-z. [PMID: 39331343 DOI: 10.1007/s11259-024-10557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen associated with severe disease. Cattle are recognized as the primary animal reservoir of STEC. This study reports the occurrence and characterization of STEC from dairy cows and evaluates the inhibition of adherence by cattle anti-STEC antibodies to the HEp-2 cell. From 151 samples, 30% (n = 45) were positive for stx by PCR screening (25.21% of dairy cows and 46.8% of growing calves). From these positive samples, 17 STEC isolates were characterized. In dairy cows, 3 out of 17 samples carried stx2, 3 out of 17 possessed stx1, and 2 out of 17 carried stx1/stx2. In growing cows, 8 out of 17 samples carried stx1 and 1 out of 17 carried stx1/stx2. Other virulence factors such as ehxA, saa, iha, cah, and eae were detected. The strains were typed into 3 E. coli O groups (O26, O91, and O130). The analysis of the HEp-2 adherence assays indicated that all serum from both cattle categories presented high levels of inhibition of adherence. Considering the severity of the symptoms caused by STEC in humans, searching for factors influencing the colonization of STEC in cattle would help identify strategies to avoid transmission and STEC infection.
Collapse
Affiliation(s)
- Rocío Colello
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina
| | - M Victoria Vélez
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina.
| | - Marcelo Rodríguez
- Facultad de Ciencias Veterinarias, SAMP, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Analía I Etcheverría
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina
| | - Nora Lía Padola
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina
| |
Collapse
|
2
|
Zheng T, Li X, Xie YN, Yang B, Wu P. Dual-Gene Isothermal Amplification Coupled with Lateral Flow Strip for On-Site Accurate Detection of E. coli O157:H7 in Food Samples. Anal Chem 2023; 95:6053-6060. [PMID: 36977355 DOI: 10.1021/acs.analchem.3c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
On-site field detection of E. coli O157:H7 in food samples is of utmost importance, since it causes a series of foodborne diseases due to infections-associated ready-to-eat foods. Due to the instrument-free nature, recombinase polymerase amplification (RPA) coupled with lateral flow assay (LFA) is well-suited for such goal. However, the high genomic similarity of different E. coli serotypes adds difficulty to accurate differentiation of E. coli O157:H7 from others. Dual-gene analysis could significantly improve the serotype selectivity, but will further aggravate the RPA artifacts. To address such issue, here we proposed a protocol of dual-gene RPA-LFA, in which the target amplicons were selectively recognized by peptide nucleic acid (PNA) and T7 exonuclease (TeaPNA), thus eliminating false-positives in LFA readout. Adapting rfbEO157 and fliCH7 genes as the targets, dual-gene RPA-TeaPNA-LFA was demonstrated to be selective for E. coli O157:H7 over other E. coli serotypes and common foodborne bacteria. The minimum detection concentration was 10 copies/μL for the genomic DNA (∼300 cfu/mL E. coli O157:H7), and 0.24 cfu/mL E. coli O157:H7 in food samples after 5 h bacterial preculture. For lettuce samples contaminated with E. coli O157:H7 (single-blind), the sensitivity and specificity of the proposed method were 85% and 100%, respectively. Using DNA releaser for fast genomic DNA extraction, the assay time could be reduced to ∼1 h, which is appealing for on-site food monitoring.
Collapse
Affiliation(s)
- Ting Zheng
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xianming Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya-Ni Xie
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Mu J, Lei L, Zheng Y, Li D, Li J, Fu Y, Wang G, Liu Y. Comparative study of subcutaneous, intramuscular, and oral administration of bovine pathogenic Escherichia coli bacterial ghost vaccine in mice. Front Immunol 2022; 13:1008131. [DOI: 10.3389/fimmu.2022.1008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1β, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.
