1
|
Mandaric S, Friberg H, Saez-Llorens X, Borja-Tabora C, Biswal S, Escudero I, Faccin A, Gottardo R, Brose M, Roubinis N, Fladager D, DeAntonio R, Dimero JAL, Montenegro N, Folschweiller N, Currier JR, Sharma M, Tricou V. Long term T cell response and safety of a tetravalent dengue vaccine in healthy children. NPJ Vaccines 2024; 9:192. [PMID: 39420169 PMCID: PMC11487277 DOI: 10.1038/s41541-024-00967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
As robust cellular responses are important for protection against dengue, this phase 2 study evaluated the kinetics and phenotype of T cell responses induced by TAK-003, a live-attenuated tetravalent dengue vaccine, in 4-16-year-old living in dengue-endemic countries (NCT02948829). Two hundred participants received TAK-003 on Days 1 and 90. Interferon-gamma (IFN-γ) enzyme-linked immunospot assay [ELISPOT] and intracellular cytokine staining were used to analyze T cell response and functionality, using peptide pools representing non-structural (NS) proteins NS3 and NS5 matching DENV-1, -2, -3, and -4 and DENV-2 NS1. One month after the second TAK-003 dose (Day 120), IFN-γ ELISPOT T cell response rates against any peptide pool were 97.1% (95% CI: 93.4% to 99.1%), and similar for baseline dengue seropositive (96.0%) and seronegative (98.6%) participants. IFN-γ ELISPOT T cell response rates at Day 120 were 79.8%, 90.2%, 77.3%, and 74.0%, against DENV-1, -2, -3, and -4, respectively, and remained elevated through 3 years post-vaccination. Multifunctional CD4 and CD8 T cell responses against DENV-2 NS peptides were observed, independent of baseline serostatus: CD8 T cells typically secreted IFN-γ and TNF-α whereas CD4 T cells secreted ≥ 2 of IFN-γ, IL-2 and TNF-α cytokines. NAb titers and seropositivity rates remained substantially elevated through 3 years post-vaccination. Overall, TAK-003 was well tolerated and elicited durable T cell responses against all four DENV serotypes irrespective of baseline serostatus in children and adolescents aged 4-16 years living in dengue-endemic countries. TAK-003-elicited CD4 and CD8 T cells were multifunctional and persisted up to 3 years post-vaccination.
Collapse
Affiliation(s)
- Sanja Mandaric
- Takeda Pharmaceuticals International AG, Zurich, Switzerland.
| | - Heather Friberg
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xavier Saez-Llorens
- Hospital del Niño Dr. José Renán Esquivel, Panama City, Panama
- Centro de Vacunación Internacional Cevaxin, Panama City, Panama
- Sistema Nacional de Investigación SENACYT, Panama City, Panama
| | | | | | | | - Alice Faccin
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Raphael Gottardo
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manja Brose
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | - Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| |
Collapse
|
2
|
Pintado Silva J, Fernandez-Sesma A. Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol 2023; 104:001831. [PMID: 36857199 PMCID: PMC10228381 DOI: 10.1099/jgv.0.001831] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Dengue virus (DENV) is the mosquito-borne virus of greatest human health concern. There are four serotypes of DENV (1-4) that co-circulate in endemic areas. Each serotype of DENV is individually capable of causing the full spectrum of disease, ranging from self-resolving dengue fever to the more severe dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS). Based on data published by the CDC, one in four people who become infected with dengue will become ill. Of those that do develop symptomology, the symptoms can range from mild to severe. Symptoms can vary from rash, ocular aches and pains to more intense symptoms in the manifestation of severe dengue. Roughly, 1 in 20 people who become ill will develop severe dengue, which can result in shock, internal bleeding and death. There is currently no specific treatment for dengue and only one licensed vaccine (Dengvaxia) for children 9 through 16 years of age in just a few countries. Despite its licensure for clinical use, Dengvaxia has performed with low efficacy in children and dengue naïve individuals and critically has resulted in increased risk of developing severe dengue in young, vaccinated recipients. Currently, there are various novel strategies for the development of a dengue vaccine. In this review we have conducted a detailed overview of the DENV vaccine landscape, focusing on nine vaccines in the pipeline to provide a comprehensive overview of the most state-of-the-art developments in strategies for vaccines against DENV.
