1
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Yin H, Li S, Chai C, Zhang F, Ma Y, Wu Y, Fu C, Diao Y, Zhou Y, Zhang J, Niu R, Wang W. Biological activity of recombinant bovine IFN-α and inhibitory effect on BVDV in vitro. Microb Pathog 2023:106155. [PMID: 37301331 DOI: 10.1016/j.micpath.2023.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Type I interferon has great broad-spectrum antiviral ability and immunomodulatory function, and its receptors are expressed in almost all types of cells. Bovine viral diarrhea virus (BVDV) is an important pathogen causing significant economic losses in cattle. In this study, a recombinant expression plasmid carrying bovine interferon-α(BoIFN-α)gene was constructed and transformed into E. coli BL21 (DE3) competent cells. SDS-PAGE and Westernblotting analysis showed that the recombinant BoIFN-α protein (rBoIFN-α) was successfully expressed. It is about 36KD and exists in the form of inclusion body. When denatured, purified and renatured rBoIFN-α protein stimulated MDBK cells, the expression of interferon stimulating genes (ISGs) such as ISG15, OAS1, IFIT1, Mx1 and IFITM1 were significantly up-regulated, and reached the peak at 12 h (P< 0.001). MDBK cells were infected with BVDV with moi of 0.1 and 1.0, respectively. The virus proliferation was observed after pretreatment with rBoIFN-α protein and post-infection treatment. The results showed that the denatured, purified and renatured BoIFN-α protein had good biological activity and could inhibit the replication of BVDV in MDBK cells in vitro, which provided a basis for BoIFN-α as an antiviral drug, immune enhancer and clinical application of BVDV.
Collapse
Affiliation(s)
- Hua Yin
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Shaowei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Chunxia Chai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Fan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China; Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yanhua Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China; Basic Medical School, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Youzhi Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Cun Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yun Diao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yanyan Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Jinlong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Rui Niu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Wei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China.
| |
Collapse
|
3
|
An D, Guo Y, Bao J, Luo X, Liu Y, Ma B, Gao M, Wang J. Molecular characterization and biological activity of bovine interferon-omega3. Res Vet Sci 2017; 115:125-131. [PMID: 28254416 PMCID: PMC7127041 DOI: 10.1016/j.rvsc.2017.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/29/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
Bovine interferon-omega3 (BoIFN-ω3) gene was amplified from bovine liver genomic DNA, which encodes a 195-amino acid protein containing a 23-amino acid signal peptide. Analysis of the molecular characteristics revealed that BoIFN-ω3 evolving from IFN-ω, contained four cysteine residues and five alpha helices, showing that BoIFN-ω3 presented the typical molecular characteristics of type I interferon. BoIFN-ω3 exhibited antiviral and antiproliferative activities, which exerted a protective effect against VSV in several mammalian cell lines, as well as against BEV, IBRV, and BVDV in MDBK cell. Moreover, BoIFN-ω3 was shown to be highly sensitive to trypsin, but remaining stable despite changes in pH and temperature. Additionally, BoIFN-ω3 induced the transcription of Mx1, ISG15, and ISG56 genes, as well as the expression of Mx1 protein in a time-dependent manner. These findings will be useful to further study BoIFN-ω in host's defence against infectious diseases, particularly viral infections. Furthermore, results will facilitate further research on the bovine interferon family. BoIFN-ω3 presents antiviral activity on several mammalian cell lines and protective effect against VSV, BEV, IBRV, and BVDV. BoIFN-ω3 exhibits antiproliferative activity and insensitivity to pH and temperature. BoIFN-ω3 can activate the transcription of ISGs gene, as well as the expression of Mx1 in a time-dependent manner.