Collapse
|
4
|
Sharma VK, Schaut RG, Loving CL. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle. Vet Microbiol 2018; 219:190-199. [PMID: 29778196 DOI: 10.1016/j.vetmic.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023]
Abstract
Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaughter. Vaccination is an important strategy to reduce fecal shedding of O157 in cattle. In this study, we evaluated the immunogenicity and efficacy of an inactivated vaccine strain of O157 formulated with an adjuvant. This vaccine strain was deleted of the hha gene enabling high level expression of the locus of enterocyte effacement (LEE) encoded proteins required for O157 colonization in cattle. The inactivated vaccine strain emulsified with the adjuvant or suspended in the phosphate-buffered saline (PBS) was injected in the neck muscles of two groups of weaned calves followed by a booster three weeks later with the corresponding formulation. Animals in groups 3 and 4 were injected similarly with the adjuvant and PBS, respectively. All animals were orally inoculated three weeks post-booster vaccination with a live culture of O157. The animals vaccinated with the adjuvanted vaccine showed higher serum antibody titers to the vaccine strain and shed O157 for a shorter duration and at lower numbers compared to the animals vaccinated with the non-adjuvanted vaccine, adjuvant-only, or PBS. Western blotting of the vaccine strain lysates showed higher immunoreactivity of serum IgG in vaccinated animals to several O157-specific proteins and lipopolysaccharides (LPS). The vaccination induced IgG showed specificity to LEE-encoded proteins and outer membrane LPS as LEE and waaL deletion mutants, unable to produce LEE proteins and synthesize high molecular weight LPS, respectively, yielded significantly lower antibody titers compared to the parent vaccine strain. The positive reactivity of the immune serum was also observed for purified LEE-encoded proteins EspA and EspB. In conclusion, the results of this animal study showed that a two-dose regimen of an adjuvanted vaccine is capable of inducing O157-specific immune response that directly or indirectly reduced fecal shedding of O157 in cattle.
Collapse
Affiliation(s)
- Vijay K Sharma
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, 50010, USA.
| | - Robert G Schaut
- Oak Ridge Institute for Science and Education (ORISE)/ARS Research Participation Program, Oak Ridge, TN 37831
| | - Crystal L Loving
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, 50010, USA
| |
Collapse
|
5
|
Abstract
Foods of animal origin, including beef and dairy products, are nutritious and important to global food security. However, there are important risks to human health from hazards that are introduced to beef and dairy products on the farm. Food safety hazards may be chemical, biological, or physical in nature. Considerations about protecting the safety of beef and dairy products must begin prior to harvest because some potential food safety hazards introduced at the farm (e.g., chemical residues) cannot be mitigated by subsequent postharvest food processing steps. Also, some people have preferences for consuming food that has not been through postharvest processing even though those foods may be unsafe because of microbiological hazards originating from the farm. Because of human fallibility and complex microbial ecologies, many of the preharvest hazards associated with beef and dairy products cannot entirely be eliminated, but the risk for most can be reduced through systematic interventions taken on the farm. Beef and dairy farms differ widely in production practices because of differences in natural, human, and capital resources. Therefore, the actions necessary to minimize on-farm food safety hazards must be farm-specific and they must address scientific, political, economic, and practical aspects. Notable successes in controlling and preventing on-farm hazards to food safety have occurred through a combination of voluntary and regulatory efforts.
Collapse
|
6
|
Martorelli L, Albanese A, Vilte D, Cantet R, Bentancor A, Zolezzi G, Chinen I, Ibarra C, Rivas M, Mercado EC, Cataldi A. Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo. Vet Microbiol 2017; 208:8-17. [PMID: 28888654 DOI: 10.1016/j.vetmic.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023]
Abstract
PROBLEM ADDRESSED Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for food-associated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. OBJECTIVE Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. METHODS AND RESULTS The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpfO113. E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 108 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. CONCLUSIONS These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment.
