1
|
Moradkasani S, Maurin M, Farrokhi AS, Esmaeili S. Development, Strategies, and Challenges for Tularemia Vaccine. Curr Microbiol 2024; 81:126. [PMID: 38564047 DOI: 10.1007/s00284-024-03658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen that affects both humans and animals. It was developed into a biological warfare weapon as a result. In this article, the current status of tularemia vaccine development is presented. A live-attenuated vaccine that was designed over 50 years ago using the less virulent F. tularensis subspecies holarctica is the only prophylactic currently available, but it has not been approved for use in humans or animals. Other promising live, killed, and subunit vaccine candidates have recently been developed and tested in animal models. This study will investigate some possible vaccines and the challenges they face during development.
Collapse
Affiliation(s)
- Safoura Moradkasani
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Max Maurin
- CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Universite Grenoble Alpes, 38000, Grenoble, France
| | | | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran.
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Mlynek KD, Cline CR, Biryukov SS, Toothman RG, Bachert BA, Klimko CP, Shoe JL, Hunter M, Hedrick ZM, Dankmeyer JL, Mou S, Fetterer DP, Qiu J, Lee ED, Cote CK, Jia Q, Horwitz MA, Bozue JA. The rLVS Δ capB/ iglABC vaccine provides potent protection in Fischer rats against inhalational tularemia caused by various virulent Francisella tularensis strains. Hum Vaccin Immunother 2023; 19:2277083. [PMID: 37975637 PMCID: PMC10760400 DOI: 10.1080/21645515.2023.2277083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Curtis R. Cline
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sergei S. Biryukov
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Ronald G. Toothman
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Beth A. Bachert
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher P. Klimko
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Shoe
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Melissa Hunter
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Zander M. Hedrick
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Dankmeyer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sherry Mou
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - David P. Fetterer
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ju Qiu
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Eric D. Lee
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher K. Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joel A. Bozue
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
3
|
Zhao M, Zhai Y, Zai X, Mao Y, Hu E, Wei Z, Li Y, Li K, Liu Y, Xu J, Yu R, Chen W. Comparative evaluation of protective immunity against Francisella tularensis induced by subunit or adenovirus-vectored vaccines. Front Cell Infect Microbiol 2023; 13:1195314. [PMID: 37305410 PMCID: PMC10248143 DOI: 10.3389/fcimb.2023.1195314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Tularemia is a highly contagious disease caused by infection with Francisella tularensis (Ft), a pathogenic intracellular gram-negative bacterium that infects a wide range of animals and causes severe disease and death in people, making it a public health concern. Vaccines are the most effective way to prevent tularemia. However, there are no Food and Drug Administration (FDA)-approved Ft vaccines thus far due to safety concerns. Herein, three membrane proteins of Ft, Tul4, OmpA, and FopA, and a molecular chaperone, DnaK, were identified as potential protective antigens using a multifactor protective antigen platform. Moreover, the recombinant DnaK, FopA, and Tul4 protein vaccines elicited a high level of IgG antibodies but did not protect against challenge. In contrast, protective immunity was elicited by a replication-defective human type 5 adenovirus (Ad5) encoding the Tul4, OmpA, FopA, and DnaK proteins (Ad5-Tul4, Ad5-OmpA, Ad5-FopA, and Ad5-DnaK) after a single immunization, and all Ad5-based vaccines stimulated a Th1-biased immune response. Moreover, intramuscular and intranasal vaccination with Ad5-Tul4 using the prime-boost strategy effectively eliminated Ft lung, spleen and liver colonization and provided nearly 80% protection against intranasal challenge with the Ft live vaccine strain (LVS). Only intramuscular, not intranasal vaccination, with Ad5-Tul4 protected mice from intraperitoneal challenge. This study provides a comprehensive comparison of protective immunity against Ft provided by subunit or adenovirus-vectored vaccines and suggests that mucosal vaccination with Ad5-Tul4 may yield desirable protective efficacy against mucosal infection, while intramuscular vaccination offers greater overall protection against intraperitoneal tularemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rui Yu
- *Correspondence: Rui Yu, ; Wei Chen,
| | - Wei Chen
- *Correspondence: Rui Yu, ; Wei Chen,
| |
Collapse
|
4
|
Freudenberger Catanzaro KC, Lahmers KK, Allen IC, Inzana TJ. Alginate microencapsulation of an attenuated O-antigen mutant of Francisella tularensis LVS as a model for a vaccine delivery vehicle. PLoS One 2022; 17:e0259807. [PMID: 35275912 PMCID: PMC8916679 DOI: 10.1371/journal.pone.0259807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia and a Tier I Select Agent. Subspecies tularensis (Type A) is the most virulent of the four subspecies and inhalation of as few as 10 cells can cause severe disease in humans. Due to its niche as a facultative intracellular pathogen, a successful tularemia vaccine must induce a robust cellular immune response, which is best achieved by a live, attenuated strain. F. tularensis strains lacking lipopolysaccharide (LPS) O-antigen are highly attenuated, but do not persist in the host long enough to induce protective immunity. Increasing the persistence of an O-antigen mutant may help stimulate protective immunity. Alginate encapsulation is frequently used with probiotics to increase persistence of bacteria within the gastrointestinal system, and was used to encapsulate the highly attenuated LVS O-antigen mutant WbtIG191V. Encapsulation with alginate followed by a poly-L-lysine/alginate coating increased survival of WbtIG191V in complement-active serum. In addition, BALB/c mice immunized intraperitoneally with encapsulated WbtIG191V combined with purified LPS survived longer than mock-immunized mice following intranasal challenge. Alginate encapsulation of the bacteria also increased antibody titers compared to non-encapsulated bacteria. These data suggest that alginate encapsulation provides a slow-release vehicle for bacterial deposits, as evidenced by the increased antibody titer and increased persistence in serum compared to freely suspended cells. Survival of mice against high-dose intranasal challenge with the LVS wildtype was similar between mice immunized within alginate capsules or with LVS, possibly due to the low number of animals used, but bacterial loads in the liver and spleen were the lowest in mice immunized with WbtIG191V and LPS in beads. However, an analysis of the immune response of surviving mice indicated that those vaccinated with the alginate vehicle upregulated cell-mediated immune pathways to a lesser extent than LVS-vaccinated mice. In summary, this vehicle, as formulated, may be more effective for pathogens that require predominately antibody-mediated immunity.
Collapse
Affiliation(s)
- Kelly C. Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin K. Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Thomas J. Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Suresh RV, Bradley EW, Higgs M, Russo VC, Alqahtani M, Huang W, Bakshi CS, Malik M. Nlrp3 Increases the Host's Susceptibility to Tularemia. Front Microbiol 2021; 12:725572. [PMID: 34690967 PMCID: PMC8527020 DOI: 10.3389/fmicb.2021.725572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis (F. tularensis) is a Gram-negative, intracellular bacterium and the causative agent of a fatal human disease known as tularemia. The CDC has classified F. tularensis as a Tier 1 Category A select agent based on its ease of aerosolization, low infectious dose, past use as a bioweapon, and the potential to be used as a bioterror agent. Francisella has a unique replication cycle. Upon its uptake, Francisella remains in the phagosomes for a short period and then escapes into the cytosol, where the replication occurs. Francisella is recognized by cytosolic pattern recognition receptors, Absent In Melanoma 2 (Aim2) and Nacht LRR and PYD domains containing Protein 3 (Nlrp3). The recognition of Francisella ligands by Aim2 and Nlrp3 triggers the assembly and activation of the inflammasome. The mechanism of activation of Aim2 is well established; however, how Nlrp3 inflammasome is activated in response to F. tularensis infection is not known. Unlike Aim2, the protective role of Nlrp3 against Francisella infection is not fully established. This study investigated the role of Nlrp3 and the potential mechanisms through which Nlrp3 exerts its detrimental effects on the host in response to F. tularensis infection. The results from in vitro studies demonstrate that Nlrp3 dampens NF-κB and MAPK signaling, and pro-inflammatory cytokine production, which allows replication of F. tularensis in infected macrophages. In vivo, Nlrp3 deficiency results in differential expression of several genes required to induce a protective immune response against respiratory tularemia. Nlrp3-deficient mice mount a stronger innate immune response, clear bacteria efficiently with minimal organ damage, and are more resistant to Francisella infection than their wild-type counterparts. Together, these results demonstrate that Nlrp3 enhances the host's susceptibility to F. tularensis by modulating the protective innate immune responses. Collectively, this study advances our understanding of the detrimental role of Nlrp3 in tularemia pathogenesis.