Collapse
Affiliation(s)
- Jessica Pintado Silva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| |
Collapse
|
3
|
Tricou V, Gottardo R, Egan MA, Clement F, Leroux-Roels G, Sáez-Llorens X, Borkowski A, Wallace D, Dean HJ. Characterization of the cell-mediated immune response to Takeda’s live-attenuated tetravalent dengue vaccine in adolescents participating in a phase 2 randomized controlled trial conducted in a dengue-endemic setting. Vaccine 2022; 40:1143-1151. [DOI: 10.1016/j.vaccine.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022]
|
4
|
Huang YW, Lee CT, Wang TC, Kao YC, Yang CH, Lin YM, Huang KS. The Development of Peptide-based Antimicrobial Agents against Dengue Virus. Curr Protein Pept Sci 2018; 19:998-1010. [PMID: 29852867 PMCID: PMC6446661 DOI: 10.2174/1389203719666180531122724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022]
Abstract
Dengue fever has become an imminent threat to international public health because of global warming and climate change. The World Health Organization proclaimed that more than 50% of the world's population is at risk of dengue virus (DENV) infection. Therefore, developing a clinically approved vaccine and effective therapeutic remedy for treating dengue fever is imperative. Peptide drug development has become a novel pharmaceutical research field. This article reviews various peptidesbased antimicrobial agents targeting three pathways involved in the DENV lifecycle. Specifically, they are peptide vaccines from immunomodulation, peptide drugs that inhibit virus entry, and peptide drugs that interfere with viral replication. Many antiviral peptide studies against DENV have been conducted in animal model trials, and progression to clinical trials for these promising peptide drugs is anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keng-Shiang Huang
- Address correspondence to this author at the School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan;, Tel: +886-988-399-979; E-mail:
| |
Collapse
|
5
|
Katzelnick LC, Harris E. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine 2017; 35:4659-4669. [PMID: 28757058 PMCID: PMC5924688 DOI: 10.1016/j.vaccine.2017.07.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ∼400 million infections and ∼100 million dengue cases each year. Factors that contribute to protection from and risk of dengue and severe dengue disease have been studied extensively but are still not fully understood. Results from Phase 3 vaccine efficacy trials have recently become available for one vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At the "Summit on Dengue Immune Correlates of Protection", held in Annecy, France, on March 8-9, 2016, dengue experts from diverse fields came together to discuss the current understanding of the immune response to and protection from DENV infection and disease, identify key unanswered questions, discuss data on immune correlates and plans for comparison of results across assays/consortia, and propose a research agenda for investigation of dengue immune correlates, all in the context of both natural infection studies and vaccine trials.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
6
|
Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development. INFECTION GENETICS AND EVOLUTION 2016; 45:187-197. [DOI: 10.1016/j.meegid.2016.08.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023]
|
7
|
Mao QY, Wang Y, Bian L, Xu M, Liang Z. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD). Expert Rev Vaccines 2016; 15:599-606. [PMID: 26732723 DOI: 10.1586/14760584.2016.1138862] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
On December 3rd 2015, the China Food and Drug Administration (CFDA) approved the first inactivated Enterovirus 71 (EV71) whole virus vaccine for preventing severe hand, foot and mouth disease (HFMD). As one of the few preventive vaccines for children's infectious diseases generated by the developing countries in recent years, EV71 vaccine is a blessing to children's health in China and worldwide. However, there are still a few challenges facing the worldwide use of EV71 vaccine, including the applicability against various EV71 pandemic strains in other countries, international requirements on vaccine production and quality control, standardization and harmonization on different pathogen monitoring and detecting methods, etc. In addition, the affordability of EV71 vaccine in other countries is a factor to be considered in HFMD prevention. Therefore, with EV71 vaccine commercially available, there is still a long way to go before reaching effective protection against severe HFMD after EV71 vaccines enter the market. In this paper, the bottlenecks and prospects for the wide use of EV71 vaccine after its approval are evaluated.
Collapse
Affiliation(s)
- Qun-ying Mao
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Yiping Wang
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Lianlian Bian
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Miao Xu
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Zhenglun Liang
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
8
|
Rothman AL, Currier JR, Friberg HL, Mathew A. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine 2015; 33:7083-90. [PMID: 26458801 DOI: 10.1016/j.vaccine.2015.09.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022]
Abstract
Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.
