1
|
Status and Challenges for Vaccination against Avian H9N2 Influenza Virus in China. Life (Basel) 2022; 12:life12091326. [PMID: 36143363 PMCID: PMC9505450 DOI: 10.3390/life12091326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
In China, H9N2 avian influenza virus (AIV) has become widely prevalent in poultry, causing huge economic losses after secondary infection with other pathogens. Importantly, H9N2 AIV continuously infects humans, and its six internal genes frequently reassort with other influenza viruses to generate novel influenza viruses that infect humans, threatening public health. Inactivated whole-virus vaccines have been used to control H9N2 AIV in China for more than 20 years, and they can alleviate clinical symptoms after immunization, greatly reducing economic losses. However, H9N2 AIVs can still be isolated from immunized chickens and have recently become the main epidemic subtype. A more effective vaccine prevention strategy might be able to address the current situation. Herein, we analyze the current status and vaccination strategy against H9N2 AIV and summarize the progress in vaccine development to provide insight for better H9N2 prevention and control.
Collapse
|
2
|
Poly (lactic-co-glycolic acid) nanoparticle-based vaccines delivery systems as a novel adjuvant for H9N2 antigen enhance immune responses. Poult Sci 2022; 101:101791. [PMID: 35358927 PMCID: PMC8968667 DOI: 10.1016/j.psj.2022.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
Poly (lactic-co-glycolic acid) (PLGA) nanoparticle used as vaccine adjuvants have been widely investigated due to their safety, antigen slow-release ability, and good adjuvants activity. In this study, immunopotentiator Alhagi honey polysaccharide encapsulated PLGA nanoparticles (AHPP) and assembled pickering emulsion with AHPP as shell and squalene as core (PPAS) were prepared. Characterization of AHPP and PPAS were investigated. H9N2 absorbed nanoparticles formulations were immunized to chicken, then the magnitude and kinetics of antibody and cellular immune responses were assessed. Our results showed that PPAS had rough strawberry-like surfaces, a large number of antigens could be absorbed on their surfaces through simple mixing. Adjuvant activity of PPAS showed that, PPAS/H9N2 can induce long-lasting and high HI titers, high thymus, spleen, and bursa of fabricius organ index. Moreover, chicken immunized with PPAS/H9N2 showed a mixed high differentiation of CD4+ and CD8a+ T cell, and strong Th1 and Th2-type cytokines mRNA expression. Thus, these findings demonstrated that PPAS could induce a strong and long-term cellular and humoral immune response, and has the potential to serve as an effective vaccine delivery adjuvant system for H9N2 antigen.
Collapse
|
3
|
Chen S, Quan K, Wang H, Li S, Xue J, Qin T, Chu D, Fan G, Du Y, Peng D. A Live Attenuated H9N2 Avian Influenza Vaccine Prevents the Viral Reassortment by Exchanging the HA and NS1 Packaging Signals. Front Microbiol 2021; 11:613437. [PMID: 33613465 PMCID: PMC7890077 DOI: 10.3389/fmicb.2020.613437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The H9N2 avian influenza virus is not only an important zoonotic pathogen, it can also easily recombine with other subtypes to generate novel reassortments, such as the H7N9 virus. Although H9N2 live attenuated vaccines can provide good multiple immunities, including humoral, cellular, and mucosal immunity, the risk of reassortment between the vaccine strain and wild-type virus is still a concern. Here, we successfully rescued an H9N2 live attenuated strain [rTX-NS1-128 (mut)] that can interdict reassortment, which was developed by exchanging the mutual packaging signals of HA and truncated NS1 genes and confirmed by RT-PCR and sequencing. The dynamic growth results showed that rTX-NS1-128 (mut) replication ability in chick embryos was not significantly affected by our construction strategy compared to the parent virus rTX strain. Moreover, rTX-NS1-128 (mut) had good genetic stability after 15 generations and possessed low pathogenicity and no contact transmission characteristics in chickens. Furthermore, chickens were intranasally immunized by rTX-NS1-128 (mut) with a single dose, and the results showed that the hemagglutination inhibition (HI) titers peaked at 3 weeks after vaccination and lasted at least until 11 weeks. The cellular immunity (IL-6 and IL-12) and mucosal immunity (IgA and IgG) in the nasal and trachea samples were significantly increased compared to inactivated rTX. Recombinant virus provided a good cross-protection against homologous TX strain (100%) and heterologous F98 strain (80%) challenge. Collectively, these data indicated that rTX-NS1-128(mut) lost the ability for independent reassortment of HA and NS1-128 and will be expected to be used as a potential live attenuated vaccine against H9N2 subtype avian influenza.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hui Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Dianfeng Chu