Collapse
Affiliation(s)
- Ragavan V. Suresh
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Elizabeth W. Bradley
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Matthew Higgs
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Vincenzo C. Russo
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Maha Alqahtani
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Wiehua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| |
Collapse
|
6
|
Deletion Mutants of Francisella Phagosomal Transporters FptA and FptF Are Highly Attenuated for Virulence and Are Protective Against Lethal Intranasal Francisella LVS Challenge in a Murine Model of Respiratory Tularemia. Pathogens 2021; 10:pathogens10070799. [PMID: 34202420 PMCID: PMC8308642 DOI: 10.3390/pathogens10070799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular bacterium that is a Tier 1 Select Agent of concern for biodefense for which there is no licensed vaccine. A subfamily of 9 Francisella phagosomal transporter (fpt) genes belonging to the Major Facilitator Superfamily of transporters was identified as critical to pathogenesis and potential targets for attenuation and vaccine development. We evaluated the attenuation and protective capacity of LVS derivatives with deletions of the fptA and fptF genes in the C57BL/6J mouse model of respiratory tularemia. LVSΔfptA and LVSΔfptF were highly attenuated with LD50 values of >20 times that of LVS when administered intranasally and conferred 100% protection against lethal challenge. Immune responses to the fpt mutant strains in mouse lungs on day 6 post-infection were substantially modified compared to LVS and were associated with reduced organ burdens and reduced pathology. The immune responses to LVSΔfptA and LVSΔfptF were characterized by decreased levels of IL-10 and IL-1β in the BALF versus LVS, and increased numbers of B cells, αβ and γδ T cells, NK cells, and DCs versus LVS. These results support a fundamental requirement for FptA and FptF in the pathogenesis of Ft and the modulation of the host immune response.
Collapse
|
7
|
Aim2 and Nlrp3 Are Dispensable for Vaccine-Induced Immunity against Francisella tularensis Live Vaccine Strain. Infect Immun 2021; 89:e0013421. [PMID: 33875472 DOI: 10.1128/iai.00134-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis is a facultative, intracellular, Gram-negative bacterium that causes a fatal disease known as tularemia. Due to its extremely high virulence, ease of spread by aerosolization, and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a tier 1 category A select agent. Previous studies have demonstrated the roles of the inflammasome sensors absent in melanoma 2 (AIM2) and NLRP3 in the generation of innate immune responses to F. tularensis infection. However, contributions of both the AIM2 and NLRP3 to the development of vaccine-induced adaptive immune responses against F. tularensis are not known. This study determined the contributions of Aim2 and Nlrp3 inflammasome sensors to vaccine-induced immune responses in a mouse model of respiratory tularemia. We developed a model to vaccinate Aim2- and Nlrp3-deficient (Aim2-/- and Nlrp3-/-) mice using the emrA1 mutant of the F. tularensis live vaccine strain (LVS). The results demonstrate that the innate immune responses in Aim2-/- and Nlrp3-/- mice vaccinated with the emrA1 mutant differ from those of their wild-type counterparts. However, despite these differences in the innate immune responses, both Aim2-/- and Nlrp3-/- mice are fully protected against an intranasal lethal challenge dose of F. tularensis LVS. Moreover, the lack of both Aim2 and Nlrp3 inflammasome sensors does not affect the production of vaccination-induced antibody and cell-mediated responses. Overall, this study reports a novel finding that both Aim2 and Nlrp3 are dispensable for vaccination-induced immunity against respiratory tularemia caused by F. tularensis.
Collapse
|
8
|
Zhang Y, Jiang N, Zhang T, Chen R, Feng Y, Sang X, Yang N, Chen Q. Tim-3 signaling blockade with α-lactose induces compensatory TIGIT expression in Plasmodium berghei ANKA-infected mice. Parasit Vectors 2019; 12:534. [PMID: 31711531 PMCID: PMC6849286 DOI: 10.1186/s13071-019-3788-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Malaria, one of the largest health burdens worldwide, is caused by Plasmodium spp. infection. Upon infection, the host's immune system begins to clear the parasites. However, Plasmodium species have evolved to escape the host's immune clearance. T-cell immunoglobulin and mucin domain 3 (Tim-3), a surface molecule on most immune cells, is often referred to as an exhaustion marker. Galectin (Gal)-9 is a Tim-3 ligand and the T helper (Th) 1 cell response is inhibited when Gal-9 binds to Tim-3. In the present study, dynamic expression of Tim-3 on key populations of lymphocytes during infection periods of Plasmodium berghei and its significance in disease resistance and pathogenesis were explored. METHODS Tim-3 expression on critical lymphocyte populations and the proportion of these cells, as well as the levels of cytokines in the sera of infected mice, were detected by flow cytometry. Further, in vitro anti-Tim-3 assay using an anti-Tim-3 antibody and in vivo Tim-3-Gal-9 signaling blockade assays using α-lactose (an antagonist of Gal-9) were conducted. An Annexin V Apoptosis Detection Kit with propidium iodide was used to detect apoptosis. In addition, proteins associated with apoptosis in lung and spleen tissues were confirmed by Western blotting assays. RESULTS Increased Tim-3 expression on splenic CD8+ and splenic CD4+, and circulatory CD4+ T cells was associated with a reduction in the proportion of these cells. Furthermore, the levels of interleukin (IL)-2, IL-4, IL-6, IL-22, and interferon (IFN)-γ, but not that of tumor necrosis factor alpha (TNF-α), IL-10, and IL-9, increased to their highest levels at day 4 post-infection and decreased thereafter. Blocking Tim-3 signaling in vitro inhibited lymphocyte apoptosis. Tim-3-Gal-9 signaling blockade in vivo did not protect the mice, but induced the expression of the immunosuppressive molecule, T cell immunoreceptor with Ig and ITIM domains (TIGIT), in Plasmodium berghei ANKA-infected mice. CONCLUSIONS Tim-3 on lymphocytes negatively regulates cell-mediated immunity against Plasmodium infection, and blocking Tim-3-galectin 9 signaling using α-lactose did not significantly protect the mice; however, it induced the compensatory expression of TIGIT. Further investigations are required to identify whether combined blockade of Tim-3 and TIGIT signaling could achieve a better protective effect.
Collapse
Affiliation(s)
- Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ting Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China. .,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
9
|
Protective effects of the Francisella tularensis ΔpdpC mutant against its virulent parental strain SCHU P9 in Cynomolgus macaques. Sci Rep 2019; 9:9193. [PMID: 31235714 PMCID: PMC6591246 DOI: 10.1038/s41598-019-45412-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/06/2019] [Indexed: 11/09/2022] Open
Abstract
Tularemia is a severe infectious zoonotic disease caused by Francisella tularensis. Although F. tularensis is considered to be a potential biological weapon due to its high infectivity and mortality rate, no vaccine has been currently licensed. Recently, we reported that F. tularensis SCHU P9 derived ΔpdpC strain lacking the pathogenicity determinant protein C gene conferred stable and good protection in a mouse lethal model. In this study, the protective effect of ΔpdpC was evaluated using a monkey lethal model. Two cynomolgus macaques (Macaca fascicularis) intratracheally challenged with the virulent strain SCHU P9 were euthanized on 7 and 11 days post-challenge after the development of severe clinical signs. The bacterial replication in alveolar macrophages and type II epithelial cells in the lungs would cause severe pneumonia accompanied by necrosis. Conversely, two animals subcutaneously immunized with ΔpdpC survived 3 weeks after SCHU P9 challenge. Though one of the two animals developed mild symptoms of tularemia, bacterial replication was limited in the respiratory organs, which may be due to a high level of humoral and cellular immune responses against F. tularensis. These results suggest that the ΔpdpC mutant would be a safe and promising candidate as a live attenuated tularemia vaccine.
Collapse
|
10
|
Sunagar R, Kumar S, Namjoshi P, Rosa SJ, Hazlett KRO, Gosselin EJ. Evaluation of an outbred mouse model for Francisella tularensis vaccine development and testing. PLoS One 2018; 13:e0207587. [PMID: 30533047 PMCID: PMC6289435 DOI: 10.1371/journal.pone.0207587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/03/2018] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and the tools to assess these vaccines. Tularemia laboratory research has historically relied primarily upon a small number of inbred mouse strains, but the utility of such findings to outbred animals may be limited. Specifically, C57BL/6 mice are more susceptible than BALB/c mice to Ft infection and less easily protected against challenge with highly virulent type A Ft. Thus, depending on the inbred mouse strain used, one could be misled as to which immunogen(s)/vaccine will ultimately be effective in an outbred human population. Accordingly, we evaluated an outbred Swiss Webster (SW) mouse model in direct comparison to a well-established, inbred C57BL/6 mouse model. Mucosal vaccination with the live, attenuated Ft LVS superoxide dismutase (sodB) mutant demonstrated significantly higher protection in outbred SW mice compared to inbred C57BL/6 mice against Ft SchuS4 respiratory challenge. The protection observed in vaccinated outbred mice correlated with lower bacterial density, reduced tissue inflammation, and reduced levels of pro-inflammatory cytokine production. This protection was CD4+ and CD8+ T cell-dependent and characterized by lower titers of serum antibody (Ab) that qualitatively differed from vaccinated inbred mice. Enhanced protection of vaccinated outbred mice correlated with early and robust production of IFN-γ and IL-17A. Neutralizing Ab administered at the time of challenge revealed that IFN-γ was central to this protection, while IL-17A neutralization did not alter bacterial burden or survival. The present study demonstrates the utility of the outbred mouse as an alternative vaccination model for testing tularemia vaccines. Given the limited MHC repertoire in inbred mice, this outbred model is more analogous to the human in terms of immunological diversity.