Collapse
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| | - Jeffrey R Currier
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Heather L Friberg
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Anuja Mathew
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| |
Collapse
|
9
|
Dengue patients exhibit higher levels of PrM and E antibodies than their asymptomatic counterparts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:420867. [PMID: 25815314 PMCID: PMC4359815 DOI: 10.1155/2015/420867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/21/2022]
Abstract
Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
Collapse
|
10
|
A novel dengue virus serotype-2 nanovaccine induces robust humoral and cell-mediated immunity in mice. Vaccine 2015; 33:1702-10. [DOI: 10.1016/j.vaccine.2015.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/22/2015] [Accepted: 02/04/2015] [Indexed: 11/19/2022]
|
11
|
Sariol CA, White LJ. Utility, limitations, and future of non-human primates for dengue research and vaccine development. Front Immunol 2014; 5:452. [PMID: 25309540 PMCID: PMC4174039 DOI: 10.3389/fimmu.2014.00452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Dengue is considered the most important emerging, human arboviruses, with worldwide distribution in the tropics. Unfortunately, there are no licensed dengue vaccines available or specific anti-viral drugs. The development of a dengue vaccine faces unique challenges. The four serotypes co-circulate in endemic areas, and pre-existing immunity to one serotype does not protect against infection with other serotypes, and actually may enhance severity of disease. One foremost constraint to test the efficacy of a dengue vaccine is the lack of an animal model that adequately recapitulates the clinical manifestations of a dengue infection in humans. In spite of this limitation, non-human primates (NHP) are considered the best available animal model to evaluate dengue vaccine candidates due to their genetic relatedness to humans and their ability to develop a viremia upon infection and a robust immune response similar to that in humans. Therefore, most dengue vaccines candidates are tested in primates before going into clinical trials. In this article, we present a comprehensive review of published studies on dengue vaccine evaluations using the NHP model, and discuss critical parameters affecting the usefulness of the model. In the light of recent clinical data, we assess the ability of the NHP model to predict immunological parameters of vaccine performances in humans and discuss parameters that should be further examined as potential correlates of protection. Finally, we propose some guidelines toward a more standardized use of the model to maximize its usefulness and to better compare the performance of vaccine candidates from different research groups.
Collapse
Affiliation(s)
- Carlos A Sariol
- Department of Microbiology and Medical Zoology, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA ; Department of Internal Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA
| | - Laura J White
- Global Vaccine Incorporation , Research Triangle Park, NC , USA
| |
Collapse
|
12
|
Yeo ASL, Azhar NA, Yeow W, Talbot CC, Khan MA, Shankar EM, Rathakrishnan A, Azizan A, Wang SM, Lee SK, Fong MY, Manikam R, Sekaran SD. Lack of clinical manifestations in asymptomatic dengue infection is attributed to broad down-regulation and selective up-regulation of host defence response genes. PLoS One 2014; 9:e92240. [PMID: 24727912 PMCID: PMC3984081 DOI: 10.1371/journal.pone.0092240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Objectives Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic. Methods We determined the levels of neutralizing antibodies (nAbs) and gene expression profiles of host immune factors in individuals with asymptomatic infections, and whose cognate household members showed symptoms consistent to clinical dengue infection. Results We observed broad down-regulation of host defense response (innate, adaptive and matrix metalloprotease) genes in asymptomatic individuals as against symptomatic patients, with selective up-regulation of distinct genes that have been associated with protection. Selected down-regulated genes include: TNF α (TNF), IL8, C1S, factor B (CFB), IL2, IL3, IL4, IL5, IL8, IL9, IL10 and IL13, CD80, CD28, and IL18, MMP8, MMP10, MMP12, MMP15, MMP16, and MMP24. Selected up-regulated genes include: RANTES (CCL5), MIP-1α (CCL3L1/CCL3L3), MIP-1β (CCL4L1), TGFβ (TGFB), and TIMP1. Conclusion Our findings highlight the potential association of certain host genes conferring protection against clinical dengue. These data are valuable to better explore the mysteries behind the hitherto poorly understood immunopathogenesis of subclinical dengue infection.