Collapse
Affiliation(s)
- Dong An
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yongli Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; National Food Safety and Nutrition Collaborative Innovation Center, Wuxi, Jiangsu 214122, PR China
| | - Xiuxin Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ying Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Bo Ma
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; National Food Safety and Nutrition Collaborative Innovation Center, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Yang FC, Kuang WD, Li C, Sun WW, Qu D, Wang JH. Toll-Interacting Protein Suppresses HIV-1 Long-Terminal-Repeat-Driven Gene Expression and Silences the Post-Integrational Transcription of Viral Proviral DNA. PLoS One 2015; 10:e0125563. [PMID: 25915421 PMCID: PMC4411168 DOI: 10.1371/journal.pone.0125563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Toll-interacting protein (Tollip) is a host adaptor protein for negatively regulating Toll-like receptor 2-, 4-, and IL-1R (interleukin-1 receptor)-mediated signaling. We found that Tollip expression could be induced in MDDCs (monocyte-derived dendritic cells) by HIV-1 particles and recombinant gp120 glycoprotein. Hence, we investigated the role of Tollip in modulating HIV-1 infection. We found that Tollip expression suppressed NF-κB-dependent HIV-1 long terminal repeat (LTR)-driven transcription and thus inhibited HIV-1 infection. Our protein truncation experiments proved that the intact C-terminus of Tollip was required for inhibition of both NF-κB activity and HIV-1 LTR-driven gene expression. Intriguingly, Tollip silenced the post-integrational transcription of HIV-1 proviral DNA, indicating the potential role of Tollip in maintaining viral persistence. Our results reveal the novel role of host factor Tollip in modulating HIV-1 infection, and may suggest the hijacking of Tollip as the negative regulator of the TLR pathway and even the downstream signaling, by HIV-1 for maintaining persistent infection. Further elucidation of the mechanisms by which HIV-1 induces Tollip expression and identification of the role of Tollip in modulating HIV-1 latency will facilitate the understanding of host regulation in viral replication and benefit the exploration of novel strategies for combating HIV-1 infection.
Collapse
Affiliation(s)
- Fu-Chun Yang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Dong Kuang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Wei Sun
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Di Qu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
5
|
Eliciting broad neutralizing antibody to HIV-1: envelopes of different lentivirus cross immunization by prime-boost vaccination. Vaccine 2012; 30:5316-23. [PMID: 22749599 DOI: 10.1016/j.vaccine.2012.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/18/2012] [Accepted: 06/16/2012] [Indexed: 12/24/2022]
Abstract
The greatest challenge of HIV vaccine development lies in the diversity of circulating HIV-1 strains. For an effective vaccine, neutralizing antibodies are assumed to be of crucial importance, but previous attempts results only very limited breadth and potency of Nab titer. While the amino acid sequences of lentivirus envelope have many differences, those envelope proteins share almost same structural conformations. If the envelopes of different lentivirus were used immune animals, the response to the conserved sites will be strengthened while the un-conserved sites will not be. In this study, compared to only protein immunization regimen, HIV-1 CN54 gp140 DNA prime and protein boost strategy generated Nab titer increased significantly. So, the prime-boost strategy and HIV-1 CN54 gp140 protein were employed to different lentivirus cross immunization schedule. The results indicated that, the different lentivirus and HIV-1 cross immune by prime-boost strategy elicited breath and potency neutralization antibody to tier 1, tier 2, and tier 3 viruses with 14 tested viruses. To tested tier 2 and tier 3 viruses, in SIV and HIV-1 cross immunization group, the neutralization breadth of ID50 is 91.7% and the breadth of ID70 is 50%; in HIV-1, FIV and SIV cross immunization group, the breadth of ID50 is 83.3% and the breadth of ID70 is 58.3%, while in only HIV-1 vaccinated group, the breadth of ID50 is 75% and the breadth of ID70 is only 25%. These data demonstrate that HIV-1 and different lentivirus especially with SIV cross immunization by prime-boost strategy elicit broad neutralizing antibodies much better than only HIV-1 immunization.