Collapse
Affiliation(s)
- L Martorelli
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina
| | - A Albanese
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - D Vilte
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina
| | - R Cantet
- Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires 1427, Argentina
| | - A Bentancor
- Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires 1427, Argentina
| | - G Zolezzi
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires 1282, Argentina
| | - I Chinen
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires 1282, Argentina
| | - C Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - M Rivas
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires 1282, Argentina
| | - E C Mercado
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina
| | - A Cataldi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina.
| |
Collapse
|
7
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
8
|
Desin TS, Townsend HG, Potter AA. Antibodies Directed against Shiga-Toxin Producing Escherichia coli Serotype O103 Type III Secreted Proteins Block Adherence of Heterologous STEC Serotypes to HEp-2 Cells. PLoS One 2015; 10:e0139803. [PMID: 26451946 PMCID: PMC4599963 DOI: 10.1371/journal.pone.0139803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes.
Collapse
Affiliation(s)
- Taseen S. Desin
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Hugh G. Townsend
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew A. Potter
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
McNeilly TN, Mitchell MC, Corbishley A, Nath M, Simmonds H, McAteer SP, Mahajan A, Low JC, Smith DGE, Huntley JF, Gally DL. Optimizing the Protection of Cattle against Escherichia coli O157:H7 Colonization through Immunization with Different Combinations of H7 Flagellin, Tir, Intimin-531 or EspA. PLoS One 2015; 10:e0128391. [PMID: 26020530 PMCID: PMC4447243 DOI: 10.1371/journal.pone.0128391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are important human pathogens, causing hemorrhagic colitis and hemolytic uraemic syndrome in humans. E. coli O157:H7 is the most common serotype associated with EHEC infections worldwide, although other non-O157 serotypes cause life-threatening infections. Cattle are a main reservoir of EHEC and intervention strategies aimed at limiting EHEC excretion from cattle are predicted to lower the risk of human infection. We have previously shown that immunization of calves with recombinant versions of the type III secretion system (T3SS)-associated proteins EspA, intimin and Tir from EHEC O157:H7 significantly reduced shedding of EHEC O157 from experimentally-colonized calves, and that protection could be augmented by the addition of H7 flagellin to the vaccine formulation. The main aim of the present study was to optimize our current EHEC O157 subunit vaccine formulations by identifying the key combinations of these antigens required for protection. A secondary aim was to determine if vaccine-induced antibody responses exhibited cross-reactive potential with antigens from other EHEC serotypes. Immunization with EspA, intimin and Tir resulted in a reduction in mean EHEC O157 shedding following challenge, but not the mean proportion of calves colonized. Removal of Tir resulted in more prolonged shedding compared with all other groups, whereas replacement of Tir with H7 flagellin resulted in the highest levels of protection, both in terms of reducing both mean EHEC O157 shedding and the proportion of colonized calves. Immunization of calves with recombinant EHEC O157 EspA, intimin and Tir resulted in the generation of antibodies capable of cross-reacting with antigens from non-O157 EHEC serotypes, suggesting that immunization with these antigens may provide a degree of cross-protection against other EHEC serotypes. Further studies are now required to test the efficacy of these vaccines in the field, and to formally test the cross-protective potential of the vaccines against other non-O157 EHEC.
Collapse
Affiliation(s)
- Tom N. McNeilly
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail:
| | | | - Alexander Corbishley
- Moredun Research Institute, Edinburgh, United Kingdom
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mintu Nath
- Biomathematics and Statistics Scotland, Edinburgh, United Kingdom
| | - Hannah Simmonds
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arvind Mahajan
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Christopher Low
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David G. E. Smith
- Moredun Research Institute, Edinburgh, United Kingdom
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Abstract
ABSTRACT
Human infection with Shiga toxin-producing
Escherichia coli
O157:H7 (STEC O157) is relatively rare, but the consequences can be serious, especially in the very young and the elderly. Efforts to control the flow of STEC O157 during beef processing have meaningfully reduced the incidence of human STEC O157 infection, particularly prior to 2005. Unfortunately, despite early progress, the incidence of STEC O157 infection has not changed meaningfully or statistically in recent years, suggesting that additional actions, for example, targeting the cattle reservoir, are necessary to further reduce STEC O157 illness. Ideally, preharvest interventions against STEC O157 should reduce the likelihood that cattle carry the organism, have practical application within the beef production system, and add sufficient value to the cattle to offset the cost of the intervention. A number of STEC O157 antigens are being investigated as potential vaccine targets. Some vaccine products have demonstrated efficacy to reduce the prevalence of cattle carrying STEC O157 by making the gut unfavorable to colonization. However, in conditions of natural exposure, efficacy afforded by vaccination depends on how the products are used to control environmental transmission within groups of cattle and throughout the production system. Although cattle vaccines against STEC O157 have gained either full or preliminary regulatory approval in Canada and the United States, widespread use by cattle feeders is unlikely until there is an economic signal to indicate that cattle vaccinated against STEC O157 are valued over other cattle.