Collapse
Affiliation(s)
- Adeline S. L. Yeo
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nur Atiqah Azhar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - Wanyi Yeow
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mohammad Asif Khan
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Esaki M. Shankar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Anusyah Rathakrishnan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Azliyati Azizan
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Seok Mui Wang
- Institute for Medical Molecular Biotechnology, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Siew Kim Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University of Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
13
|
Abstract
Dengue is an expanding public health problem in the tropics and subtropical areas. Millions of people, most from resource-constrained countries, seek treatment every year for dengue-related disease. Despite more than 70 years of effort, a safe and efficacious vaccine remains unavailable. Antidengue antiviral drugs also do not exist despite attempts to develop or repurpose drug compounds. Gaps in the knowledge of dengue immunology, absence of a validated animal or human model of disease, and suboptimal assay platforms to measure immune responses following infection or experimental vaccination are obstacles to drug and vaccine development efforts. The limited success of one vaccine candidate in a recent clinical endpoint efficacy trial challenges commonly held beliefs regarding potential correlates of protection. If a dengue vaccine is to become a reality in the near term, vaccine developers should expand development pathway explorations beyond those typically required to demonstrate safety and efficacy.
Collapse
|
14
|
Abstract
Dengue viruses (DENV) are mosquito-borne viruses that cause significant morbidity. The existence of four serotypes of DENV with partial immunologic cross-reactivity creates the opportunity for individuals to experience multiple acute DENV infections over the course of their lifetimes. Research over the past several years has revealed complex interactions between DENV and the human innate and adaptive immune systems that can have either beneficial or detrimental influences on the outcome of infection. Further studies that seek to distinguish protective from pathological immune responses in the context of natural DENV infection as well as clinical trials of candidate DENV vaccines have an important place in efforts to control the global impact of this re-emerging viral disease.
Collapse
|
15
|
|
16
|
Bentsi-Enchill AD, Schmitz J, Edelman R, Durbin A, Roehrig JT, Smith PG, Hombach J, Farrar J. Long-term safety assessment of live attenuated tetravalent dengue vaccines: deliberations from a WHO technical consultation. Vaccine 2013; 31:2603-9. [PMID: 23570986 PMCID: PMC5355209 DOI: 10.1016/j.vaccine.2013.03.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/01/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Dengue is a rapidly growing public health threat with approximately 2.5 billion people estimated to be at risk. Several vaccine candidates are at various stages of pre-clinical and clinical development. Thus far, live dengue vaccine candidates have been administered to several thousands of volunteers and were well-tolerated, with minimal short-term safety effects reported in Phase I and Phase II clinical trials. Based on the natural history of dengue, a theoretical possibility of an increased risk of severe dengue as a consequence of vaccination has been hypothesized but not yet observed. In October 2011, the World Health Organization (WHO) convened a consultation of experts in dengue, vaccine regulation and vaccine safety to review the current scientific evidence regarding safety concerns associated with live attenuated dengue vaccines and, in particular, to consider methodological approaches for their long-term evaluation. In this paper we summarize the scientific background and methodological considerations relevant to the safety assessment of these vaccines. Careful planning and a coordinated approach to safety assessment are recommended to ensure adequate long-term evaluation of dengue vaccines that will support their introduction and continued use.
Collapse
|
17
|
Lund O, Nascimento EJM, Maciel M, Nielsen M, Larsen MV, Lundegaard C, Harndahl M, Lamberth K, Buus S, Salmon J, August TJ, Marques ETA. Human leukocyte antigen (HLA) class I restricted epitope discovery in yellow fewer and dengue viruses: importance of HLA binding strength. PLoS One 2011; 6:e26494. [PMID: 22039500 PMCID: PMC3198402 DOI: 10.1371/journal.pone.0026494] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/28/2011] [Indexed: 12/11/2022] Open
Abstract
Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, KD, stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had KD below 100 nM and the peptides with KD below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had KD below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response.
Collapse
Affiliation(s)
- Ole Lund
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
From research to phase III: Preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 2011; 29:7229-41. [DOI: 10.1016/j.vaccine.2011.06.094] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/16/2011] [Accepted: 06/24/2011] [Indexed: 02/06/2023]
|
19
|
Next generation dengue vaccines: a review of candidates in preclinical development. Vaccine 2011; 29:7276-84. [PMID: 21781998 DOI: 10.1016/j.vaccine.2011.07.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/22/2011] [Accepted: 07/06/2011] [Indexed: 11/21/2022]
Abstract
Dengue represents a major public health problem of growing global importance. In the absence of specific dengue therapeutics, strategies for disease control have increasingly focused on the development of dengue vaccines. While a licensed dengue vaccine is not yet available, several vaccine candidates are currently being evaluated in clinical trials and are described in detail in accompanying articles. In addition, there are a large variety of candidates in preclinical development, which are based on diverse technologies, ensuring a continued influx of innovation into the development pipeline. Potentially, some of the current preclinical candidates may become next generation dengue vaccines with superior product profiles. This review provides an overview of the various technological approaches to dengue vaccine development and specifically focuses on candidates in preclinical development.