Collapse
|
6
|
Glances in Immunology of HIV and HCV Infection. Adv Virol 2012; 2012:434036. [PMID: 22754568 PMCID: PMC3375159 DOI: 10.1155/2012/434036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/12/2012] [Indexed: 12/16/2022] Open
Abstract
Since the identification of HIV and HCV much progress has been made in the understanding of their life cycle and interaction with the host immune system. Despite these viruses markedly differ in their virological properties and in their pathogenesis, they share many common features in their immune escape and survival strategy. Both viruses have developed sophisticated ways to subvert and antagonize host innate and adaptive immune responses. In the last years, much effort has been done in the study of the AIDS pathogenesis and in the development of efficient treatment strategies, and a fatal infection has been transformed in a potentially chronic pathology. Much of this knowledge is now being transferred in the HCV research field, especially in the development of new drugs, although a big difference still remains between the outcome of the two infections, being HCV eradicable after treatment, whereas HIV eradication remains at present unachievable due to the establishment of reservoirs. In this review, we present current knowledge on innate and adaptive immune recognition and activation during HIV and HCV mono-infections and evasion strategies. We also discuss the genetic associations between components of the immune system, the course of infection, and the outcome of the therapies.
Collapse
|
7
|
Abstract
Intrinsic antiviral immunity refers to a form of innate immunity that directly restricts viral replication and assembly, thereby rendering a cell nonpermissive to a specific class or species of viruses. Intrinsic immunity is conferred by restriction factors that are mostly preexistent in certain cell types, although these factors can be further induced by viral infection. Intrinsic virus-restriction factors recognize specific viral components, but unlike other pattern-recognition receptors that inhibit viral infection indirectly by inducing interferons and other antiviral molecules, intrinsic antiviral factors block viral replication immediately and directly. This review focuses on recent advances in understanding of the roles of intrinsic antiviral factors that restrict infection by human immunodeficiency virus and influenza virus.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To present evidence of the role of innate mucosal immunity and to harness this arm of immunity in protection against HIV infection. RECENT FINDINGS Dendritic cells, monocytes, natural killer (NK) cells and γδ T cells are critical in innate immunity, which is mediated by Toll-like receptor (TLR) and recently identified stress pathways. Complement factors, cytokines and chemokines have diverse functions usually affecting HIV infection indirectly. A novel group of innate intracellular HIV restriction factors has been identified - APOBEC3G, TRIM5α and tetherin - all of which are upregulated by type I interferons and some by vaccination and TLR agonists. Whereas innate immunity conventionally lacks memory, recent evidence suggests that some of the cells and intracellular factors may express immunological memory-like features. SUMMARY Innate mucosal immunity may provide early effective control of HIV transmission and replication. Some vaccines can enhance innate immune factors, such as APOBEC3G and control HIV during the eclipse period, allowing full weight of neutralizing and/or cytotoxic T cells to develop and prevent mucosal HIV infection. The next generation of vaccines should be designed to target both innate and adaptive immune memory responses.
Collapse
Affiliation(s)
- Yufei Wang
- Mucosal Immunology Unit at Guy's Hospital, King's College London, London, UK
| | | |
Collapse
|
9
|
Abstract
HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.
Collapse
Affiliation(s)
- T Lehner
- Mucosal Immunology Unit, Kings College London at Guy's Hospital, London, UK.
| | | | | | | |
Collapse
|
10
|
Abstract
Type-I interferons (IFNs) are cytokines that have non-specific antiviral activity, participating mostly in innate defense mechanisms. Their administration has been proposed to treat several viral and immunomediated diseases as an immunomodulatory therapy. Due to its availability, recombinant human interferon-alpha (rHuIFN-α) has been studied in relation to feline retrovirosis, both in vitro and in vivo. However, IFNs are species-specific and antibodies have been shown to develop in response to the high rHuIFN-α doses necessary for an effective therapy. A recombinant feline IFN has been developed, which has been characterized as interferon-omega (rFeIFN-ω), designed to overcome these problems. Nonetheless, very few studies have been undertaken to evaluate its efficacy in cats naturally infected with FIV or FeLV. In an initial study, we here demonstrated that rFeIFN-ω can dramatically improve the clinical condition of infected cats, and induce improvement of hematologic parameters. Minor changes or no change was observed for hypergammaglobulinemia, CD4/CD8 ratio, proviral load, viremia and RT activity, suggesting that the overall effect of IFN was on innate immunity. More studies are needed in order to better understand its in vivo mechanisms.