Collapse
Affiliation(s)
- Raju Sunagar
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Sudeep Kumar
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Prachi Namjoshi
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Sarah J. Rosa
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Karsten R. O. Hazlett
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Edmund J. Gosselin
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sunagar R, Kumar S, Rosa SJ, Hazlett KRO, Gosselin EJ. Differential In Vitro Cultivation of Francisella tularensis Influences Live Vaccine Protective Efficacy by Altering the Immune Response. Front Immunol 2018; 9:1594. [PMID: 30042767 PMCID: PMC6048226 DOI: 10.3389/fimmu.2018.01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and improved tools to assess these vaccines. Ft expresses distinct sets of antigens (Ags) in vivo as compared to those expressed in vitro. Importantly, Ft grown in brain-heart infusion medium (BHIM) more closely mimics the antigenic profile of macrophage-grown Ft when compared to Mueller-Hinton medium (MHM)-grown Ft. Thus, we predicted that when used as a live vaccine BHIM-grown Ft (BHIM-Ft) would provide better protection, as compared to MHM-Ft. We first determined if there was a difference in growth kinetics between BHIM and MHM-Ft. We found that BHIM-Ft exhibited an initial growth advantage ex vivo that manifests as slightly hastened intracellular replication as compared to MHM-Ft. We also observed that BHIM-Ft exhibited an initial growth advantage in vivo represented by rapid bacterial expansion and systemic dissemination associated with a slightly shorter mean survival time of naive animals. Next, using two distinct strains of Ft LVS (WT and sodB), we observed that mice vaccinated with live BHIM-Ft LVS exhibited significantly better protection against Ft SchuS4 respiratory challenge compared to MHM-Ft-immunized mice. This enhanced protection correlated with lower bacterial burden, reduced tissue inflammation, and reduced pro-inflammatory cytokine production late in infection. Splenocytes from BHIM-Ft sodB-immunized mice contained more CD4+, effector, memory T-cells, and were more effective at limiting intracellular replication of Ft LVS in vitro. Concurrent with enhanced killing of Ft LVS, BHIM-Ft sodB-immune splenocytes produced significantly higher levels of IFN-γ and IL-17A cytokines than their MHM-Ft sodB-immunized counterparts indicating development of a more effective T cell memory response when immunizing mice with BHIM-Ft.
Collapse
Affiliation(s)
- Raju Sunagar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Sarah J Rosa
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Karsten R O Hazlett
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
12
|
Shahin K, Thompson KD, Inglis NF, Mclean K, Ramirez-Paredes JG, Monaghan SJ, Hoare R, Fontaine M, Metselaar M, Adams A. Characterization of the outer membrane proteome of Francisella noatunensis subsp. orientalis. J Appl Microbiol 2018; 125:686-699. [PMID: 29777634 DOI: 10.1111/jam.13918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 11/28/2022]
Abstract
AIMS The aims of the current study were to characterize the outer membrane proteins (OMPs) of Francisella noatunensis subsp. orientalis (Fno) STIR-GUS-F2f7, and identify proteins recognized by sera from tilapia, Oreochromis niloticus, (L) that survived experimental challenge with Fno. METHODS AND RESULTS The composition of the OMPs of a virulent strain of Fno (STIR-GUS-F2f7), isolated from diseased red Nile tilapia in the United Kingdom, was examined. The sarcosine-insoluble OMPs fraction was screened with tilapia hyperimmune sera by western blot analysis following separation of the proteins by 1D SDS-PAGE. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to identify the various proteins present in the OMP profile. Two hundred and thirty-nine proteins were identified, of which 44 were found in the immunogenic band recognized by the tilapia hyperimmune serum. In silico analysis was performed to predict the function and location of the OMPs identified by MS. CONCLUSIONS Using a powerful proteomic-based approach in conjugation with western immunoblotting, proteins comprising the outer membrane fraction of Fno STIR-GUS-F2f7 were identified, catalogued and screened for immune recognition by tilapia sera. SIGNIFICANCE AND IMPACT OF THE STUDY The current study is the first report on the characterization of Fno-OMPs. The findings here provide preliminary data on bacterial surface proteins that exist in direct contact with the host's immune defences during infection and offer an insight into the pathogenesis of Fno.
Collapse
Affiliation(s)
- K Shahin
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.,Aquatic Animals Diseases Lab, Aquaculture Division, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - N F Inglis
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - K Mclean
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - J G Ramirez-Paredes
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - S J Monaghan
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - R Hoare
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - M Fontaine
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Edinburgh, Midlothian, UK
| | - M Metselaar
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Edinburgh, Midlothian, UK
| | - A Adams
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
13
|
Mansour AA, Banik S, Suresh RV, Kaur H, Malik M, McCormick AA, Bakshi CS. An Improved Tobacco Mosaic Virus (TMV)-Conjugated Multiantigen Subunit Vaccine Against Respiratory Tularemia. Front Microbiol 2018; 9:1195. [PMID: 29922267 PMCID: PMC5996085 DOI: 10.3389/fmicb.2018.01195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis, the causative agent of the fatal human disease known as tularemia is classified as a Category A Select Agent by the Centers for Disease Control. No licensed vaccine is currently available for prevention of tularemia in the United States. Previously, we published that a tri-antigen tobacco mosaic virus (TMV) vaccine confers 50% protection in immunized mice against respiratory tularemia caused by F. tularensis. In this study, we refined the TMV-vaccine formulation to improve the level of protection in immunized C57BL/6 mice against respiratory tularemia. We developed a tetra-antigen vaccine by conjugating OmpA, DnaK, Tul4, and SucB proteins of Francisella to TMV. CpG was also included in the vaccine formulation as an adjuvant. Primary intranasal (i.n.) immunization followed by two booster immunizations with the tetra-antigen TMV vaccine protected 100% mice against i.n. 10LD100 challenges dose of F. tularensis live vaccine strain (LVS). Mice receiving three immunization doses of tetra-antigen TMV vaccine showed only transient body weight loss, cleared the infection rapidly, and showed minimal histopathological lesions in lungs, liver, and spleen following a lethal respiratory challenge with F. tularensis LVS. Mice immunized with the tetra-antigen TMV vaccine also induced strong ex vivo recall responses and were protected against a lethal challenge as late as 163 days post-primary immunization. Three immunization with the tetra-antigen TMV vaccine also induced a stronger humoral immune response predominated by IgG1, IgG2b, and IgG2c antibodies than mice receiving only a single or two immunizations. Remarkably, a single dose protected 40% of mice, while two doses protected 80% of mice from lethal pathogen challenge. Immunization of Interferon-gamma (IFN-γ)-deficient mice with the tetra-antigen TMV vaccine demonstrated an absolute requirement of IFN-γ for the generation of protective immune response against a lethal respiratory challenge with F. tularensis LVS. Collectively, this study further demonstrates the feasibility of TMV as an efficient platform for the delivery of multiple F. tularensis antigens and that tetra-antigen TMV vaccine formulation provides complete protection, and induces long-lasting protective and memory immune responses against respiratory tularemia caused by F. tularensis LVS.
Collapse
Affiliation(s)
- Ahd A Mansour
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Sukalyani Banik
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ragavan V Suresh
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Hardeep Kaur
- College of Pharmacy, Touro University California, Vallejo, CA, United States
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, School of Arts and Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Alison A McCormick
- College of Pharmacy, Touro University California, Vallejo, CA, United States
| | - Chandra S Bakshi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
14
|
Pavithra GC, Ramagopal UA. Crystal structures of APRT from Francisella tularensis - an N-H···N hydrogen bond imparts adenine specificity in adenine phosporibosyltransferases. FEBS J 2018; 285:2306-2318. [PMID: 29694705 DOI: 10.1111/febs.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/24/2018] [Accepted: 04/18/2018] [Indexed: 11/27/2022]
Abstract
Francisella tularensisis, the causative agent of tularemia has been classified as a category A bioterrorism agent. Here, we present the crystal structure of apo and adenine bound form of the adenine phosphoribosyltransferase (APRT) from Francisella tularensis. APRT is an enzyme involved in the salvage of adenine (a 6-aminopurine), converting it to AMP. The purine salvage pathway relies on two essential and distinct enzymes to convert 6-aminopurine and 6-oxopurines into corresponding nucleotides. The mechanism by which these enzymes differentiate different purines is not clearly understood. Analysis of the structures of apo and adenine-bound APRT from F. tularensis, together with all other available structures of APRTs, suggests that (a) the base-binding loop is stabilized by a cluster of aromatic and conformation-restricting proline residues, and (b) an N-H···N hydrogen bond between the base-binding loop and the N1 atom of adenine is the key interaction that differentiates adenine from 6-oxopurines. These observations were corroborated by bioinformatics analysis of ~ 4000 sequences of APRTs (with 80% identity cutoff), which confirmed that the residues conferring rigidity to the base-binding loop are highly conserved. Furthermore, an F23A mutation on the base-binding loop severely affects the efficiency of the enzyme. We extended our analysis to the structure and sequences of APRTs from the Trypanosomatidae family with a destabilizing insertion on the base-binding loop and propose the mechanism by which these evolutionarily divergent enzymes achieve base specificity. Our results suggest that the base-binding loop not only confers appropriate affinity but also provides defined specificity for adenine. ENZYME EC 2.4.2.7 DATABASE: Structural data are available in Protein Data Bank (PDB) under the accession numbers 5YW2 and 5YW5.