Collapse
|
11
|
Smith DR. Cattle Production Systems: Ecology of Existing and Emerging Escherichia coli Types Related to Foodborne Illness. Annu Rev Anim Biosci 2014; 2:445-68. [DOI: 10.1146/annurev-animal-022513-114122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shiga toxin–producing Escherichia coli (STEC), particularly STEC O157, cause rare but potentially serious human infections. Infection with STEC occurs by fecal-oral transmission, most commonly through food. Cattle are the most important reservoir for human STEC exposure, and efforts to control the flow of STEC through beef processing have reduced rates of human illness. However, further reduction in human incidence of STEC may require control of the pathogen in cattle populations. The ecology of STEC in cattle production systems is complex and explained by factors that favor (a) colonization in the gut, (b) survival in the environment, and (c) ingestion by another cattle host. Although nature creates seasonal environmental conditions that do not favor STEC transmission in cattle, human efforts to control STEC by environmental manipulation have not succeeded. Vaccines and direct-fed microbial products have reduced the carriage of STEC by cattle, and other interventions are under investigation.
Collapse
Affiliation(s)
- David R. Smith
- Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi 39762-6100
| |
Collapse
|
12
|
Kudva IT, Hovde CJ, John M. Adherence of non-O157 Shiga toxin-producing Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157. Foodborne Pathog Dis 2013; 10:375-81. [PMID: 23510495 PMCID: PMC3661034 DOI: 10.1089/fpd.2012.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study presents evidence that the pattern (diffuse or aggregative) of adherence of clinically relevant non-O157 Shiga toxin-producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells is similar to that of E. coli O157, although the mechanisms of adherence appear to be distinct. Our results further suggest that novel adhesins, and not Intimin, are likely involved in non-O157 STEC adherence to bovine recto-anal junction squamous epithelial cells. These findings have important implications for the development of efficacious modalities for blocking adherence of non-O157 STEC to bovine gastrointestinal epithelial cells.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010, USA.
| | | | | |
Collapse
|
13
|
Farrokh C, Jordan K, Auvray F, Glass K, Oppegaard H, Raynaud S, Thevenot D, Condron R, De Reu K, Govaris A, Heggum K, Heyndrickx M, Hummerjohann J, Lindsay D, Miszczycha S, Moussiegt S, Verstraete K, Cerf O. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol 2013; 162:190-212. [DOI: 10.1016/j.ijfoodmicro.2012.08.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023]
|
14
|
Vande Walle K, Vanrompay D, Cox E. Bovine innate and adaptive immune responses against Escherichia coli O157:H7 and vaccination strategies to reduce faecal shedding in ruminants. Vet Immunol Immunopathol 2012; 152:109-20. [PMID: 23084625 DOI: 10.1016/j.vetimm.2012.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enterohaemorrhagic E. coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance causing foodborne infections with possibly life-threatening consequences in humans, such as haemorrhagic colitis and in a small percentage of zoonotic cases, haemolytic-uremic syndrome (HUS). Ruminants are an important reservoir of EHEC and human infections are most frequently associated with direct or indirect contact with ruminant faeces. A thorough understanding of the host-bacterium interaction in ruminants could lead to the development of novel interventions strategies, including innovative vaccines. This review aims to present the current knowledge regarding innate and adaptive immune responses in EHEC colonized ruminants. In addition, results on vaccination strategies in ruminants aiming at reduction of EHEC shedding are reviewed.