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Gencheng Fan
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Yuanzhao Du
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| |
Collapse
|
4
|
Schön J, Ran W, Gorka M, Schwemmle M, Beer M, Hoffmann D. A modified live bat influenza A virus-based vaccine prototype provides full protection against HPAIV H5N1. NPJ Vaccines 2020; 5:40. [PMID: 32435514 PMCID: PMC7229168 DOI: 10.1038/s41541-020-0185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 are a major threat for poultry holdings worldwide, here especially the zoonotic Asian H5N1 viruses. These HPAIVs have caused more than 500 fatal spillover infections from poultry to humans, with a looming danger of a new pandemic by establishing human-to-human transmissions. Besides culling measures in infected farms in endemic areas, vaccination is the major tool against HPAIV. However, the mainly used inactivated preparations have several limitations, like application to the individual animal by injection and a reduced efficiency. Here we present a modified live influenza vaccine prototype, which is based on the H17N10 bat influenza virus. The new chimeric vaccine strain R65mono/H17N10 was able to provide full protection against a lethal challenge infection with HPAIV H5N1 of juvenile and subadult chickens, as well as ferrets after oronasal immunization. In addition, the H5 vaccine prototype cannot reassort with avian influenza viruses and therefore is a promising tool against HPAIV H5 infection, allowing new vaccination strategies for efficient disease control.
Collapse
Affiliation(s)
- Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Wei Ran
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Gorka
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Jonas M, Sahesti A, Murwijati T, Lestariningsih CL, Irine I, Ayesda CS, Prihartini W, Mahardika GN. Identification of avian influenza virus subtype H9N2 in chicken farms in Indonesia. Prev Vet Med 2018; 159:99-105. [PMID: 30314797 DOI: 10.1016/j.prevetmed.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/11/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
Avian influenza virus subtype H9N2 (AIV-H9N2) has become established in domestic poultry in Asia and Africa. AIV-H9N2 has not been reported previously in Indonesia. Here we describe the presence of AIV-H9N2 in chicken farms in Indonesia. Ninety-nine cases were observed in various provinces in Indonesia. Clinical signs, pathologic lesions and egg production were recorded. Confirmation was made using virus isolation, reverse transcriptase PCR (RT-PCR), and sequencing. To construct hemaglutinin (HA) phylogeny, the secondary data of Eurasian lineages were downloaded from GenBank. For neuraminidase, five sequences with the highest similarities with every sequence found in this study were downloaded. Phylogeny was inferred using Neighbor-Joining method in MEGA6 package. Forty-nine AIV-H9N2-positive cases were observed, of which 35 were tested positive for AIV-H9N2 only. The age of the infected chickens was 43.17 ± 16.56 weeks, and their egg production was 35.85 ± 17.80% lower than before outbreak. BLAST search revealed that the nucleotide sequence of the HA-encoding gene identified in this study shared 98% sequence identity with that of A/Muscovy duck/Vietnam/LBM719/2014(H9N2), while its neuraminidase-encoding gene sequences shared 94%, 98%, and 100% identities with three different influenza viruses. The phylogeny shows that the HA of AIV-H9N2 found in this study forms distinct cluster with some Vietnam and China's sequence data. The NA sequence data form three distinct clusters. We conclude that AIV-H9N2 is widespread in many provinces in Indonesia. To lessen economic losses to the poultry industry, flock biosecurity and vaccination against this virus subtype should be implemented rapidly. Thorough and rigid AIV surveillance is paramount to prevent further veterinary and public health consequences of the circulation of this virus in Indonesia.
Collapse
Affiliation(s)
- Melina Jonas
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | - Aprilla Sahesti
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | | | | | - Ine Irine
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | | | - Wahyu Prihartini
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | - Gusti Ngurah Mahardika
- Faculty of Veterinary Medicine Udayana University, Jl. PB Sudirman, 80225, Denpasar, Bali, Indonesia.
| |
Collapse
|
6
|
Wei Y, Qi L, Gao H, Sun H, Pu J, Sun Y, Liu J. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Sci Rep 2016; 6:30382. [PMID: 27457755 PMCID: PMC4960571 DOI: 10.1038/srep30382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/30/2016] [Indexed: 11/12/2022] Open
Abstract
To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens.