Collapse
|
11
|
Michieli M, Mazzucato M, Tirelli U, De Paoli P. Stem Cell Transplantation for Lymphoma Patients with HIV Infection. Cell Transplant 2011; 20:351-70. [DOI: 10.3727/096368910x528076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The advent of Highly Active Antiretroviral Therapy (HAART) has radically changed incidence characteristics and prognosis of HIV-positive patients affected by lymphomas. At this time there is consensus in the literature that, in first line, HIV-positive patients should always be treated with curative intent preferentially following the same approach used in the HIV-negative counterpart. On the contrary, an approach of salvage therapy in HIV-positive lymphomas is still a matter of debate given that for a wide range of relapsed or resistant HIV-negative Hodgkin's disease (HD) and non-Hodgkin lymphoma (NHL) patients, autologous peripheral or allogeneic stem cell transplantation are among the established options. In the pre-HAART era, therapeutic options derived from pioneering experiences gave only anecdotal success, either when transplantation was used to cure lymphomas or to improve HIV infection itself. Concerns relating to the entity, quality, and kinetics of early and late immune reconstitutions and the possible worsening of underlying viroimmunological conditions were additional obstacles. Currently, around 100 relapsed or resistant HIV-positive lymphomas have been treated with an autologous peripheral stem cell transplantation (APSCT) in the HAART era. Published data compared favorably with any previous salvage attempt showing a percentage of complete remission ranging from 48% to 90%, and overall survival ranging from 36% to 85% at median follow-up approaching 3 years. However, experiences are still limited and have given somewhat confounding indications, especially concerning timing and patients' selection for APSCT and feasibility and outcome for allogeneic stem cell transplant. Moreover, little data exist on the kinetics of immunological reconstitution after APSCT or relevant to the outcome of HIV infection. The aim of this review is to discuss current knowledge of the role of allogeneic and autologous stem cell transplantation as a modality in the cure of HIV and hemopoietic cancer patients. Several topics dealing with practical aspects concerning the management of APSCT in HIV-positive patients, including patient selection, timing of transplant, conditioning regimen, and relapse or nonrelapse mortality, are discussed. Data relating to the effects of mobilization and transplantation on virological parameters and pre- and posttransplant immune reconstitution are reviewed. Finally, in this review, we examine several ethical and legal issues relative to banking infected or potentially infected peripheral blood stem cells and we describe our experience and strategies to protect positive and negative donors/recipients and the health of caretakers.
Collapse
Affiliation(s)
- Mariagrazia Michieli
- Cell Therapy and High Dose Chemotherapy Unit, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Collection and Processing Unit, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| | - Umberto Tirelli
- Medical Oncology A, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| | - Paolo De Paoli
- Scientific Directorate, Centro di Riferimento Oncologico, CRO IRCCS, Aviano, Italy
| |
Collapse
|
12
|
Restrepo C, Rallón NI, Benito JM. [Factors involved in resistance to human immunodeficiency virus infection]. Med Clin (Barc) 2011; 137:600-4. [PMID: 21382628 DOI: 10.1016/j.medcli.2010.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/28/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Repeated exposure to human immunodeficiency virus (HIV) is not always associated with infection and a subset of individuals remains persistently as HIV-seronegative despite multiple episodes of HIV exposure. These individuals are called HIV-exposed seronegatives (ESN). Several genetic and immunological factors have been involved in this resistance to HIV acquisition. Genetic factors have been linked to genes encoding chemokine receptors and their natural ligands as well as genes of the major histocompatibility complex. Immunological factors include both innate and adaptive immunity. The study of ESN provides a unique opportunity to unveil the mechanisms of natural protection against viral infection. Their better understanding may lead to novel preventive and immune-therapeutic approaches, including vaccines.