Collapse
Affiliation(s)
- Kris Vande Walle
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9860 Merelbeke, Belgium
| | | | | |
Collapse
|
15
|
Hill WE, Suhalim R, Richter HC, Smith CR, Buschow AW, Samadpour M. Polymerase Chain Reaction Screening forSalmonellaand EnterohemorrhagicEscherichia colion Beef Products in Processing Establishments. Foodborne Pathog Dis 2011; 8:1045-53. [DOI: 10.1089/fpd.2010.0825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Walter E. Hill
- Institute for Environmental Health, Inc., Lake Forest Park, Washington
| | - Rico Suhalim
- Institute for Environmental Health, Inc., Lake Forest Park, Washington
| | - Hans C. Richter
- Institute for Environmental Health, Inc., Lake Forest Park, Washington
| | - Chad R. Smith
- Institute for Environmental Health, Inc., Lake Forest Park, Washington
| | - Andrew W. Buschow
- Institute for Environmental Health, Inc., Lake Forest Park, Washington
| | - Mansour Samadpour
- Institute for Environmental Health, Inc., Lake Forest Park, Washington
| |
Collapse
|
16
|
Asper DJ, Karmali MA, Townsend H, Rogan D, Potter AA. Serological response of Shiga toxin-producing Escherichia coli type III secreted proteins in sera from vaccinated rabbits, naturally infected cattle, and humans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1052-7. [PMID: 21593239 PMCID: PMC3147311 DOI: 10.1128/cvi.00068-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/06/2011] [Indexed: 01/05/2023]
Abstract
Escherichia coli O157:H7 is an important zoonotic pathogen, causing hemolytic uremic syndrome (HUS). The colonization of cattle and human hosts is mediated through the action of effectors secreted via a type III secretion system (T3SS). The structural genes for the T3SS and many of the secreted effectors are located on a pathogenicity island called the locus of enterocyte effacement (LEE). We cloned and expressed the genes coding for 66 effectors and purified each to measure the cross-reactivity of type III secreted proteins from Shiga toxin-producing Escherichia coli (STEC) serotypes. These included 37 LEE-encoded proteins and 29 non-LEE effectors. The serological response against each protein was measured by Western blot analysis and enzyme-linked immunosorbent assay (ELISA) using sera from rabbits immunized with type III secreted proteins (T3SPs) from four STEC serotypes, experimentally infected cattle, and human sera from six HUS patients. Twenty proteins were recognized by at least one of the STEC T3SP-vaccinated rabbits by Western blotting. Several structural proteins (EspA, EspB, and EspD) and a number of effectors (Tir, NleA, and TccP) were recognized by O26-, O103-, O111-, and O157-specific sera. Sera from experimentally infected cattle and HUS patients were tested using an ELISA against each of the proteins. Tir, EspB, EspD, EspA, and NleA were recognized by the majority of the samples tested. A number of other proteins also were recognized by individual serum samples. Overall, proteins such as Tir, EspB, EspD, NleA, and EspA were highly immunogenic in vaccinated and naturally infected subjects and could be candidates for a cross-protective STEC vaccine.
Collapse
Affiliation(s)
- David J. Asper
- Vaccine & Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | - Hugh Townsend
- Vaccine & Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Dragan Rogan
- Bioniche Life Sciences, Belleville, Ontario, Canada K8N 1E2
| | - Andrew A. Potter
- Vaccine & Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| |
Collapse
|
17
|
|
18
|
Vlamis-Gardikas A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revisited. Biochim Biophys Acta Gen Subj 2008; 1780:1170-200. [PMID: 18423382 DOI: 10.1016/j.bbagen.2008.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.
Collapse
Affiliation(s)
- Alexios Vlamis-Gardikas
- Center of Basic Research I-Biochemistry Division, Biomedical Research Foundation (BRFAA), Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.
| |
Collapse
|