Collapse
Affiliation(s)
- Gowribidanur C Pavithra
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Bangalore, India.,Manipal Academy of Higher Education, Karnataka, India
| | - Udupi A Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Bangalore, India
| |
Collapse
|
15
|
Jia Q, Horwitz MA. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis. Front Cell Infect Microbiol 2018; 8:154. [PMID: 29868510 PMCID: PMC5963219 DOI: 10.3389/fcimb.2018.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed "Foshay" vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals-especially mice-but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated-but not killed or subunit-vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development-safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt , capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins.
Collapse
Affiliation(s)
- Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Fletcher JR, Crane DD, Wehrly TD, Martens CA, Bosio CM, Jones BD. The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain. Front Microbiol 2018; 9:607. [PMID: 29670588 PMCID: PMC5893802 DOI: 10.3389/fmicb.2018.00607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 02/02/2023] Open
Abstract
Francisella tularensis is a highly infectious bacterial pathogen that causes the potentially fatal disease tularemia. The Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica, while no longer licensed as a vaccine, is used as a model organism for identifying correlates of immunity and bacterial factors that mediate a productive immune response against F. tularensis. Recently, it was reported that two biovars of LVS differed in their virulence and vaccine efficacy. Genetic analysis showed that they differ in ferrous iron homeostasis; lower Fe2+ levels contributed to increased resistance to hydrogen peroxide in the vaccine efficacious LVS biovar. This also correlated with resistance to the bactericidal activity of interferon γ-stimulated murine bone marrow-derived macrophages. We have extended these findings further by showing that a mutant lacking bacterioferritin stimulates poor protection against Schu S4 challenge in a mouse model of tularemia. Together these results suggest that the efficacious biovar of LVS stimulates productive immunity by a mechanism that is dependent on its ability to limit the toxic effects of oxidative stress by maintaining optimally low levels of intracellular Fe2+.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| | - Deborah D. Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Tara D. Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Craig A. Martens
- Genomics Core, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, MT, United States
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Bradley D. Jones
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Tian D, Uda A, Park ES, Hotta A, Fujita O, Yamada A, Hirayama K, Hotta K, Koyama Y, Azaki M, Morikawa S. Evaluation of Francisella tularensis ΔpdpC as a candidate live attenuated vaccine against respiratory challenge by a virulent SCHU P9 strain of Francisella tularensis in a C57BL/6J mouse model. Microbiol Immunol 2018; 62:24-33. [PMID: 29171073 DOI: 10.1111/1348-0421.12555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Francisella tularensis, which causes tularemia, is an intracellular gram-negative bacterium. F. tularensis has received significant attention in recent decades because of its history as a biological weapon. Thus, development of novel vaccines against tularemia has been an important goal. The attenuated F. tularensis strain ΔpdpC, in which the pathogenicity determinant protein C gene (pdpC) has been disrupted by TargeTron mutagenesis, was investigated as a potential vaccine candidate for tularemia in the present study. C57BL/6J mice immunized s.c. with 1 × 106 CFUs of ΔpdpC were challenged intranasally with 100× the median lethal dose (LD50 ) of a virulent SCHU P9 strain 21 days post immunization. Protection against this challenge was achieved in 38% of immunized C57BL/6J mice administered 100 LD50 of this strain. Conversely, all unimmunized mice succumbed to death 6 days post challenge. Survival rates were significantly higher in vaccinated than in unimmunized mice. In addition, ΔpdpC was passaged serially in mice to confirm its stable attenuation. Low bacterial loads persisted in mouse spleens during the first to tenth passages. No statistically significant changes in the number of CFUs were observed during in vivo passage of ΔpdpC. The inserted intron sequences for disrupting pdpC were completely maintained even after the tenth passage in mice. Considering the stable attenuation and intron sequences, it is suggested that ΔpdpC is a promising tularemia vaccine candidate.
Collapse
Affiliation(s)
- Deyu Tian
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akio Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kozue Hotta
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuuki Koyama
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mika Azaki
- Department of Integrated Science in Physics and Biology College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
18
|
Bar-On L, Cohen H, Elia U, Rotem S, Bercovich-Kinori A, Bar-Haim E, Chitlaru T, Cohen O. Protection of vaccinated mice against pneumonic tularemia is associated with an early memory sentinel-response in the lung. Vaccine 2017; 35:7001-7009. [PMID: 29102170 DOI: 10.1016/j.vaccine.2017.10.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/03/2017] [Accepted: 10/18/2017] [Indexed: 01/06/2023]
Abstract
Francisella tularensis is the intracellular bacterial pathogen causing the respiratory life-threatening disease tularemia. Development of tularemia vaccines has been hampered by an incomplete understanding of the correlates of immunity. Moreover, the importance of lung cellular immunity in vaccine-mediated protection against tularemia is a controversial matter. Live attenuated vaccine strains of F. tularensis such as LVS (Live Vaccine Strain), elicit an immune response protecting mice against subsequent challenge with the virulent SchuS4 strain, yet the protective immunity against pulmonary challenge is limited in its efficacy and longevity. We established a murine intra-nasal immunization model which distinguishes between animals fully protected, challenged at 4 weeks post double-vaccination (200 inhalation Lethal Dose 50%, LD50, of SchuS4), and those which do not survive the lethal SchuS4 infection, challenged at 8 weeks post double vaccination. Early in the recall immune response in the lung (before day 3), disease progression and bacterial dissemination differed considerably between protected and non-protected immunized mice. Pre-challenge analysis, revealed that protected mice, exhibited significantly higher numbers of lung Ft-specific memory T cells compared to non-protected mice. Quantitative PCR analysis established that a higher magnitude, lung T cells response was activated in the lungs of the protected mice already at 24 h post-challenge. The data imply that an early memory response within the lung is strongly associated with protection against the lethal SchuS4 bacteria presumably by restricting the dissemination of the bacteria to internal organs. Thus, future prophylactic strategies to countermeasure F. tularensis infection may require modulation of the immune response within the lung.
Collapse
Affiliation(s)
- Liat Bar-On
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| |
Collapse
|
19
|
Freudenberger Catanzaro KC, Champion AE, Mohapatra N, Cecere T, Inzana TJ. Glycosylation of a Capsule-Like Complex (CLC) by Francisella novicida Is Required for Virulence and Partial Protective Immunity in Mice. Front Microbiol 2017; 8:935. [PMID: 28611741 PMCID: PMC5447757 DOI: 10.3389/fmicb.2017.00935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. However, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locus in F. tularensis. Following daily subculture of F. novicida in Chamberlain's defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Δ1212-1218. The subcultured mutant F. novicida Δ1212-1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Δ1212-1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10-14 days post-challenge. Mice immunized intranasally with F. novicida Δ1212-1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas control mice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Therefore, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.
Collapse
Affiliation(s)
- Kelly C Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Anna E Champion
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Nrusingh Mohapatra
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas Cecere
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas J Inzana
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States.,Department of Biomedical Sciences, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
20
|
Abstract
Francisella tularensis is the causative agent of the potentially lethal disease tularemia. Due to a low infectious dose and ease of airborne transmission, Francisella is classified as a category A biological agent. Despite the possible risk to public health, there is no safe and fully licensed vaccine. A potential vaccine candidate, an attenuated live vaccine strain, does not fulfil the criteria for general use. In this review, we will summarize existing and new candidates for live attenuated and subunit vaccines.
Collapse
|
21
|
Sunagar R, Kumar S, Franz BJ, Gosselin EJ. Vaccination evokes gender-dependent protection against tularemia infection in C57BL/6Tac mice. Vaccine 2016; 34:3396-404. [PMID: 27182819 DOI: 10.1016/j.vaccine.2016.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022]
Abstract
Francisella tularensis (Ft) is a Category A biothreat agent for which there currently is no FDA-approved vaccine. Thus, there is a substantial effort underway to develop an effective tularemia vaccine. While it is well established that gender can significantly impact susceptibility to primary infection, the impact of gender on vaccine efficacy is not well established. Thus, development of a successful vaccine against tularemia will require an understanding of the impact gender has on vaccine-induced protection against this organism. In this study, a role for gender in vaccine-induced protection following Ft challenge is identified for the first time. In the present study, mucosal vaccination with inactivated Ft (iFt) LVS elicited gender-based protection in C57BL/6Tac mice against respiratory challenge with Ft LVS. Specifically, vaccinated male mice were more susceptible to subsequent Ft LVS challenge. This increased susceptibility in male mice correlated with increased bacterial burden, increased tissue inflammation, and increased proinflammatory cytokine production late in post-challenge infection. In contrast, improved survival of iFt-vaccinated female mice correlated with reduced bacterial burden and enhanced levels of Ft-specific Abs in serum and broncho-alveolar lavage (BAL) fluid post-challenge. Furthermore, vaccination with a live attenuated vaccine consisting of an Ft LVS superoxide dismutase (SodB) mutant, which has proven efficacious against the highly virulent Ft SchuS4 strain, demonstrated similar gender bias in protection post-Ft SchuS4 challenge. Of particular significance is the fact that these are the first studies to demonstrate that gender differences impact disease outcome in the case of lethal respiratory tularemia following mucosal vaccination. In addition, these studies further emphasize the fact that gender differences must be a serious consideration in any future tularemia vaccine development studies.