Collapse
Affiliation(s)
- Clara Restrepo
- Laboratorio de Biología Molecular, Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid, España
| | | | | |
Collapse
|
13
|
Postexposure prophylaxis, preexposure prophylaxis or universal test and treat: the strategic use of antiretroviral drugs to prevent HIV acquisition and transmission. AIDS 2010; 24 Suppl 4:S27-39. [PMID: 21042050 DOI: 10.1097/01.aids.0000390705.73759.2c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review considers the use of antiretroviral drugs specifically to prevent HIV transmission. Antiretroviral therapy (ART) can be implemented for the protection of uninfected individuals both before (preexposure prophylaxis) and after (postexposure prophylaxis) exposure to HIV infection. Preexposure prophylaxis may be used coitally dependently when individuals are intermittently exposed or by continuous daily dosing for those constantly exposed; postexposure prophylaxis is used in 28-day courses. Alternatively, ART can be used strategically to reduce the viral load and consequent infectiousness of an HIV-infected individual, thereby limiting the risk of onward viral transmission. A policy of universal HIV testing to enhance the identification of all HIV-positive individuals followed by immediate treatment of all HIV-positive individuals, irrespective of their CD4 cell counts (universal test and treat), has been postulated as a potential tool capable of reducing HIV incidence at a population level. This concept represents a paradigm shift in the use of ART, targeting infectious individuals for prevention rather than protecting uninfected exposed populations. This strategy could have the advantage of preventing transmission and reducing HIV incidence at a population level, as well as delivering universal access to therapy for all people living with HIV and AIDS, potentially eliminating mother-to-child HIV transmission and limiting concomitant diseases such as tuberculosis. This review critically examines the scientific basis of ART for HIV prevention, summarizing the risks and opportunities of the potential expansion of ART for prevention. Specifically, we consider the evidences for and against targeting HIV-uninfected individuals compared with enhanced HIV testing and treatment of HIV-infected individuals in terms of impact on viral transmission.
Collapse
|
14
|
MacPherson JI, Dickerson JE, Pinney JW, Robertson DL. Patterns of HIV-1 protein interaction identify perturbed host-cellular subsystems. PLoS Comput Biol 2010; 6:e1000863. [PMID: 20686668 PMCID: PMC2912648 DOI: 10.1371/journal.pcbi.1000863] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 06/21/2010] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection.
Collapse
Affiliation(s)
- Jamie I. MacPherson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Jonathan E. Dickerson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - John W. Pinney
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - David L. Robertson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
HIV-1 exposed uninfected men who have sex with men have increased levels of salivary CC-chemokines associated with sexual behavior. AIDS 2010; 24:1569-75. [PMID: 20549845 DOI: 10.1097/qad.0b013e32833ac646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To determine whether soluble molecules with known anti-HIV-1 activity are increased in saliva of HIV-1 exposed uninfected individuals of discordant couples of men who have sex with men (MSM), and whether the levels of these molecules are associated with genetic polymorphisms, sexual behavior and/or HIV-1 neutralizing capacity. METHODS Saliva and PBMC were collected from exposed uninfected individuals (n=25), and low-risk controls (n=22). Levels of CCL2, CCL3, CCL4, CCL5 and CCL11 were detected by Luminex, and SLPI, LL-37, alpha-defensins and IgA2 were detected by ELISA. Single nucleotide polymorphisms (SNPs) were investigated using mass spectrometry or PCR-sequencing. HIV-1 neutralizing activity was assessed using PBMCbased neutralization assays. Self-reported questionnaires described sexual behavior. RESULTS Exposed uninfected individuals had significantly higher levels of salivary CCL2, CCL4, CCL5 and CCL11 as compared with controls although genetic polymorphisms within the corresponding regions were equally distributed. IgA2 was also increased in exposed uninfected individuals, whereas neither CCL3, SLPI, LL-37 nor alpha-defensins differed between exposed uninfected individuals and controls. The HIV-1 neutralizing capacity of saliva was associated with higher levels of CC-chemokines (but not SLPI, LL-37, alpha-defensins or IgA2) in both exposed uninfected individuals and controls. The increased levels of CC-chemokines were associated with a higher frequency of unprotected oral sex and/or additional casual sex partners. CONCLUSION HIV-1 exposed uninfected MSM had higher levels of salivary CC-chemokines compared with controls, this finding associated with sexual behavior rather than with genetic polymorphisms. The increased levels of CC-chemokines associated with HIV-1 neutralizing capacity in saliva.