Collapse
Affiliation(s)
- Yandi Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lu Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Huijie Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Zhang W, Tu J, Zhao Z, Chen H, Jin M. The new temperature-sensitive mutation PA-F35S for developing recombinant avian live attenuated H5N1 influenza vaccine. Virol J 2012; 9:97. [PMID: 22621130 PMCID: PMC3413606 DOI: 10.1186/1743-422x-9-97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 05/23/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND H5N1 highly pathogenic avian influenza virus (HPAIV) is continuously circulating in many Asian countries and threatening poultry industry and human population. Vaccination is the best strategy to control H5N1 HPAIV infection in poultry and transmission to human population. The aim of this study is to identify new temperature-sensitive (ts) mutations for developing recombinant avian live attenuated H5N1 influenza vaccine. FINDINGS A "6 + 2" recombinant virus C4/W1 that contained NA gene and modified HA gene from virus A/chicken/Hubei/327/2004 (H5N1) (C4), and six internal genes from virus A/duck/Hubei/W1/2004 (H9N2) (W1) was generated using reverse genetics and subsequently passaged in chicken eggs at progressively lower temperatures (32°C, 28°C and 25°C). The resulting virus acquired ts phenotype and one of its amino acid mutations, PA (F35S), was identified as ts mutation. Furthermore, when used as live attenuated vaccine, the recombinant virus with this ts mutation PA (F35S) provided efficient protection for chickens against H5N1 HPAIV infection. CONCLUSIONS These findings highlight the potential of the new ts mutation PA (F35S) in developing recombinant avian live attenuated H5N1 influenza vaccine.
Collapse
Affiliation(s)
- Wenting Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | | | | | | | | |
Collapse
|
8
|
Nang NT, Song BM, Kang YM, Kim HM, Kim HS, Seo SH. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both highly pathogenic H5N1 and H9N2 influenza viruses. Influenza Other Respir Viruses 2012; 7:120-31. [PMID: 22487301 PMCID: PMC5780756 DOI: 10.1111/j.1750-2659.2012.00363.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity.
Collapse
Affiliation(s)
- Nguyen Tai Nang
- Laboratory of Influenza Research Institute for Influenza Virus Laboratory of Public Health, College of Veterinary Medicine, Chungnam National University, Yuseong Gu, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Lam WY, Yeung ACM, Chu IMT, Chan PKS. Profiles of cytokine and chemokine gene expression in human pulmonary epithelial cells induced by human and avian influenza viruses. Virol J 2010; 7:344. [PMID: 21108843 PMCID: PMC3002310 DOI: 10.1186/1743-422x-7-344] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/26/2010] [Indexed: 02/03/2023] Open
Abstract
Influenza pandemic remains a serious threat to human health. In this study, the repertoire of host cellular cytokine and chemokine responses to infections with highly pathogenic avian influenza H5N1, low pathogenicity avian influenza H9N2 and seasonal human influenza H1N1 were compared using an in vitro system based on human pulmonary epithelial cells. The results showed that H5N1 was more potent than H9N2 and H1N1 in inducing CXCL-10/IP-10, TNF-alpha and CCL-5/RANTES. The cytokine/chemokine profiles for H9N2, in general, resembled those of H1N1. Of interest, only H1N1, but none of the avian subtypes examined could induce a persistent elevation of the immune-regulatory cytokine - TGF-β2. The differential expression of cytokines/chemokines following infection with different influenza viruses could be a key determinant for clinical outcome. The potential of using these cytokines/chemokines as prognostic markers or targets of therapy is worth exploring.
Collapse
Affiliation(s)
- W Y Lam
- Department of Microbiology, The Chinese University of Hong Kong, New Territories, Hong Kong Special Administration Region, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Ayora-Talavera G, Shelton H, Scull MA, Ren J, Jones IM, Pickles RJ, Barclay WS. Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium. PLoS One 2009; 4:e7836. [PMID: 19924306 PMCID: PMC2775162 DOI: 10.1371/journal.pone.0007836] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 10/13/2009] [Indexed: 02/06/2023] Open
Abstract
The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.
Collapse
Affiliation(s)
| | - Holly Shelton
- Department of Virology, Imperial College London, London, United Kingdom
| | - Margaret A. Scull
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Junyuan Ren
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Raymond J. Pickles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wendy S. Barclay
- Department of Virology, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|