Collapse
Affiliation(s)
- Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States
| | - Sudeep Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States
| | - Brian J Franz
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
22
|
Abstract
Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved.
Collapse
Affiliation(s)
- Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Sudeep Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Brian J Franz
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
23
|
Rabadi SM, Sanchez BC, Varanat M, Ma Z, Catlett SV, Melendez JA, Malik M, Bakshi CS. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines. J Biol Chem 2015; 291:5009-21. [PMID: 26644475 DOI: 10.1074/jbc.m115.681478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.
Collapse
Affiliation(s)
- Seham M Rabadi
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Belkys C Sanchez
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Mrudula Varanat
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Zhuo Ma
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Sally V Catlett
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Juan Andres Melendez
- the Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203
| | - Meenakshi Malik
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Chandra Shekhar Bakshi
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595,
| |
Collapse
|
24
|
Suresh RV, Ma Z, Sunagar R, Bhatty V, Banik S, Catlett SV, Gosselin EJ, Malik M, Bakshi CS. Preclinical testing of a vaccine candidate against tularemia. PLoS One 2015; 10:e0124326. [PMID: 25897786 PMCID: PMC4405390 DOI: 10.1371/journal.pone.0124326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Tularemia is caused by a gram-negative, intracellular bacterial pathogen, Francisella tularensis (Ft). The history weaponization of Ft in the past has elevated concerns that it could be used as a bioweapon or an agent of bioterrorism. Since the discovery of Ft, three broad approaches adopted for tularemia vaccine development have included inactivated, live attenuated, or subunit vaccines. Shortcomings in each of these approaches have hampered the development of a suitable vaccine for prevention of tularemia. Recently, we reported an oxidant sensitive mutant of Ft LVS in putative EmrA1 (FTL_0687) secretion protein. The emrA1 mutant is highly sensitive to oxidants, attenuated for intramacrophage growth and virulence in mice. We reported that EmrA1 contributes to oxidant resistance by affecting the secretion of antioxidant enzymes SodB and KatG. This study investigated the vaccine potential of the emrA1 mutant in prevention of respiratory tularemia caused by Ft LVS and the virulent SchuS4 strain in C57BL/6 mice. We report that emrA1 mutant is safe and can be used at an intranasal (i. n.) immunization dose as high as 1x106 CFU without causing any adverse effects in immunized mice. The emrA1 mutant is cleared by vaccinated mice by day 14-21 post-immunization, induces minimal histopathological lesions in lungs, liver and spleen and a strong humoral immune response. The emrA1 mutant vaccinated mice are protected against 1000-10,000LD100 doses of i.n. Ft LVS challenge. Such a high degree of protection has not been reported earlier against respiratory challenge with Ft LVS using a single immunization dose with an attenuated mutant generated on Ft LVS background. The emrA1 mutant also provides partial protection against i.n. challenge with virulent Ft SchuS4 strain in vaccinated C57BL/6 mice. Collectively, our results further support the notion that antioxidants of Ft may serve as potential targets for development of effective vaccines for prevention of tularemia.
Collapse
Affiliation(s)
| | - Zhuo Ma
- Albany College of Pharmacy and Health Sciences, Albany, United States of America
| | - Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, United States of America
| | - Vivek Bhatty
- Department of Microbiology and Immunology, New York Medical College, Valhalla, United States of America
| | - Sukalyani Banik
- Department of Microbiology and Immunology, New York Medical College, Valhalla, United States of America
| | - Sally V. Catlett
- Albany College of Pharmacy and Health Sciences, Albany, United States of America
| | - Edmund J. Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, United States of America
| | - Meenakshi Malik
- Albany College of Pharmacy and Health Sciences, Albany, United States of America
- * E-mail: (MM); (CSB)
| | - Chandra Shekhar Bakshi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, United States of America
- * E-mail: (MM); (CSB)
| |
Collapse
|
25
|
Successful protection against tularemia in C57BL/6 mice is correlated with expansion of Francisella tularensis-specific effector T cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:119-28. [PMID: 25410207 DOI: 10.1128/cvi.00648-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Francisella tularensis is an intracellular, Gram-negative bacterium that causes the fatal disease tularemia. Currently, there are no licensed vaccines for tularemia and the requirements for protection against infection are poorly defined. To identify correlates of vaccine-induced immunity against tularemia, we compared different strains of the live vaccine strain (LVS) for their relative levels of virulence and ability to protect C57BL/6 mice against challenge with virulent F. tularensis strain SchuS4. Successful vaccination, as defined by survival of C57BL/6 mice, was correlated with significantly greater numbers of effector T cells in the spleen and lung. Further, lung cells and splenocytes from fully protected animals were more effective than lung cells and splenocytes from vaccinated but nonimmune animals in limiting intracellular replication of SchuS4 in vitro. Together, our data provide a unique model to compare efficacious vaccines to nonefficacious vaccines, which will enable comprehensive identification of host and bacterial components required for immunization against tularemia.
Collapse
|
26
|
Lu Z, Rynkiewicz MJ, Madico G, Li S, Yang CY, Perkins HM, Sompuram SR, Kodela V, Liu T, Morris T, Wang D, Roche MI, Seaton BA, Sharon J. B-cell epitopes in GroEL of Francisella tularensis. PLoS One 2014; 9:e99847. [PMID: 24968190 PMCID: PMC4072690 DOI: 10.1371/journal.pone.0099847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/16/2014] [Indexed: 01/01/2023] Open
Abstract
The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guillermo Madico
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sheng Li
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hillary M. Perkins
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Seshi R. Sompuram
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Vani Kodela
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Tong Liu
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Timothy Morris
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Daphne Wang
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Marly I. Roche
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ma Z, Banik S, Rane H, Mora VT, Rabadi SM, Doyle CR, Thanassi DG, Bakshi CS, Malik M. EmrA1 membrane fusion protein of Francisella tularensis LVS is required for resistance to oxidative stress, intramacrophage survival and virulence in mice. Mol Microbiol 2014; 91:976-95. [PMID: 24397487 DOI: 10.1111/mmi.12509] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Francisella tularensis is a category A biodefence agent that causes a fatal human disease known as tularaemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defences to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant-sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild-type F. tularensis LVS levels by either transcomplementation, inhibition of ROS generation or infection in NADPH oxidase deficient (gp91Phox(-/-)) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox(-/-) mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defence mechanisms of F. tularensis.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rotem S, Cohen O, Bar-Haim E, Bar-On L, Ehrlich S, Shafferman A. Protective immunity against lethal F. tularensis holarctica LVS provided by vaccination with selected novel CD8+ T cell epitopes. PLoS One 2014; 9:e85215. [PMID: 24400128 PMCID: PMC3882263 DOI: 10.1371/journal.pone.0085215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
Recently we described an unbiased bacterial whole-genome immunoinformatic analysis aimed at selection of potential CTL epitopes located in "hotspots" of predicted MHC-I binders. Applying this approach to the proteome of the facultative intra-cellular pathogen Francisella tularensis resulted in identification of 170 novel CTL epitopes, several of which were shown to elicit highly robust T cell responses. Here we demonstrate that by DNA immunization using a short DNA fragment expressing six of the most prominent identified CTL epitopes a potent and specific CD8+ T cell responses is being induced, to all encoded epitopes, a response not observed in control mice immunized with the DNA vector alone Moreover, this CTL-specific mediated immune response prevented disease development, allowed for a rapid clearance of the bacterial infection and provided complete protection against lethal challenge (10LD50) with F. tularensis holarctica Live Vaccine Strain (LVS) (a total to 30 of 30 immunized mice survived the challenge while all control DNA vector immunized mice succumbed). Furthermore, and in accordance with these results, CD8 deficient mice could not be protected from lethal challenge after immunization with the CTL-polyepitope. Vaccination with the DNA poly-epitope construct could even protect mice (8/10) against the more demanding pulmonary lethal challenge of LVS. Our approach provides a proof-of-principle for selecting and generating a multi-epitpoe CD8 T cell-stimulating vaccine against a model intracellular bacterium.