Collapse
|
16
|
|
17
|
Gómez-Lucía E, Collado VM, Miró G, Doménech A. Effect of type-I interferon on retroviruses. Viruses 2009; 1:545-73. [PMID: 21994560 PMCID: PMC3185530 DOI: 10.3390/v1030545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/05/2009] [Accepted: 10/26/2009] [Indexed: 12/21/2022] Open
Abstract
Type-I interferons (IFN-I) play an important role in the innate immune response to several retroviruses. They seem to be effective in controlling the in vivo infection, though many of the clinical signs of retroviral infection may be due to their continual presence which over-stimulates the immune system and activates apoptosis. IFN-I not only affect the immune system, but also operate directly on virus replication. Most data suggest that the in vitro treatment with IFN-I of retrovirus infected cells inhibits the final stages of virogenesis, avoiding the correct assembly of viral particles and their budding, even though the mechanism is not well understood. However, in some retroviruses IFN-I may also act at a previous stage as some retroviral LTRs posses sequences homologous to the IFN-stimulated response element (ISRE). When stimulated, ISREs control viral transcription. HIV-1 displays several mechanisms for evading IFN-I, such as through Tat and Nef. Besides IFN-α and IFN-β, some other type I IFN, such as IFN-τ and IFN-ω, have potent antiviral activity and are promising treatment drugs.
Collapse
Affiliation(s)
- Esperanza Gómez-Lucía
- Departamento de Sanidad Animal, Facultad Veterinaria, Universidad Complutense, 28040 Madrid, Spain; E-mails: (V.M.C.); (G.M.); (A.D.)
| | | | | | | |
Collapse
|
18
|
Monaco A, Marincola FM, Sabatino M, Pos Z, Tornesello ML, Stroncek DF, Wang E, Lewis GK, Buonaguro FM, Buonaguro L. Molecular immune signatures of HIV-1 vaccines in human PBMCs. FEBS Lett 2009; 583:3004-8. [PMID: 19665024 PMCID: PMC3418664 DOI: 10.1016/j.febslet.2009.07.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022]
Abstract
The global transcriptional profile of peripheral blood mononuclear cells (PBMCs) stimulated with HIV candidate vaccine (virus-like particles, VLPs) has been evaluated in HIV-infected patients with low/high viral load compared to healthy volunteers. Baseline activation of chemokine production was observed in PBMC from HIV-infected patients and innate immune stimulation with HIV-VLPs was not blunted. The immune profile among HIV-infected patients was found to be qualitatively similar but quantitatively extremely variable. This diversity was independent of viral load and it might be dependent on individual immunogenetic traits or concurrent immunological status. This ex vivo screening strategy represents an efficient tool for guiding modifications/optimizations of vaccination strategies and understanding failures in individuals enrolled in clinical trials.
Collapse
Affiliation(s)
- Alessandro Monaco
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The brain-specific factor FEZ1 is a determinant of neuronal susceptibility to HIV-1 infection. Proc Natl Acad Sci U S A 2009; 106:14040-5. [PMID: 19667186 DOI: 10.1073/pnas.0900502106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurons are one of the few cell types in the human body that do not support HIV type-1 (HIV-1) replication. Although the lack of key receptors is a major obstacle to infection, studies suggest that additional functions inhibit virus replication to explain the exquisite resistance of neurons to HIV-1. However, specific neuronal factors that may explain this resistance remain to be discovered. In a screen for antiviral factors using a fibroblast line chemically mutagenized and selected for resistance to retroviral infection, we recently identified induction of rat FEZ1 (fasciculation and elongation protein zeta-1), a brain-specific protein, as the cause of this resistance. When exogenously expressed in nonneuronal cell lines rat FEZ1 blocked nuclear entry of retroviral DNA. Here, we demonstrate that among human brain cells, neurons naturally express high levels of FEZ1 compared to astrocytes or microglia cells and are correspondingly less susceptible to infection with pseudotyped HIV-1 that bypasses receptor-mediated viral entry. Demonstrating that endogenous FEZ1 was functionally important in the resistance of neurons to HIV-1 infection, siRNA-mediated knockdown of endogenous FEZ1 increased the infectivity of neurons while sensitive brain cell types like microglia became more resistant upon FEZ1 overexpression. In addition, FEZ1 expression was not induced in response to IFN treatment. As such, in contrast to other widely expressed, IFN-inducible antiviral factors, FEZ1 appears to represent a unique neuron-specific determinant of cellular susceptibility to infection in a cell type that is naturally resistant to HIV-1.