Collapse
|
20
|
Abstract
Dengue is an important cause of childhood and adult morbidity in Asian and Latin American countries and its geographic footprint is growing. The clinical manifestations of dengue are the expression of a constellation of host and viral factors, some acquired, others intrinsic to the individual. The virulence of the virus plus the flavivirus infection history, age, gender and genotype of the host all appear to help shape the severity of infection. Similarly, the characteristics of the innate and acquired host immune response subsequent to infection are also likely determinants of outcome. This review summarises recent developments in the understanding of dengue pathogenesis and their relevance to dengue vaccine development.
Collapse
|
21
|
Abstract
AbstractT cell–mediated heterologous immunity to different pathogens is promising for the development of immunotherapeutic strategies. Aspergillus fumigatus and Candida albicans, the 2 most common fungal pathogens causing severe infections in immunocompromised patients, are controlled by CD4+ type 1 helper T (TH1) cells in humans and mice, making induction of fungus-specific CD4+ TH1 immunity an appealing strategy for antifungal therapy. We identified an immunogenic epitope of the A fumigatus cell wall glucanase Crf1 that can be presented by 3 common major histocompatibility complex class II alleles and that induces memory CD4+ TH1 cells with a diverse T-cell receptor repertoire that is cross-reactive to C albicans. In BALB/c mice, the Crf1 protein also elicits cross-protection against lethal infection with C albicans that is mediated by the same epitope as in humans. These data illustrate the existence of T cell–based cross-protection for the 2 distantly related clinically relevant fungal pathogens that may foster the development of immunotherapeutic strategies.
Collapse
|
22
|
Li S, Peng L, Zhao W, Zhong H, Zhang F, Yan Z, Cao H. Synthetic peptides containing B- and T-cell epitope of dengue virus-2 E domain III provoked B- and T-cell responses. Vaccine 2011; 29:3695-702. [DOI: 10.1016/j.vaccine.2011.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 12/30/2022]
|
23
|
Singh R, Rothman AL, Potts J, Guirakhoo F, Ennis FA, Green S. Sequential immunization with heterologous chimeric flaviviruses induces broad-spectrum cross-reactive CD8+ T cell responses. J Infect Dis 2010; 202:223-33. [PMID: 20536361 PMCID: PMC2903744 DOI: 10.1086/653486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Flavivirus vaccines based on ChimeriVax technology contain the nonstructural genes of the yellow fever vaccine and the premembrane and envelope genes of heterologous flaviviruses, such as Japanese encephalitis and West Nile viruses. These chimeric vaccines induce both humoral and cell-mediated immunity. Mice were vaccinated with yellow fever, chimeric Japanese encephalitis virus (YF/JE), or chimeric West Nile virus (YF/WN) vaccines, followed by a secondary homologous or heterologous vaccination; the hierarchy and function of CD8(+) T cell responses to a variable envelope epitope were then analyzed and compared with those directed against a conserved immunodominant yellow fever virus NS3 epitope. Sequential vaccination with heterologous chimeric flaviviruses generated a broadly cross-reactive CD8(+) T cell response dependent on both the sequence of infecting viruses and epitope variant. The enhanced responses to variant epitopes after heterologous vaccination were not related to preexisting antibody or to higher virus titers. These results demonstrate that the sequence of vaccination affects the expansion of cross-reactive CD8(+) T cells after heterologous chimeric flavivirus challenge.
Collapse
Affiliation(s)
- Rekha Singh
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alan L. Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - James Potts
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | | | - Francis A. Ennis
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Sharone Green
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
24
|
Sarzotti-Kelsoe M, Cox J, Cleland N, Denny T, Hural J, Needham L, Ozaki D, Rodriguez-Chavez IR, Stevens G, Stiles T, Tarragona-Fiol T, Simkins A. Evaluation and recommendations on good clinical laboratory practice guidelines for phase I-III clinical trials. PLoS Med 2009; 6:e1000067. [PMID: 19536325 PMCID: PMC2670502 DOI: 10.1371/journal.pmed.1000067] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Marcella Sarzotti-Kelsoe and colleagues harmonize various approaches to Good Clinical Laboratory Practice for clinical trials into a single set of recommendations.
Collapse
Affiliation(s)
- Marcella Sarzotti-Kelsoe
- Duke University, Center for AIDS Research Central QA Unit, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|