Collapse
Affiliation(s)
- Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Liat Bar-On
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
29
|
Franchini AM, Hunt D, Melendez JA, Drake JR. FcγR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J Biol Chem 2013; 288:25098-25108. [PMID: 23857584 DOI: 10.1074/jbc.m113.474106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the FcγR via antigen containing immune complexes can lead to the generation of reactive oxygen species, which are potent signal transducing molecules. However, whether ROS contribute to FcγR signaling has not been studied extensively. We set out to elucidate the role of NADPH oxidase-generated ROS in macrophage activation following FcγR engagement using antigen-containing immune complexes. We hypothesized that NOX2 generated ROS is necessary for propagation of downstream FcγR signaling and initiation of the innate immune response. Following exposure of murine bone marrow-derived macrophages (BMDMs) to inactivated Francisella tularensis (iFt)-containing immune complexes, we observed a significant increase in the innate inflammatory cytokine IL-6 at 24 h compared with macrophages treated with Ft LVS-containing immune complexes. Ligation of the FcγR by opsonized Ft also results in significant ROS production. Macrophages lacking the gp91(phox) subunit of NOX2 fail to produce ROS upon FcγR ligation, resulting in decreased Akt phosphorylation and a reduction in the levels of IL-6 compared with wild type macrophages. Similar results were seen following infection of BMDMs with catalase deficient Ft that fail to scavenge hydrogen peroxide. In conclusion, our findings demonstrate that ROS participate in elicitation of an effective innate immune in response to antigen-containing immune complexes through FcγR.
Collapse
Affiliation(s)
- Anthony M Franchini
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - Danielle Hunt
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - J Andres Melendez
- the College of Nanoscale Science and Engineering, University at Albany-State University of New York, Albany, New York 12203
| | - James R Drake
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and.
| |
Collapse
|
30
|
Dotson RJ, Rabadi SM, Westcott EL, Bradley S, Catlett SV, Banik S, Harton JA, Bakshi CS, Malik M. Repression of inflammasome by Francisella tularensis during early stages of infection. J Biol Chem 2013; 288:23844-57. [PMID: 23821549 DOI: 10.1074/jbc.m113.490086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1β and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1β and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1β expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1β observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1β by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.
Collapse
Affiliation(s)
- Rachel J Dotson
- Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Live attenuated tularemia vaccines: recent developments and future goals. Vaccine 2013; 31:3485-91. [PMID: 23764535 DOI: 10.1016/j.vaccine.2013.05.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/20/2013] [Accepted: 05/24/2013] [Indexed: 12/24/2022]
Abstract
In the aftermath of the 2001 anthrax attacks in the U.S., numerous efforts were made to increase the level of preparedness against a biological attack both in the US and worldwide. As a result, there has been an increase in research interest in the development of vaccines and other countermeasures against a number of agents with the potential to be used as biological weapons. One such agent, Francisella tularensis, has been the subject of a surge in the level of research being performed, leading to a substantial increase in knowledge of the pathogenic mechanisms of the organism and the induced immune responses. This information has facilitated the development of multiple new Francisella vaccine candidates. Herein we review the latest live attenuated F. tularensis vaccine efforts. Historically, live attenuated vaccines have demonstrated the greatest degree of success in protection against tularemia and the greatest promise in recent efforts to develop of a fully protective vaccine. This review summarizes recent live attenuated Francisella vaccine candidates and the lessons learned from those studies, with the goal of collating known characteristics associated with successful attenuation, immunogenicity, and protection.
Collapse
|
32
|
Abstract
Francisella tularensis, the bacterial cause of tularemia, infects the liver and replicates in hepatocytes in vivo and in vitro. However, the factors that govern adaptation of F. tularensis to the intrahepatocytic niche have not been identified. Using cDNA microarrays, we determined the transcriptional profile of the live vaccine strain (LVS) of F. tularensis grown in the FL83B murine hepatocytic cell line compared to that of F. tularensis cultured in broth. The fslC gene of the fsl operon was the most highly upregulated. Deletion of fslC eliminated the ability of the LVS to produce siderophore, which is involved in uptake of ferric iron, but it did not impair its growth in hepatocytes, A549 epithelial cells, or macrophages. Therefore, we sought an alternative means by which F. tularensis might obtain iron. Deletion of feoB, which encodes a putative ferrous iron transporter, retarded replication of the LVS in iron-restricted media, reduced its growth in hepatocytic and epithelial cells, and impaired its acquisition of iron. Survival of mice infected intradermally with a lethal dose of the LVS was slightly improved by deletion of fslC but was not altered by loss of feoB. However, the ΔfeoB mutant showed diminished ability to colonize the lungs, liver, and spleen of mice that received sublethal inocula. Thus, FeoB represents a previously unidentified mechanism for uptake of iron by F. tularensis. Moreover, failure to produce a mutant strain lacking both feoB and fslC suggests that FeoB and the proteins of the fsl operon are the only major means by which F. tularensis acquires iron.
Collapse
|
33
|
Identification of a live attenuated vaccine candidate for tularemia prophylaxis. PLoS One 2013; 8:e61539. [PMID: 23613871 PMCID: PMC3629233 DOI: 10.1371/journal.pone.0061539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/11/2013] [Indexed: 12/25/2022] Open
Abstract
Francisella tularensis is the causative agent of a fatal human disease, tularemia. F. tularensis was used in bioweapon programs in the past and is now classified as a category A select agent owing to its possible use in bioterror attacks. Despite over a century since its discovery, an effective vaccine is yet to be developed. In this study four transposon insertion mutants of F. tularensis live vaccine strain (LVS) in Na/H antiporter (FTL_0304), aromatic amino acid transporter (FTL_0291), outer membrane protein A (OmpA)-like family protein (FTL_0325) and a conserved hypothetical membrane protein gene (FTL_0057) were evaluated for their attenuation and protective efficacy against F. tularensis SchuS4 strain. All four mutants were 100–1000 fold attenuated for virulence in mice than parental F. tularensis. Except for the FTL_0304, single intranasal immunization with the other three mutants provided 100% protection in BALB/c mice against intranasal challenge with virulent F. tularensis SchuS4. Differences in the protective ability of the FTL_0325 and FTL_0304 mutant which failed to provide protection against SchuS4 were investigated further. The results indicated that an early pro-inflammatory response and persistence in host tissues established a protective immunity against F. tularensis SchuS4 in the FTL_0325 immunized mice. No differences were observed in the levels of serum IgG antibodies amongst the two vaccinated groups. Recall response studies demonstrated that splenocytes from the FTL_0325 mutant immunized mice induced significantly higher levels of IFN-γ and IL-17 cytokines than the FTL_0304 immunized counterparts indicating development of an effective memory response. Collectively, this study demonstrates that persistence of the vaccine strain together with its ability to induce an early pro-inflammatory innate immune response and strong memory responses can discriminate between successful and failed vaccinations against tularemia. This study describes a live attenuated vaccine which may prove to be an ideal vaccine candidate for prevention of respiratory tularemia.
Collapse
|
34
|
Hong KJ, Park PG, Seo SH, Rhie GE, Hwang KJ. Current status of vaccine development for tularemia preparedness. Clin Exp Vaccine Res 2013; 2:34-9. [PMID: 23596588 PMCID: PMC3623498 DOI: 10.7774/cevr.2013.2.1.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/20/2012] [Accepted: 12/29/2012] [Indexed: 12/24/2022] Open
Abstract
Tularemia is a high-risk infectious disease caused by Gram-negative bacterium Francisella tularensis. Due to its high fatality at very low colony-forming units (less than 10), F. tularensis is considered as a powerful potential bioterrorism agent. Vaccine could be the most efficient way to prevent the citizen from infection of F. tularensis when the bioterrorism happens, but officially approved vaccine with both efficacy and safety is not developed yet. Research for the development of tularemia vaccine has been focusing on the live attenuated vaccine strain (LVS) for long history, still there are no LVS confirmed for the safety which should be an essential factor for general vaccination program. Furthermore the LVS did not show protection efficacy against high-risk subspecies tularensis (type A) as high as the level against subspecies holarctica (type B) in human. Though the subunit or recombinant vaccine candidates have been considered for better safety, any results did not show better prevention efficacy than the LVS candidate against F. tularensis infection. Currently there are some more trials to develop vaccine using mutant strains or nonpathogenic F. novicida strain, but it did not reveal effective candidates overwhelming the LVS either. Difference in the protection efficacy of LVS against type A strain in human and the low level protection of many subunit or recombinant vaccine candidates lead the scientists to consider the live vaccine development using type A strain could be ultimate answer for the tularemia vaccine development.
Collapse
Affiliation(s)
- Kee-Jong Hong
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon, Korea
| | | | | | | | | |
Collapse
|
35
|
Signarovitz AL, Ray HJ, Yu JJ, Guentzel MN, Chambers JP, Klose KE, Arulanandam BP. Mucosal immunization with live attenuated Francisella novicida U112ΔiglB protects against pulmonary F. tularensis SCHU S4 in the Fischer 344 rat model. PLoS One 2012; 7:e47639. [PMID: 23118885 PMCID: PMC3484155 DOI: 10.1371/journal.pone.0047639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022] Open
Abstract
The need for an efficacious vaccine against Francisella tularensis is a consequence of its low infectious dose and high mortality rate if left untreated. This study sought to characterize a live attenuated subspecies novicida-based vaccine strain (U112ΔiglB) in an established second rodent model of pulmonary tularemia, namely the Fischer 344 rat using two distinct routes of vaccination (intratracheal [i.t.] and oral). Attenuation was verified by comparing replication of U112ΔiglB with wild type parental strain U112 in F344 primary alveolar macrophages. U112ΔiglB exhibited an LD50>107 CFU compared to the wild type (LD50 = 5×106 CFU i.t.). Immunization with 107 CFU U112ΔiglB by i.t. and oral routes induced antigen-specific IFN-γ and potent humoral responses both systemically (IgG2a>IgG1 in serum) and at the site of mucosal vaccination (respiratory/intestinal compartment). Importantly, vaccination with U112ΔiglB by either i.t. or oral routes provided equivalent levels of protection (50% survival) in F344 rats against a subsequent pulmonary challenge with ∼25 LD50 (1.25×104 CFU) of the highly human virulent strain SCHU S4. Collectively, these results provide further evidence on the utility of a mucosal vaccination platform with a defined subsp. novicida U112ΔiglB vaccine strain in conferring protective immunity against pulmonary tularemia.