Collapse
|
20
|
Ersching J, Pinto AR. HIV-1 vaccine clinical trials: the Brazilian experience. Rev Med Virol 2009; 19:301-11. [DOI: 10.1002/rmv.625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Lindeberg M, Collmer A. Gene Ontology for type III effectors: capturing processes at the host-pathogen interface. Trends Microbiol 2009; 17:304-11. [PMID: 19576777 DOI: 10.1016/j.tim.2009.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Disease development is determined by the interplay of host defense processes and pathogen factors that subvert defenses and remodel the host for parasitic benefit. The goal of the Plant-Associated Microbe Gene Ontology (PAMGO) interest group is the development of Gene Ontology (GO) terms that capture the range of biological processes occurring between hosts and symbionts (from mutualists to pathogens). Here, the application of the new GO terms to type III effector proteins (T3Es) from the plant pathogen Pseudomonas syringae serves as an example to systematically document the available extensive data and to reveal shared aspects of interactions with various host plants. Extending the comparison to T3Es deployed by animal pathogens further highlights how GO can uncover the common strategies employed by diverse symbionts as they exploit the host niche. Future application of GO terms to gene products mediating pathogenic or mutualistic interactions involving other microbes will enhance researchers' abilities to identify fundamental patterns among diverse systems and generate new hypotheses based on associations among annotations.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
22
|
Okoye A, Park H, Rohankhedkar M, Coyne-Johnson L, Lum R, Walker JM, Planer SL, Legasse AW, Sylwester AW, Piatak M, Lifson JD, Sodora DL, Villinger F, Axthelm MK, Schmitz JE, Picker LJ. Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis. ACTA ACUST UNITED AC 2009; 206:1575-88. [PMID: 19546246 PMCID: PMC2715089 DOI: 10.1084/jem.20090356] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Depletion of CD8+ lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8+ lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8+ lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4+ effector memory T (TEM) cells and, to a lesser extent, transitional memory T (TTrM) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4+/CCR5+ SIV “target” cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8+ lymphocytes in SIV− RMs led to a sustained increase in the number of potential CD4+ SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4+ TEM cell proliferation of CD8+ lymphocyte–depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4+ TEM and TTrM cell proliferation, it did not recapitulate the viral dynamics of CD8+ lymphocyte depletion. These data suggest that CD8+ lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production.
Collapse
Affiliation(s)
- Afam Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Plotkin SA. Sang Froid in a time of trouble: is a vaccine against HIV possible? J Int AIDS Soc 2009; 12:2. [PMID: 19187552 PMCID: PMC2647531 DOI: 10.1186/1758-2652-12-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/02/2009] [Indexed: 12/11/2022] Open
Abstract
Since the announcement of the STEP trial results in the past months, we have heard many sober pronouncements on the possibility of an HIV vaccine. On the other hand, optimistic quotations have been liberally used, from Shakespeare's Henry V's "Once more unto the breach, dear friends" to Winston Churchill's definition of success as "going from one failure to another with no loss of enthusiasm". I will forgo optimistic quotations for the phrase "Sang Froid", which translates literally from the French as "cold blood"; what it really means is to avoid panic when things look bad, to step back and coolly evaluate the situation. This is not to counsel easy optimism or to fly in face of the facts, but I believe that while the situation is serious, it is not desperate.I should stipulate at the outset that I am neither an immunologist nor an expert in HIV, but someone who has spent his life in vaccine development. What I will try to do is to provide a point of view from that experience.There is no doubt that the results of STEP were disappointing: not only did the vaccine fail to control viral load, but may have adversely affected susceptibility to infection. But HIV is not the only vaccine to experience difficulties; what lessons can we glean from prior vaccine development?
Collapse
|