Collapse
Affiliation(s)
- Aimee L. Signarovitz
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Heather J. Ray
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
37
|
Lu Z, Madico G, Roche MI, Wang Q, Hui JH, Perkins HM, Zaia J, Costello CE, Sharon J. Protective B-cell epitopes of Francisella tularensis O-polysaccharide in a mouse model of respiratory tularaemia. Immunology 2012; 136:352-60. [PMID: 22486311 DOI: 10.1111/j.1365-2567.2012.03589.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibodies to the lipopolysaccharide (LPS) of Francisella tularensis have been shown to be protective against respiratory tularaemia in mouse models, and we have previously described mouse monoclonal antibodies (mAbs) to non-overlapping terminal and internal epitopes of the F. tularensis LPS O-polysaccharide (OAg). In the current study, we used F. tularensis LPS oligosaccharides of defined OAg repeat length as molecular rulers in competition ELISA to demonstrate that the epitope targeted by the terminal OAg-binding mAb FB11 is contained within one tetrasaccharide repeat whereas the epitope targeted by the internal OAg-binding mAb Ab52 spans two tetrasaccharide repeats. Both mAbs conferred survival to BALB/c mice infected intranasally with the F. tularensis type B live vaccine strain and prolonged survival of BALB/c mice infected intranasally with the highly virulent F. tularensis type A strain SchuS4. The protective effects correlated with reduced bacterial burden in mAb-treated infected mice. These results indicate that an oligosaccharide with two OAg tetrasaccharide repeats covers both terminal and internal protective OAg epitopes, which may inform the design of vaccines for tularaemia. Furthermore, the FB11 and Ab52 mAbs could serve as reporters to monitor the response of vaccine recipients to protective B-cell epitopes of F. tularensis OAg.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Members of the Francisella tularensis phagosomal transporter subfamily of major facilitator superfamily transporters are critical for pathogenesis. Infect Immun 2012; 80:2390-401. [PMID: 22508856 DOI: 10.1128/iai.00144-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia. Due to its aerosolizable nature and low infectious dose, F. tularensis is classified as a category A select agent and, therefore, is a priority for vaccine development. Survival and replication in macrophages and other cell types are critical to F. tularensis pathogenesis, and impaired intracellular survival has been linked to a reduction in virulence. The F. tularensis genome is predicted to encode 31 major facilitator superfamily (MFS) transporters, and the nine-member Francisella phagosomal transporter (Fpt) subfamily possesses homology with virulence factors in other intracellular pathogens. We hypothesized that these MFS transporters may play an important role in F. tularensis pathogenesis and serve as good targets for attenuation and vaccine development. Here we show altered intracellular replication kinetics and attenuation of virulence in mice infected with three of the nine Fpt mutant strains compared with wild-type (WT) F. tularensis LVS. The vaccination of mice with these mutant strains was protective against a lethal intraperitoneal challenge. Additionally, we observed pronounced differences in cytokine profiles in the livers of mutant-infected mice, suggesting that alterations in in vivo cytokine responses are a major contributor to the attenuation observed for these mutant strains. These results confirm that this subset of MFS transporters plays an important role in the pathogenesis of F. tularensis and suggest that a focus on the development of attenuated Fpt subfamily MFS transporter mutants is a viable strategy toward the development of an efficacious vaccine.
Collapse
|
39
|
Crane DD, Scott DP, Bosio CM. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia. PLoS One 2012; 7:e33349. [PMID: 22428026 PMCID: PMC3299770 DOI: 10.1371/journal.pone.0033349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/12/2012] [Indexed: 01/04/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection.
Collapse
Affiliation(s)
- Deborah D. Crane
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Veterinary Pathology Section, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
40
|
Schmitt DM, O'Dee DM, Horzempa J, Carlson PE, Russo BC, Bales JM, Brown MJ, Nau GJ. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy. PLoS One 2012; 7:e31172. [PMID: 22355343 PMCID: PMC3280287 DOI: 10.1371/journal.pone.0031172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022] Open
Abstract
Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.
Collapse
Affiliation(s)
- Deanna M. Schmitt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dawn M. O'Dee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Joseph Horzempa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Paul E. Carlson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Brian C. Russo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jacqueline M. Bales
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew J. Brown
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Gerard J. Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Medicine – Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Conlan JW. Tularemia vaccines: recent developments and remaining hurdles. Future Microbiol 2011; 6:391-405. [PMID: 21526941 DOI: 10.2217/fmb.11.22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a facultative intracellular bacterial pathogen of humans and other mammals. Its inhaled infectious dose is very low and can result in very high mortality. Historically, subsp. tularensis was developed as a biological weapon and there are now concerns about its abuse as such by terrorists. A live attenuated vaccine developed pragmatically more than half a century ago from the less virulent holarctica subsp. is the sole prophylactic available, but it remains unlicensed. In recent years several other potential live, killed and subunit vaccine candidates have been developed and tested in mice for their efficacy against respiratory challenge with subsp. tularensis. This article will review these vaccine candidates and the development hurdles they face.
Collapse
Affiliation(s)
- J Wayne Conlan
- National Research Council, Institute for Biological Sciences, Ottawa, Ontario, Canada.
| |
Collapse
|
42
|
Kim TH, Pinkham JT, Heninger SJ, Chalabaev S, Kasper DL. Genetic modification of the O-polysaccharide of Francisella tularensis results in an avirulent live attenuated vaccine. J Infect Dis 2011; 205:1056-65. [PMID: 21969334 DOI: 10.1093/infdis/jir620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Francisella tularensis, the causative agent of tularemia, is a highly virulent microbe. One significant virulence factor of F. tularensis is the O-polysaccharide (O-PS) portion of the organism's lipopolysaccharide. METHODS A wzy (O-antigen polymerase) deletion mutant of Ft. live attenuated vaccine strain (Ft.LVS), designated Ft.LVS::Δwzy, was created and evaluated as a live attenuated vaccine. Specifically, the mutant's virulence potential and its protective efficacy against type A and type B strains were investigated by challenge of immunized mice. RESULTS F. tularensis LVS::Δwzy expressed only 1 repeating unit of O-PS and yet, upon immunization, induced O-PS-specific antibodies. Compared with Ft.LVS, the mutant was highly sensitive to complement-mediated lysis, significantly attenuated in virulence, and was recovered in much lower numbers from the organs of infected mice. Intranasal immunization with Ft.LVS::Δwzy provided protection against subsequent intranasal infection with the highly virulent type A strain SchuS4 and with Ft.LVS. Immunization with Ft.LVS::Δwzy elicited both humoral and cell-mediated immunity. CONCLUSIONS Ft.LVS::Δwzy was avirulent in mice and, despite expressing only 1 repeating unit of the O-PS, induced antibodies to the full-length O-PS. Vaccination with Ft.LVS::Δwzy protected mice against intranasal challenge with both type A and type B strains of F. tularensis and induced functional immunity through both humoral and cellular mechanisms.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Microbiology and Molecular Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
43
|
Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 2011; 6:e24201. [PMID: 21915295 PMCID: PMC3167825 DOI: 10.1371/journal.pone.0024201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022] Open
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.
Collapse
|
44
|
Hickey AJ, Hazlett KRO, Kirimanjeswara GS, Metzger DW. Identification of Francisella tularensis outer membrane protein A (FopA) as a protective antigen for tularemia. Vaccine 2011; 29:6941-7. [PMID: 21803089 DOI: 10.1016/j.vaccine.2011.07.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 12/31/2022]
Abstract
Francisella tularensis is a highly pathogenic gram negative bacterium that infects multiple sites in a host, including the skin and the respiratory tract, which can lead to the onset of a deadly disease with a 50% mortality rate. The live vaccine strain (LVS) of F. tularensis, while attenuated in humans but still virulent in mice, is not an option for vaccine use in the United States due to safety concerns, and currently no FDA approved vaccine exists. The purpose of the present work was to assess the ability of recombinant Francisella outer membrane protein A (FopA) to induce a protective response in mice. The gene encoding FopA from F. tularensis LVS was cloned and expressed in Escherichia coli. The resulting recombinant protein was affinity-purified from the E. coli outer membrane, incorporated into liposomes and administered to mice via multiple routes. FopA-immunized mice produced FopA-specific antibodies and were protected against both lethal intradermal and intranasal challenges with F. tularensis LVS. The vaccinated mice had reduced bacterial numbers in their lungs, livers and spleens during infection, and complete bacterial clearance was observed by day 28 post infection. Passive transfer of FopA-immune serum protected naïve mice against lethal F. tularensis LVS challenge, showing that humoral immunity played an important role in vaccine efficacy. FopA-immunization was unable to protect against challenge with the fully virulent SchuS4 strain of F. tularensis; however, the findings demonstrate proof of principle that an immune response generated against a component of a subunit vaccine is protective against lethal respiratory and intradermal tularemia.
Collapse
Affiliation(s)
- Anthony J Hickey
- Albany Medical College, Center for Immunology and Microbial Disease, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
45
|
Pierson T, Matrakas D, Taylor YU, Manyam G, Morozov VN, Zhou W, van Hoek ML. Proteomic Characterization and Functional Analysis of Outer Membrane Vesicles of Francisella novicida Suggests Possible Role in Virulence and Use as a Vaccine. J Proteome Res 2011; 10:954-67. [DOI: 10.1021/pr1009756] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tony Pierson
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
| | - Demetrios Matrakas
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
| | - Yuka U. Taylor
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The UT MD Anderson Cancer Center, Houston, Texas, United States
| | - Victor N. Morozov
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, United States
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Monique L. van Hoek
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, United States
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
46
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
47
|
Shen H, Harris G, Chen W, Sjostedt A, Ryden P, Conlan W. Molecular immune responses to aerosol challenge with Francisella tularensis in mice inoculated with live vaccine candidates of varying efficacy. PLoS One 2010; 5:e13349. [PMID: 20967278 PMCID: PMC2953512 DOI: 10.1371/journal.pone.0013349] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/16/2010] [Indexed: 11/23/2022] Open
Abstract
Background Francisella tularensis is a facultative intracellular bacterial pathogen and the etiological agent of tularemia. The subspecies F. tularensis tularensis is especially virulent for humans when inhaled and respiratory tularemia is associated with high mortality if not promptly treated. A live vaccine strain (LVS) derived from the less virulent holarctica subspecies confers incomplete protection against aerosol challenge with subsp. tularensis. Moreover, correlates of protection have not been established for LVS. Methodology/Principal Findings In the present study we compare molecular immune responses elicited by LVS and two defined deletion mutants of clinical subsp. tularensis strain, SCHU S4, that confer enhanced protection in a mouse model. BALB/c mice were immunized intradermally then challenged with an aerosol of SCHU S4 six weeks later. Changes in the levels of a selected panel of cytokines and chemokines were examined in the lungs, spleens, and sera of vaccinated and challenged mice. Mostly, increased cytokine and chemokine levels correlated with increased bacterial burden. However, after adjusting for this variable, immunization with either of the two Schu S4 mutants resulted in higher levels of several pulmonary cytokines, versus those resulting after LVS immunization, including IL-17. Moreover, treatment of mice immunized with ΔclpB with anti-IL-17 antibodies post-challenge enhanced lung infection. Conclusions/Significance This is the first report characterizing local and systemic cytokine and chemokine responses in mice immunized with vaccines with different efficacies against aerosol challenge with virulent F. tularensis subsp. tularensis. It shows that increases in the levels of most of these immunomodulators, including those known to be critical for protective immunity, do not superficially correlate with protection unless adjusted for the effects of bacterial burden. Additionally, several cytokines were selectively suppressed in the lungs of naïve mice, suggesting that one mechanism of vaccine action is to overcome this pathogen-induced immunosuppression.
Collapse
Affiliation(s)
- Hua Shen
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Gregory Harris
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Wangxue Chen
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anders Sjostedt
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Patrik Ryden
- Department of Mathematics and Mathematical Statistics, Department of Statistics, Computational Life Science Cluster, Umeå University, Umeå, Sweden
| | - Wayne Conlan
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
48
|
Anderson RV, Crane DD, Bosio CM. Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine 2010; 28:6562-72. [PMID: 20688042 PMCID: PMC2939155 DOI: 10.1016/j.vaccine.2010.07.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/28/2022]
Abstract
Protection against the intracellular bacterium Francisella tularensis within weeks of vaccination is thought to involve both cellular and humoral immune responses. However, the relative roles for cellular and humoral immunity in long lived protection against virulent F. tularensis are not well established. Here, we dissected the correlates of immunity to pulmonary infection with virulent F. tularensis strain SchuS4 in mice challenged 30 and 90 days after subcutaneous vaccination with LVS. Regardless of the time of challenge, LVS vaccination protected approximately 90% of SchuS4 infected animals. Surprisingly, control of bacterial replication in the lung during the first 7 days of infection was not required for survival of SchuS4 infection in vaccinated mice. Control and survival of virulent F. tularensis strain SchuS4 infection within 30 days of vaccination was associated with high titers of SchuS4 agglutinating antibodies, and IFN-γ production by multiple cell types in both the lung and spleen. In contrast, survival of SchuS4 infection 90 days after vaccination was correlated only with IFN-γ producing splenocytes and activated T cells in the spleen. Together these data demonstrate that functional agglutinating antibodies and strong mucosal immunity are correlated with early control of pulmonary infections with virulent F. tularensis. However, early mucosal immunity may not be required to survive F. tularensis infection. Instead, survival of SchuS4 infection at extended time points after immunization was only associated with production of IFN-γ and activation of T cells in peripheral organs.
Collapse
Affiliation(s)
- Rebecca V. Anderson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Deborah D. Crane
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| |
Collapse
|
49
|
A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect Immun 2010; 78:4341-55. [PMID: 20643859 DOI: 10.1128/iai.00192-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is in the top category (category A) of potential agents of bioterrorism. The F. tularensis live vaccine strain (LVS) is the only vaccine currently available to protect against tularemia; however, this unlicensed vaccine is relatively toxic and provides incomplete protection against aerosolized F. tularensis, the most dangerous mode of transmission. Hence, a safer and more potent vaccine is needed. As a first step toward addressing this need, we have constructed and characterized an attenuated version of LVS, LVS ΔcapB, both as a safer vaccine and as a vector for the expression of recombinant F. tularensis proteins. LVS ΔcapB, with a targeted deletion in a putative capsule synthesis gene (capB), is antibiotic resistance marker free. LVS ΔcapB retains the immunoprotective O antigen, is serum resistant, and is outgrown by parental LVS in human macrophage-like THP-1 cells in a competition assay. LVS ΔcapB is significantly attenuated in mice; the 50% lethal dose (LD(50)) intranasally (i.n.) is >10,000-fold that of LVS. Providing CapB in trans to LVS ΔcapB partially restores its virulence in mice. Mice immunized with LVS ΔcapB i.n. or intradermally (i.d.) developed humoral and cellular immune responses comparable to those of mice immunized with LVS, and when challenged 4 or 8 weeks later with a lethal dose of LVS i.n., they were 100% protected from illness and death and had significantly lower levels (3 to 5 logs) of LVS in the lung, liver, and spleen than sham-immunized mice. Most importantly, mice immunized with LVS ΔcapB i.n. or i.d. and then challenged 6 weeks later by aerosol with 10× the LD(50) of the highly virulent type A F. tularensis strain SchuS4 were significantly protected (100% survival after i.n. immunization). These results show that LVS ΔcapB is significantly safer than LVS and yet provides potent protective immunity against virulent F. tularensis SchuS4 challenge.
Collapse
|
50
|
Bronchus-associated lymphoid tissue (BALT) and survival in a vaccine mouse model of tularemia. PLoS One 2010; 5:e11156. [PMID: 20585390 PMCID: PMC2886834 DOI: 10.1371/journal.pone.0011156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Francisella tularensis causes severe pulmonary disease, and nasal vaccination could be the ideal measure to effectively prevent it. Nevertheless, the efficacy of this type of vaccine is influenced by the lack of an effective mucosal adjuvant. METHODOLOGY/PRINCIPAL FINDINGS Mice were immunized via the nasal route with lipopolysaccharide isolated from F. tularensis and neisserial recombinant PorB as an adjuvant candidate. Then, mice were challenged via the same route with the F. tularensis attenuated live vaccine strain (LVS). Mouse survival and analysis of a number of immune parameters were conducted following intranasal challenge. Vaccination induced a systemic antibody response and 70% of mice were protected from challenge as showed by their improved survival and weight regain. Lungs from mice recovering from infection presented prominent lymphoid aggregates in peribronchial and perivascular areas, consistent with the location of bronchus-associated lymphoid tissue (BALT). BALT areas contained proliferating B and T cells, germinal centers, T cell infiltrates, dendritic cells (DCs). We also observed local production of antibody generating cells and homeostatic chemokines in BALT areas. CONCLUSIONS These data indicate that PorB might be an optimal adjuvant candidate for improving the protective effect of F. tularensis antigens. The presence of BALT induced after intranasal challenge in vaccinated mice might play a role in regulation of local immunity and long-term protection, but more work is needed to elucidate mechanisms that lead to its formation.
Collapse
|